Jump to content

How Students Learn to Fly NASA’s IXPE Spacecraft


Recommended Posts

  • Publishers
Posted

5 min read

How Students Learn to Fly NASA’s IXPE Spacecraft

A young woman holds a water bottle in front of a doorway with the words
Amelia “Mia” De Herrera-Schnering is an undergraduate student at the University of Colorado, Boulder, and command controller for NASA’s IXPE mission at LASP.

The large wall monitor displaying a countdown shows 17 seconds when Amelia “Mia” De Herrera-Schnering tells her teammates “We have AOS,” meaning “acquisition of signal.”

“Copy that, thank you,” Alexander Pichler replies. The two are now in contact with NASA’s IXPE (Imaging X-Ray Polarimeter Explorer) spacecraft, transmitting science data from IXPE to a ground station and making sure the download goes smoothly. That data will then go to the science team for further analysis.

At LASP, the Laboratory for Atmospheric and Space Physics, students at the University of Colorado, Boulder, can train to become command controllers, working directly with spacecraft on pointing the satellites, calibrating instruments, and collecting data. De Herrera-Schnering recently completed her sophomore year, while Pichler had trained as a student and now, having graduated, works as a full-time professional at LASP.

“The students are a key part in what we do,” said Stephanie Ruswick, IXPE flight director at LASP. “We professionals monitor the health and safety of the spacecraft, but so do the students, and they do a lot of analysis for us.”

Students also put into motion IXPE’s instrument activity plans, which are provided by the Science Operations Center at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The LASP student team schedules contacts with ground stations to downlink data, schedules observations of scientific and calibration targets, and generates the files necessary to translate the scientific operations into spacecraft actions. If IXPE experiences an anomaly, the LASP team will implement plans to remediate and resume normal operations as soon as possible.

Exploring the high-energy universe

The students take part in IXPE’s exploration of a wide variety of celestial targets. In October, for example, students monitored the transmission of data from IXPE’s observations of Swift J1727.8-1613, a bright black hole X-ray binary system. This cosmic object had been recently discovered in September 2023, when NASA’s Neil Gehrels Swift Observatory detected a gamma-ray burst. IXPE’s specialized instruments allow scientists to measure the polarization of X-rays, which contains information about the source of the X-rays as well as the organization of surrounding magnetic fields. IXPE’s follow-up of the Swift object exemplifies how multiple space missions often combine their individual strengths to paint a fuller scientific picture of distant phenomena.

Team members also conduct individual projects. For example, students analyzed how IXPE would fare during both the annular eclipse on Oct. 14, 2023, and the total eclipse that moved across North America on April 8, to make sure that the spacecraft would have adequate power while the Moon partially blocked the Sun.

While most of the students working on IXPE at LASP are engineering majors, some are physics or astrophysics majors. Some didn’t initially start their careers in STEM such as flight controller Kacie Davis, who previously studied art.

Prospective command controllers go through a rigorous 12-week summer training program working 40 hours per week, learning “everything there is to know about mission operations and how to fly a spacecraft,” Ruswick said.

Cole Writer, an aerospace engineering student, remembers this training as “nerve-wracking” because he felt intimidated by the flight controllers. But after practicing procedures on his own laptop, he felt more confident, and completed the program to become a command controller.

“It’s nice to be trained by other students who are in the same boat as you and have gone through the same process,” said Adrienne Pickerill, a flight controller who started with the team as a student and earned a Master’s in aerospace engineering at the university in May .

A young man with blonde hair and glasses and a white shirt sits in a control room. He is Sam Lippincott.
Sam Lippincott, right, a graduate student lead at LASP, trained as a command controller for NASA’s IXPE spacecraft as an undergraduate. In the background are flight controllers Adrienne Pickerill, left, and Alexander Pichler, who also trained as students.

How they got here

As a teenager Writer’s interests focused on flying planes, and he saved money to train for a pilot’s license, earning it the summer after high school graduation. Surprisingly, he has found many overlaps in skills for both activities – following checklists and preventing mistakes. “Definitely high stakes in both cases,” he said.

Sam Lippincott, now a graduate student lead after serving as a command controller as an undergraduate, has been a lifelong sci-fi fan, but took a career in space more seriously his sophomore year of college. “For people that want to go into the aerospace or space operations industry, it’s always important to remember that you’ll never stop learning, and it’s important to remain humble in your abilities, and always be excited to learn more,” he said.

De Herrera-Schnering got hooked on the idea of becoming a scientist the first time she saw the Milky Way. On a camping trip when she was 10 years old, she spotted the galaxy as she went to use the outhouse in the middle of the night. “I woke up my parents, and we just laid outside and we were just stargazing,” she said. “After that I knew I was set on what I wanted to do.”

Rithik Gangopadhyay, who trained as an undergraduate command controller and continued at LASP as a graduate student lead, had been interested in puzzles and problem-solving as a kid and had a book about planets that fascinated him.. “There’s so much out there and so much we don’t know, and I think that’s what really pushed me to do aerospace and do this opportunity of being a command controller,” he said.

Coding is key to mission operations, and much of it is done in the Python language. Sometimes the work of flying a spacecraft feels like any other kind of programming — but occasionally, team members step back and consider that they are part of the grand mission of exploring the universe.

“If it’s your job for a couple of years, it starts to be like, ‘oh, let’s go ahead and do that, it’s just another Tuesday.’ But if you step back and think about it on a high-level basis, it’s really something special,” Pichler said. “It’s definitely profound.”

Media Contact

Elizabeth Landau
Headquarters, Washington
202-358-0845
elandau@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read Ways Community College Students Can Get Involved With NASA
      For many students, the path to a NASA career begins at a community college. These local, two-year institutions offer valuable flexibility and options to those aspiring to be part of the nation’s next generation STEM workforce. NASA offers several opportunities for community college students to expand their horizons, make connections with agency experts, add valuable NASA experiences to their resumes, and home in on the types of STEM roles that best fit their skills and interests. Below are some of the exciting NASA activities and experiences available to community college students.
      NASA Community College Aerospace Scholars
      Get an introduction to NASA, its missions, and its workplace culture through NASA Community College Aerospace Scholars (NCAS). This three-part series enables students to advance their knowledge of the agency, grow their STEM capabilities, interact with NASA experts, and learn about the different pathways to a NASA career.
      Mission 1: Discover is a five-week, online orientation course that serves as an introduction to NASA.
      Mission 2: Explore is a gamified mission to the Moon or Mars in which students develop a design solution while learning about the agency as a workplace.
      Mission 3: Innovate is a three-week hybrid capstone project consisting of two weeks of online preparation and one week participating in a hands-on engineering design challenge at a NASA center.
      NCAS begins with Mission 1 and students must complete each mission to be eligible for the next.
      Members of a college student team monitor the performance of their robot during a NASA Community College Aerospace Scholars (NCAS) Mission 3: Innovate robotics competition.
      NASA Student Challenges
      NASA’s student challenges and competitions invite students across a range of ages and education levels to innovate and build solutions to many of the agency’s spaceflight and aviation needs – and community college students across the U.S. are eligible for many of these opportunities. In NASA’s Student Launch challenge, each team designs, builds, and tests a high-powered rocket carrying a scientific or engineering payload. In the MUREP Innovation Tech Transfer Idea Competition (MITTIC)Teams from U.S.-designated Minority-Serving Institutions, including community colleges, have the opportunity to brainstorm and pitch new commercial products based on NASA technology.
      NASA’s student challenges and competitions are active at varying times throughout the year – new challenges are sometimes added, and existing opportunities evolve – so we recommend students visit the NASA STEM Opportunities and Activities page and research specific challenges to enable planning and preparation for future participation.
      NASA’s Student Launch tasks student teams from across the U.S. to design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload. The annual challenge culminates with a final launch in Huntsville, Alabama, home of NASA’s Marshall Space Flight Center.
      NASA NASA RockOn! and RockSat Programs
      Build an experiment and launch it aboard a sounding rocket! Through the hands-on RockOn! and RockSat programs, students gain experience designing and building an experiment to fly as a payload aboard a sounding rocket launched from NASA’s Wallops Flight Facility in Wallops Island, Virginia. In RockOn!, small teams get an introduction to creating a sounding rocket experiment, while RockSat-C and RockSat-X are more advanced experiment flight opportunities.
      Students watch as their experiments launch aboard a sounding rocket for the RockSat-X program from NASA’s Wallops Flight Facility Aug. 11, 2022, at 6:09 p.m. EDT. The Terrier-Improved Malemute rocket carried the experiments to an altitude of 99 miles before descending via a parachute and landing in the Atlantic Ocean.
      NASA Wallops/Terry Zaperach NASA Internships
      Be a part of the NASA team! With a NASA internship, students work side-by-side with agency experts, gaining authentic workforce experience while contributing to projects that align with NASA’s goals. Internships are available in a wide variety of disciplines in STEM and beyond, including communications, finance, and more. Each student has a NASA mentor to help guide and coach them through their internship.
      NASA interns gain hands-on experience while contributing to agency projects under the guidance of a NASA mentor.
      NASA National Space Grant College and Fellowship Program
      The National Space Grant College and Fellowship Project, better known as Space Grant, is a national network of colleges and universities working to expand opportunities for students and the public to participate in NASA’s aeronautics and space projects. Each state has its own Space Grant Consortium that may provide STEM education and training programs; funding for scholarships and/or internships; and opportunities to take part in research projects, public outreach, state-level student challenges, and more. Programs, opportunities, and offerings vary by state; students should visit their state’s Space Grant Consortium website to find out about opportunities available near them.
      Students from the Erie Huron Ottawa Vocational Education Career Center are pictured at the 3KVA Mobile Photovoltaic Power Plant at NASA’s Glenn Research Center.
      NASA Additional Resources
      NASA Community College Network NASA Earth Science Division Early Career Research NASA STEM Gateway Careers at NASA
      View the full article
    • By European Space Agency
      The European Space Agency (ESA) has powered down its Gaia spacecraft after more than a decade spent gathering data that are now being used to unravel the secrets of our home galaxy.
      On 27 March 2025, Gaia’s control team at ESA’s European Space Operations Centre carefully switched off the spacecraft’s subsystems and sent it into a ‘retirement orbit’ around the Sun.
      Though the spacecraft’s operations are now over, the scientific exploitation of Gaia’s data has just begun.
      View the full article
    • By NASA
      Artemis II crew members and U.S. Navy personnel practice recovery procedures in the Pacific Ocean using a test version of NASA’s Orion spacecraft in February 2024. Credit: NASA NASA and the Department of Defense will host a media event on the recovery operations that will bring the Artemis II astronauts and the agency’s Orion spacecraft home at the conclusion of next year’s mission around the Moon. The in-person event will take place at 3 p.m. PDT on Monday, March 31, at Naval Base San Diego in California.
      A team of NASA and Department of Defense personnel are at sea in the Pacific Ocean where splashdown will take place. The team currently is practicing the procedures it will use to recover the astronauts after their more than 600,000 mile journey from Earth and back on the first crewed mission under the Artemis campaign. A test version of Orion and other hardware also will be on-hand for media representatives to view.
      Interested media must RSVP no later than 4 p.m. PDT Friday, March 28, to Naval Base San Diego Public Affairs at nbsd.pao@us.navy.mil or 619-556-7359. The start time of the event may change based on the conclusion of testing activities.
      Participants include:
      Liliana Villarreal, NASA’s Artemis II landing and recovery director, Exploration Ground Systems Program, NASA’s Kennedy Space Center in Florida Capt. Andrew “Andy” Koy, commanding officer of USS Somerset (LPD 25), U.S. Navy Lt. Col. David Mahan, commander, U.S. Air Force’s 1st Air Force, Detachment 3, Patrick Space Force Base, Florida Several astronauts participating in the testing will be available for interviews.
      Artemis II will be the first test flight of the SLS (Space Launch System) rocket, Orion spacecraft, and supporting ground system with crew aboard. NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will venture around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
      Learn more about Artemis II at:
      https://www.nasa.gov/mission/artemis-ii/
      -end-
      Jim Wilson
      Headquarters, Washington
      202-358-1100
      jim.wilson@nasa.gov
      Madison Tuttle/Allison Tankersley
      Kennedy Space Center, Florida
      321-298-5968/321-867-2468
      madison.e.tuttle@nasa.gov / allison.p.tankersley@nasa.gov
      Share
      Details
      Last Updated Mar 25, 2025 LocationNASA Headquarters Related Terms
      Artemis 2 Kennedy Space Center NASA Headquarters View the full article
    • By NASA
      NASA astronaut and Pilot for NASA’s SpaceX Crew-10 mission Nichole Ayers is pictured training inside a mockup of a Dragon cockpit at the company’s facilities in Hawthorne, California. Credit: SpaceX Students from Richmond Hill, New York,will have the chance to connect with NASA astronauts Anne McClain and Nichole Ayers as they answer prerecorded science, technology, engineering, and mathematics-related questions from aboard the International Space Station.
      Watch the 20-minute space-to-Earth call at 12 p.m. EDT on Wednesday, March 26, on NASA+ and learn how to watch NASA content on various platforms, including social media.
      The event, open to students and their families, will be hosted by Richmond Hill High School, a New York City public high school in Queens South, District 27. The school’s goal is to inspire their students to pursue STEM careers.
      Media interested in covering the event must contact Lilly Donaldson at Lily@arttechnically.org by 5 p.m., Monday, March 24.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Mar 21, 2025 LocationNASA Headquarters Related Terms
      Learning Resources In-flight Education Downlinks Outside the Classroom View the full article
    • By NASA
      Students explore the Manufacturing Facility at NASA’s Glenn Research Center in Cleveland during Career Technical Education Day on March 11.Credit: NASA/Jef Janis NASA’s Glenn Research Center in Cleveland welcomed more than 150 students and educators to showcase technical careers, inspire the next generation, and ignite a passion for learning during a Career Technical Education program March 11.
      “Here at Glenn Research Center, we love what we do, and we love to share what we do,” said Dawn Schaible, Glenn’s deputy director, during opening remarks at the event. “I hope you find today educational and inspiring, and let your passion and hard work drive you to places you can’t even imagine. We have space for every profession at NASA.”
      Dawn Schaible, NASA Glenn Research Center’s deputy director, welcomes more than 150 students to Career Technical Education Day on March 11. Students toured the Manufacturing Facility and the Flight Research Building while talking to NASA experts about technical careers within the agency.Credit: NASA/Jef Janis The event, hosted by NASA’s Next Gen STEM Project in collaboration with Glenn’s Office of STEM Engagement (OSTEM), gave students a behind-the-scenes look at the technical careers that make NASA’s missions possible.
      Glenn’s Manufacturing Facility opened its doors to demonstrate how technical careers like machining and fabrication enable NASA to take an idea and turn it into a reality. Students explored Glenn’s metal fabrication, instrumentation, wiring, machining, and 3D printing capabilities while gleaning advice from experts in the field.
      Students also toured Glenn’s Flight Research Building where they spoke with the center’s flight crew, learned how the agency is using the Pilatus PC-12 aircraft to support a variety of aeronautics research missions, and discussed what a career in aviation looks like.

      A student experiences virtual reality during Career Technical Education Day at NASA’s Glenn Research Center in Cleveland on March 11. The Graphics and Visualization Lab spoke with students about how 3D demonstrations help NASA find innovative solutions to real-world challenges.Credit: NASA/Jef Janis “In OSTEM, our role is connecting students, just like you, with real opportunities at NASA,” said Clarence Jones, OSTEM program specialist, while addressing the group. “We want you to be able to see yourselves in these roles and possibly be part of our workforce someday.”
      Next Gen STEM and OSTEM host many events like Career Technical Education Day. The next opportunity, “Spinoffs in Sports,” is scheduled for April 10. Participants will learn about NASA technologies that are being used the sporting world. Registration for this virtual career connection ends April 4. 
      NASA also offers In-Flight STEM Downlinks for students and educators to interact with astronauts aboard the International Space Station during Q&A sessions. The Expedition 74 proposal window is open now through April 29.
      Explore More
      3 min read Finalists Selected in NASA Aeronautics Agriculture-Themed Competition 
      Article 6 days ago 1 min read NASA Glenn Experts Join Law College to Talk Human Spaceflight 
      Article 1 week ago 2 min read NASA Releases its Spinoff 2025 Publication 
      Article 1 week ago View the full article
  • Check out these Videos

×
×
  • Create New...