Jump to content

Recommended Posts

  • Publishers
Posted
4 Min Read

Talented Teams Tackle Toasty Planet

The image depicts a celestial scene, with a bright, luminous star dominating the background. In the center of the image, a small, dark, rocky planet is seen transiting in front of the star, creating a stark contrast between the bright light of the star and the silhouette of the planet. Surrounding the star and planet, the background is filled with countless tiny stars scattered across the vast expanse of space. The star appears to radiate a soft glow, with a bright halo of light around it, emphasizing the planet's position as it passes in front of the star. The overall scene evokes a sense of the vastness and beauty of the cosmos.
Simulation of a planet transiting its host star by Exoplanet Watch volunteer Guiseppe Conzo.
Credits:
Guiseppe Conzo

Exoplanets, look out! Two NASA-funded teams of amateur astronomers are tracking you with their backyard telescopes. 

These two teams, called UNITE (UNISTELLAR Network Investigating TESS Exoplanets) and Exoplanet Watch, have combined forces to confirm a new planetary discovery—a toasty “warm Jupiter”.  

“I pinch myself every day when I recall that I have made a meaningful scientific contribution to astronomy by helping professional astronomers confirm and characterize a new exoplanet,” said Darren Rivett, a volunteer from Australia who contributed to the effort. 

Planets around other stars, called exoplanets, sometimes block the light from the stars they orbit. When this happens, it’s called a “transit”. Amateur astronomers can observe exoplanet transits with their own telescopes by watching for the light from a nearby star to dim.  

NASA’s Transiting Exoplanet Survey Satellite (TESS) sees these dimming events, too—many thousands of them. But just seeing a star dim once is not enough. You need to catch multiple dimming events (and perform various other checks) to know that you’ve found a new exoplanet.

That’s where volunteers from the UNITE and Exoplanet Watch projects come in.

These two teams of amateur astronomers have collaborated with the SETI Institute to detect the transit of an object called TIC 393818343 b (aka TOI 6883 b)—proving to the world that this object does indeed contain a planet orbiting a star.  

First, the UNISTELLAR and SETI Institute team saw a single transit signal detected by the TESS space telescope. They gathered data to predict when the planet would transit again. They then alerted the UNITE and Exoplanet Watch amateurs to help observe the host star for signs of a transiting planet during the predicted time. The observations from the two networks showed two new transit detections, confirming the predictions, and demonstrating that a planet indeed causes the signals.

This newly discovered giant planet falls into the “warm Jupiter” category of exoplanets,  meaning it orbits closer to its host star than Jupiter, or even the Earth does. Astronomers have even predicted that it might, under certain circumstances, migrate still further inward toward its star to become a “hot Jupiter.” Hot or not, thanks to some terrific teamwork, we are now one step closer to understanding the population of planets that lies outside our own Solar System. The news is now published in the Astronomical Journal, and all the citizen scientists involved, including a high school student, are co-authors on this scientific publication, “Confirmation and Characterization of the Eccentric, Warm Jupiter TIC 393818343 b with a Network of Citizen Scientists”.

UNITE (UNISTELLAR Network Investigating TESS Exoplanets) uses the global network of observers with UNISTELLAR telescopes to gather data on TESS exoplanet candidates and long-duration exoplanet transits. To get involved, no matter what kind of telescope you have, visit https://science.unistellar.com/exoplanets/unite/ or reach out to citizenscience@unistellaroptics.com.

Participation is open to everyone, regardless of citizenship. “What I find amazing about the NASA citizen science project is that they involve people from all around the world contributing meaningful observation data that leads to incredible discoveries!” Sophie Saibi, a high school student from California who participated. “Researching as a citizen scientist is something I highly recommend to anyone who gazes at the night sky with awe and wonder,” said Rivett.

Congratulations to everyone on the team! The amateur astronomers who coauthored this paper are listed below.

  • Mario Billiani
  • Robert Gagliano
  • Martti H. Kristiansen
  • Thomas Lee Jacobs
  • Daryll M. LaCourse
  • Georgios Lekkas
  • Margaret Loose
  • Bryan Martin
  • Nicola Meneghelli
  • Mark Omohundro
  • Darren Rivett
  • Fadi Saibi
  • Sophie Saibi 
  • Hans M. Schwengeler
  • Ivan A. Terentev
  • Daniel Zaharevitz

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This year’s RASC-AL competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond.ASANASA Fourteen university teams have been selected as finalists for NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition. This year’s competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond. Finalists will present their proposed concepts to a panel of NASA and aerospace industry leaders.  
      The 2025 Finalists are: 
      Sustained Lunar Evolution – An Inspirational Moment:  Massachusetts Institute of Technology, “M.I.S.T.R.E.S.S. – Moon Infrastructure for Sustainable Technologies, Resource Extraction, and Self-Sufficiency”  Tulane University, “Scalable Constructs for Advanced Lunar Activities and Research (SCALAR)”  Virginia Polytechnic Institute and State University, “Project Aeneas”  Virginia Polytechnic Institute and State University, “Project Khonsu”  Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign:   Auburn University, “Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER)”  University of Illinois, Urbana-Champaign, “MATER: Mars Architecture for Technology Evaluation and Research”  Virginia Polytechnic Institute and State University, “Project Vehicles for Engineering Surface Terrain Architectures (VESTA)”  Small Lunar Servicing and Maintenance Robot:   Arizona State University, “DIANA – Diagnostic and Intelligent Autonomously Navigated Assistant”  South Dakota State University, “Next-gen Operations and Versatile Assistant (NOVA)”  South Dakota State University, “MANTIS: Maintenance and Navigation for Technical Infrastructure Support”  Texas A&M University, “R.A.M.S.E.E.: Robotic Autonomous Maintenance System for Extraterrestrial Environments”  University of Maryland, “Servicing Crane Outfitted Rover for Payloads, Inspection, Operations, N’stuff (SCORPION)”  University of Puerto Rico, Mayagüez, “Multi-functional Operational Rover for Payload Handling and Navigation (MORPHN)”  Virginia Polytechnic Institute & State University, “Adaptive Device for Assistance and Maintenance (ADAM)”  The RASC-AL Competition is designed to engage university students and academic institutions in innovation within the field of aerospace engineering. By providing a platform for students to develop and present their ideas, NASA aims to cultivate foundational research for new concepts and technologies for the future of space exploration. This year’s RASC-AL projects include scalable lunar infrastructure and services, a lunar robot that can work autonomously or be controlled remotely, and a concept for a science or technology demonstration mission using human-scale launch, transportation, entry, and landing capabilities at Mars. All of these functions are critical to future NASA missions. 
      “This year’s RASC-AL projects are not just academic exercises; they will contribute real solutions to some of the most pressing challenges we currently face. The competition continues to highlight the importance of innovation and interdisciplinary collaboration in aerospace,” said Daniel Mazanek, RASC-AL program sponsor and senior space systems engineer from NASA’s Langley Research Center in Hampton, VA. 
      These finalist teams will move forward to the next phase of the competition, where they will prepare and submit a detailed technical paper outlining their designs, methodologies, and anticipated impacts. Each team will present their concepts at the 2025 RASC-AL Competition Forum in June 2025 showcasing their work to a judging panel of NASA and industry experts for review and discussion. 
      “The ingenuity and out-of-the-box designs showcased by these students is inspiring,” added Dr. Christopher Jones, RASC-AL program sponsor and chief technologist for the Systems Analysis and Concepts Directorate at NASA’S Langley  “We are excited to see how their ideas can contribute to NASA’s ongoing missions and future exploration goals. This is just the beginning of their journey, and we are proud to be part of it.” 
      To learn more about NASA’s RASC-AL Competition, visit NASA’s RASC-AL Competition Website. RASC-AL is sponsored by the Strategy and Architecture Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA’s Langley Research Center. It is administered by the National Institute of Aerospace. 
      Genevieve Ebarle / Victoria O’Leary
      National Institute of Aerospace
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA / Lillian Gipson NASA has selected three university teams to help solve 21st century aviation challenges that could transform the skies above our communities. 
      As part of NASA’s University Leadership Initiative (ULI), both graduate and undergraduate students on faculty-led university teams will contribute directly to real-world flight research while gaining hands-on experience working with partners from other universities and industry. 
      By combining faculty expertise, student innovation, and industry experience, these three teams will advance NASA’s vision for the future of 21st century aviation.
      koushik datta
      NASA Project Manager
      This is NASA’s eighth round of annual ULI awards. Research topics include: 
      New aviation systems for safer, more efficient flight operations   Improved communications frequency usage for more effective and reliable information transfer  Autonomous flight capabilities that could advance research in areas such as NASA’s Advanced Air Mobility mission  “By combining faculty expertise, student innovation, and industry experience, these three teams will advance NASA’s vision for the future of 21st century aviation,” said Koushik Datta, NASA University Innovation project manager at the Agency’s Ames Research Center in California. 
      This eighth round of annual ULI selections would lead to awards totaling up to $20.7 million for the three teams during the next three years. For each team, the proposing university will serve as lead. The new ULI selections are: 
      Florida Institute of Technology, Melbourne, Florida 
      The team will create a framework for developing trustworthy increasingly autonomous aviation safety systems, such as those that could potentially employ artificial intelligence and machine learning.  
      Team members include: The Pennsylvania State University in University Park; North Carolina Agricultural and Technical State University in Greensboro; University of Florida in Gainesville; Stanford University in California; Santa Fe Community College in New Mexico; and the companies Collins Aerospace of Charlotte in North Carolina; and ResilienX of Syracuse, New York. 
      University of Colorado Boulder 
      This team will investigate tools for understanding and leveraging the complex communications environment of collaborative, autonomous airspace systems.  
      Team members include: Massachusetts Institute of Technology in Cambridge; The University of Texas at El Paso; University of Colorado in Colorado Springs; Stanford University in California; University of Minnesota Twin Cities in Minneapolis, North Carolina State University in Raleigh; University of California inSanta Barbara; El Paso Community College in Texas; Durham Technical Community College in North Carolina; the Center for Autonomous Air Mobility and Sensing research partnership; the company Aurora Flight Sciences, a Boeing Company, in Manassas, Virginia; and the nonprofit Charles Stark Draper Laboratory in Cambridge, Massachusetts. 
      Embry-Riddle Aeronautical University, Daytona Beach, Florida 
      This team will research continuously updating, self-diagnostic vehicle health management to enhance the safety and reliability of Advanced Air Mobility vehicles.  
      Team members include: Georgia Institute of Technology in Atlanta; The University of Texas at Arlington; University of Southern California in Los Angeles; the company Collins Aerospace of Charlotte, North Carolina; and the Argonne National Laboratory. 
      NASA’s ULI is managed by the agency’s University Innovation project, which also includes the University Student Research Challenge and the Gateways to Blue Skies competition.
      Watch the NASA Aeronautics solicitations page for the announcement of when the next opportunity will be to submit a proposal for consideration during the next round of ULI selections. 
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA Marks 110 Years Since Founding of Predecessor Organization
      Article 1 week ago 3 min read NASA’s X-59 Completes Electromagnetic Testing
      Article 2 weeks ago 4 min read NASA University Research Program Makes First Award to a Community College Project
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Mar 10, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
      University Leadership Initiative Aeronautics Flight Innovation Transformative Aeronautics Concepts Program University Innovation View the full article
    • By NASA
      X-ray: NASA/CXC/SAO/Univ Mexico/S. Estrada-Dorado et al.; Ultraviolet: NASA/JPL; Optical: NASA/ESA/STScI (M. Meixner)/NRAO (T.A. Rector); Infrared: ESO/VISTA/J. Emerson; Image Processing: NASA/CXC/SAO/K. Arcand; A planet may have been destroyed by a white dwarf at the center of a planetary nebula — the first time this has been seen. As described in our latest press release, this would explain a mysterious X-ray signal that astronomers have detected from the Helix Nebula for over 40 years. The Helix is a planetary nebula, a late-stage star like our Sun that has shed its outer layers leaving a small dim star at its center called a white dwarf.
      This composite image contains X-rays from Chandra (magenta), optical light data from Hubble (orange, light blue), infrared data from ESO (gold, dark blue), and ultraviolet data from GALEX (purple) of the Helix Nebula. Data from Chandra indicates that this white dwarf has destroyed a very closely orbiting planet.
      This artist’s impression shows a planet (left) that has approached too close to a white dwarf (right) and been torn apart by tidal forces from the star. The white dwarf is in the center of a planetary nebula depicted by the blue gas in the background. The planet is part of a planetary system, which includes one planet in the upper left and another in the lower right. The besieged planet could have initially been a considerable distance from the white dwarf but then migrated inwards by interacting with the gravity of other planets in the system.CXC/SAO/M.Weiss An artist’s concept shows a planet (left) that has approached too close to a white dwarf (right) and is being torn apart by tidal forces from the star. The white dwarf is in the center of a planetary nebula depicted by the blue gas in the background. The planet is part of a planetary system, which includes one planet in the upper left and another in the lower right. The besieged planet could have initially been a considerable distance from the white dwarf but then migrated inwards by interacting with the gravity of the other planets in the system.
      Eventually debris from the planet will form a disk around the white dwarf and fall onto the star’s surface, creating the mysterious signal in X-rays that astronomers have detected for decades.
      Dating back to 1980, X-ray missions, such as the Einstein Observatory and ROSAT telescope, have picked up an unusual reading from the center of the Helix Nebula. They detected highly energetic X-rays coming from the white dwarf at the center of the Helix Nebula named WD 2226-210, located only 650 light-years from Earth. White dwarfs like WD 2226-210 do not typically give off strong X-rays.
      In about 5 billion years, our Sun will run out of fuel and expand, possibly engulfing Earth. These end stages of a star’s life can be utterly beautiful as is the case with this planetary nebula called the Helix Nebula.X-ray: NASA/CXC/SAO/Univ Mexico/S. Estrada-Dorado et al.; Ultraviolet: NASA/JPL; Optical: NASA/ESA/STScI (M. Meixner)/NRAO (T.A. Rector); Infrared: ESO/VISTA/J. Emerson; Image Processing: NASA/CXC/SAO/K. Arcand; A new study featuring the data from Chandra and XMM-Newton may finally have settled the question of what is causing these X-rays from WD 2226-210: this X-ray signal could be the debris from a destroyed planet being pulled onto the white dwarf. If confirmed, this would be the first case of a planet seen to be destroyed by the central star in a planetary nebula.
      Observations by ROSAT, Chandra, and XMM-Newton between 1992 and 2002 show that the X-ray signal from the white dwarf has remained approximately constant in brightness during that time. The data, however, suggest there may be a subtle, regular change in the X-ray signal every 2.9 hours, providing evidence for the remains of a planet exceptionally close to the white dwarf.
      Previously scientists determined that a Neptune-sized planet is in a very close orbit around the white dwarf — completing one revolution in less than three days. The researchers in this latest study conclude that there could have been a planet like Jupiter even closer to the star. The besieged planet could have initially been a considerable distance from the white dwarf but then migrated inwards by interacting with the gravity of other planets in the system. Once it approached close enough to the white dwarf the gravity of the star would have partially or completely torn the planet apart.
      WD 2226-210 has some similarities in X-ray behavior to two other white dwarfs that are not inside planetary nebulas. One is possibly pulling material away from a planet companion, but in a more sedate fashion without the planet being quickly destroyed. The other white dwarf is likely dragging material from the vestiges of a planet onto its surface. These three white dwarfs may constitute a new class of variable, or changing, object.
      A paper describing these results appears in The Monthly Notices of the Royal Astronomical Society and is available online. The authors of the paper are Sandino Estrada-Dorado (National Autonomous University of Mexico), Martin Guerrero (The Institute of Astrophysics of Andalusia in Spain), Jesús Toala (National Autonomous University of Mexico), Ricardo Maldonado (National Autonomous University of Mexico), Veronica Lora (National Autonomous University of Mexico), Diego Alejandro Vasquez-Torres (National Autonomous University of Mexico), and You-Hua Chu (Academia Sinica in Taiwan).
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features two images; a composite image of the Helix Nebula, and an artist’s rendering of a planet’s destruction, which may be occurring in the nebula’s core.
      The Helix Nebula is a cloud of gas ejected by a dying star, known as a white dwarf. In the composite image, the cloud of gas strongly resembles a creature’s eye. Here, a hazy blue cloud is surrounded by misty, concentric rings of pale yellow, rose pink, and blood orange. Each ring appears dusted with flecks of gold, particularly the outer edges of the eye-shape.
      The entire image is speckled with glowing dots in blues, whites, yellows, and purples. At the center of the hazy blue gas cloud, a box has been drawn around some of these dots including a bright white dot with a pink outer ring, and a smaller white dot. The scene which may be unfolding inside this box has been magnified in the artist’s rendering.
      The artist’s digital rendering shows a possible cause of the large white dot with the pink outer ring. A brilliant white circle near our upper right shows a white dwarf, the ember of a dying star. At our lower left, in the relative foreground of the rendering, is what remains of a planet. Here, the planet resembles a giant boulder shedding thousands of smaller rocks. These rocks flow off the planet’s surface, pulled back toward the white dwarf in a long, swooping tail. Glowing orange fault lines mar the surface of the crumbling planet. In our upper left and lower right, inside the hazy blue clouds which blanket the rendering, are two other, more distant planets. After the rocks from the planet start striking the surface of the white dwarf, X-rays should be produced.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Explore More
      6 min read NASA’s Hubble Finds Kuiper Belt Duo May Be Trio
      The puzzle of predicting how three gravitationally bound bodies move in space has challenged mathematicians…
      Article 12 mins ago 6 min read NASA’s Webb Exposes Complex Atmosphere of Starless Super-Jupiter
      An international team of researchers has discovered that previously observed variations in brightness of a…
      Article 1 day ago 1 min read Hubble Captures New View of Colorful Veil
      In this NASA/ESA Hubble Space Telescope image, Hubble once again lifts the veil on a…
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA marked a key milestone Feb. 18 with installation of RS-25 engine No. E20001, the first new production engine to help power the SLS (Space Launch System) rocket on future Artemis missions to the Moon.
      The engine, built by lead SLS engines contractor L3Harris (formerly Aerojet Rocketdyne), was installed on the Fred Haise Test Stand in preparation for acceptance testing next month. It represents the first of 24 new flight engines being built for missions, beginning with Artemis V.
      Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin The NASA Stennis test team will conduct a full-duration, 500-second hot fire, providing critical performance data to certify the engine for use on a future mission. During missions to the Moon, RS-25 engines fire for about 500 seconds and up to the 111% power level to help launch SLS, with the Orion spacecraft, into orbit.
      The engine arrived at the test stand from the L3Harris Engine Assembly Facility on the engine transport trailer before being lifted onto the vertical engine installer (VEI) on the west side deck. After rolling the engine into the stand, the team used the VEI to raise and secure it in place.
      The upcoming acceptance test follows two certification test series that helped verify the new engine production process and components meet all performance requirements. Four RS-25 engines help launch SLS, producing up to 2 million pounds of combined thrust.
      All RS-25 engines for Artemis missions are tested and proven flightworthy at NASA Stennis prior to use. RS-25 tests are conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
      Explore More NASA Stennis Images View the full article
    • By NASA
      5 Min Read Planetary Alignments and Planet Parades
      A sky chart showing Mars, Jupiter, Saturn, and Venus in a “planet parade.” Credits:
      NASA/JPL-Caltech On most nights, weather permitting, you can spot at least one bright planet in the night sky. While two or three planets are commonly visible in the hours around sunset, occasionally four or five bright planets can be seen simultaneously with the naked eye. These events, often called “planet parades” or “planetary alignments,” can generate significant public interest. Though not exceedingly rare, they’re worth observing since they don’t happen every year.
      Why Planets Appear Along a Line in The Sky
      “Planet parade” isn’t a technical term in astronomy, and “planetary alignment” can refer to several different phenomena. As the planets of our solar system orbit the Sun, they occasionally line up in space in events called oppositions and conjunctions. A planetary alignment can also refer to apparent lineups in our sky with other planets, the Moon, or bright stars.
      The planets of our solar system always appear along a line on the sky. This line, referred to as the ecliptic, represents the plane in which the planets orbit, seen from our position within the plane itself. NASA/Preston Dyches When it comes to this second type of planetary alignment, it’s important to understand that planets always appear along a line or arc across the sky. This occurs because the planets orbit our Sun in a relatively flat, disc-shaped plane. From Earth, we’re looking into that solar system plane from within. We see the racetrack of the planets from the perspective of one of the racers ourselves. When viewed edge-on, this disc appears as a line, which we call the ecliptic or ecliptic plane.
      So, while planet alignment itself isn’t unusual, what makes these events special is the opportunity to observe multiple planets simultaneously with the naked eye.
      Will the Planets Actually be Visible?
      Before preparing to observe a planet parade, we have to consider how high the planets will appear above the horizon. For most observers to see a planet with the naked eye, it needs to be at least a few degrees above the horizon, and10 degrees or higher is best. This is crucial because Earth’s atmosphere near the ground dims celestial objects as they rise or set. Even bright planets become difficult or impossible to spot when they’re too low, as their light gets scattered and absorbed on its path to your eye. Buildings, trees, and other obstructions often block the view near the horizon as well.
      This visibility challenge is particularly notable after sunset or before sunrise, where the sky is still glowing. If a planet appears very low within the sunset glow, it is very difficult to observe.
      The Planets You Can See, and Those You Can’t
      Five planets are visible without optical aid: Mercury, Venus, Mars, Jupiter, and Saturn. Ancient civilizations recognized these worlds as bright lights that wandered across the starscape, while the background stars remained fixed in place. In fact, the word “planet” comes to us from the Greek word for “wanderer.”
      The solar system includes two additional major planets, Uranus and Neptune, plus numerous dwarf planets like Pluto and Ceres. Uranus and Neptune orbit in the dim, cold depths of the outer solar system. Neptune absolutely requires a telescope to observe. While Uranus is technically bright enough to detect with good eyesight, it’s quite faint and requires dark skies and precise knowledge of its location among similarly faint stars, so a telescope is recommended. As we’ll discuss in the next section, planet parades necessarily must be observed in twilight before dawn or after sunset, and this is not a good time to try observing extremely faint objects like Uranus and Neptune.
      Thus, claims about rare six- or seven-planet alignments which include Uranus and Neptune should be viewed with the understanding that these two distant planets will not be visible to the unaided eye.
      What Makes Multi-Planet Lineups Special
      Lineups of four or five planet naked-eye planets with optimal visibility typically occur every few years. Mars, Jupiter, and Saturn are frequently seen in the night sky, but the addition of Venus and Mercury make four- and five-planet lineups particularly noteworthy. Both orbit closer to the Sun than Earth, with smaller, faster orbits than the other planets. Venus is visible for only a couple of months at a time when it reaches its greatest separation from the Sun (called elongation), appearing just after sunset or before sunrise. Mercury, completing its orbit in just 88 days, is visible for only a couple of weeks (or even a few days) at a time just after sunset or just before sunrise.
      Planet parades aren’t single-day events, as the planets move too slowly for that. Generally, multi-planet viewing opportunities last for weeks to a month or more. Even five-planet events last for several days as Mercury briefly emerges from and returns to the Sun’s glare.
      In summary, while they aren’t once-in-a-lifetime events, planetary parades afford an uncommon opportunity to look up and appreciate our place in our solar system, with diverse worlds arrayed across the sky before our very eyes.
      Other Planet Lineups
      Other recent and near-future multi-planet viewing opportunities:
      January 2016 – Four planets visible at once before sunrise Late April to Late August 2022 – Four planets visible at once before sunrise Mid-June to Early July 2022 – Five planets visible at once before sunrise January to mid-February 2025 – Four planets visible at once after sunset Late August 2025 – Four planets visible at once before sunrise Late October 2028 – Five planets visible at once before sunrise Late February 2034 – Five planets visible at once after sunset (Venus and Mercury challenging to observe) About the January/February 2025 Planet Parade
      The current four-planet lineup concludes by mid-February, as Saturn sinks increasingly lower in the sky each night after sunset. By mid-to-late February, Saturn appears less than 10 degrees above the horizon as sunset fades, making it difficult to observe for most people. While Mercury briefly joins Saturn in the post-sunset glow at the end of February, both planets will be too low and faint for most observers to spot.
      Keep Exploring Discover More Topics From NASA
      Skywatching



      Planets



      Solar System Exploration



      Moons


      View the full article
  • Check out these Videos

×
×
  • Create New...