Jump to content

Centaur's Bright Surface Spot Could be Crater of Fresh Ice


HubbleSite

Recommended Posts

low_STSCI-H-p0031a-k-1340x520.png

The unexpectedly varied surface of a wayward piece of space debris has given astronomers new insights into the characteristics and behavior of a ghostly population of faintly observed comet-like bodies that lie just beyond Pluto's orbit. While observing an object called 8405 Asbolus, a 48-mile-wide (80-kilometer-wide) chunk of ice and dust that lies between Saturn and Uranus, astronomers using the Hubble telescope were surprised to find that one side of the object looks like it has a fresh crater less than 10 million years old, exposing underlying ice that is apparently unlike any yet seen. This shows that these mysterious objects, called Centaurs, do not have a simple homogenous surface. Hubble didn't directly see the crater - the object is too small and far away - but a measure of its surface composition with its near-infrared camera shows a complex chemistry.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Zhai Quadchart
      Lei Zhai
      University of Central Florida
      Lunar dust, with its chemical reactivity, electrostatic charge, and potential magnetism, poses a serious threat to astronauts and equipment on the Moon’s surface. To address this, the project proposes developing structured coatings with anisotropic surface features and electrostatic dissipative properties to passively mitigate lunar dust. By analyzing lunar dust-surface interactions at multiple scales, the team aims to optimize the coatings’ surface structures and physical properties, such as Young’s modulus, electrical conductivity, and polarity. The project will examine tribocharging, external electric fields, and the effects of particle shapes and sizes. Numerical sensitivity analyses will complement simulations to better understand lunar dust dynamics. Once fabricated, the coatings will be tested under simulated lunar conditions. The team will employ a state-of-the-art nanoscale force spectroscopy system, using atomic force microsope (AFM) microcantilevers functionalized with regolith to measure dust-surface interactions. Additional experiments will assess particle adhesion and removal, with scanning electron microscopy used to analyze remaining dust. This project aims to provide insights into surface structure effects on dust adhesion, guiding the creation of lightweight, durable coatings for effective dust mitigation. The findings will foster collaborations with NASA and the aerospace industry, while offering training opportunities for students entering the field.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Zou Quadchart
      Min Zou
      University of Arkansas, Fayetteville
      Lunar dust, with its highly abrasive and electrostatic properties, poses serious threats to the longevity and functionality of spacecraft, habitats, and equipment operating on the Moon. This project aims to develop advanced bioinspired surface textures that effectively repel lunar dust, targeting critical surfaces such as habitat exteriors, doors, and windows. By designing and fabricating innovative micro-/nano-hierarchical core-shell textures, we aim to significantly reduce dust adhesion, ultimately enhancing the performance and durability of lunar infrastructure. Using cutting-edge fabrication methods like two-photon lithography and atomic layer deposition, our team will create resilient, dust-repelling textures inspired by natural surfaces. We will also conduct in-situ testing with a scanning electron microscope to analyze individual particle adhesion and triboelectric effects, gaining critical insights into lunar dust behavior on engineered surfaces. These findings will guide the development of durable surfaces for long-lasting, low-maintenance lunar equipment, with broader applications for other dust-prone environments.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The NISAR mission will help researchers get a better understanding of how Earth’s surface changes over time, including in the lead-up to volcanic eruptions like the one pictured, at Mount Redoubt in southern Alaska in April 2009.R.G. McGimsey/AVO/USGS Data from NISAR will improve our understanding of such phenomena as earthquakes, volcanoes, and landslides, as well as damage to infrastructure.
      We don’t always notice it, but much of Earth’s surface is in constant motion. Scientists have used satellites and ground-based instruments to track land movement associated with volcanoes, earthquakes, landslides, and other phenomena. But a new satellite from NASA and the Indian Space Research Organisation (ISRO) aims to improve what we know and, potentially, help us prepare for and recover from natural and human-caused disasters.
      The NISAR (NASA-ISRO Synthetic Aperture Radar) mission will measure the motion of nearly all of the planet’s land and ice-covered surfaces twice every 12 days. The pace of NISAR’s data collection will give researchers a fuller picture of how Earth’s surface changes over time. “This kind of regular observation allows us to look at how Earth’s surface moves across nearly the entire planet,” said Cathleen Jones, NISAR applications lead at NASA’s Jet Propulsion Laboratory in Southern California.
      Together with complementary measurements from other satellites and instruments, NISAR’s data will provide a more complete picture of how Earth’s surface moves horizontally and vertically. The information will be crucial to better understanding everything from the mechanics of Earth’s crust to which parts of the world are prone to earthquakes and volcanic eruptions. It could even help resolve whether sections of a levee are damaged or if a hillside is starting to move in a landslide.
      The NISAR mission will measure the motion of Earth’s surface — data that can be used to  monitor critical infrastructure such as airport runways, dams, and levees. NASA/JPL-Caltech What Lies Beneath
      Targeting an early 2025 launch from India, the mission will be able to detect surface motions down to fractions of an inch. In addition to monitoring changes to Earth’s surface, the satellite will be able to track the motion of ice sheets, glaciers, and sea ice, and map changes to vegetation.
      The source of that remarkable detail is a pair of radar instruments that operate at long wavelengths: an L-band system built by JPL and an S-band system built by ISRO. The NISAR satellite is the first to carry both. Each instrument can collect measurements day and night and see through clouds that can obstruct the view of optical instruments. The L-band instrument will also be able to penetrate dense vegetation to measure ground motion. This capability will be especially useful in areas surrounding volcanoes or faults that are obscured by vegetation.
      “The NISAR satellite won’t tell us when earthquakes will happen. Instead, it will help us better understand which areas of the world are most susceptible to significant earthquakes,” said Mark Simons, the U.S. solid Earth science lead for the mission at Caltech in Pasadena, California.
      Data from the satellite will give researchers insight into which parts of a fault slowly move without producing earthquakes and which sections are locked together and might suddenly slip. In relatively well-monitored areas like California, researchers can use NISAR to focus on specific regions that could produce an earthquake. But in parts of the world that aren’t as well monitored, NISAR measurements could reveal new earthquake-prone areas. And when earthquakes do occur, data from the satellite will help researchers understand what happened on the faults that ruptured.
      “From the ISRO perspective, we are particularly interested in the Himalayan plate boundary,” said Sreejith K M, the ISRO solid Earth science lead for NISAR at the Space Applications Center in Ahmedabad, India. “The area has produced great magnitude earthquakes in the past, and NISAR will give us unprecedented information on the seismic hazards of the Himalaya.”
      Surface motion is also important for volcano researchers, who need data collected regularly over time to detect land movements that may be precursors to an eruption. As magma shifts below Earth’s surface, the land can bulge or sink. The NISAR satellite will help provide a fuller picture for why a volcano deforms and whether that movement signals an eruption.
      Finding Normal
      When it comes to infrastructure such as levees, aqueducts, and dams, NISAR’s ability to provide continuous measurements over years will help to establish the usual state of the structures and surrounding land. Then, if something changes, resource managers may be able to pinpoint specific areas to examine. “Instead of going out and surveying an entire aqueduct every five years, you can target your surveys to problem areas,” said Jones.
      The data could be equally valuable for showing that a dam hasn’t changed after a disaster like an earthquake. For instance, if a large earthquake struck San Francisco, liquefaction — where loosely packed or waterlogged sediment loses its stability after severe ground shaking — could pose a problem for dams and levees along the Sacramento-San Joaquin River Delta.
      “There’s over a thousand miles of levees,” said Jones. “You’d need an army to go out and look at them all.” The NISAR mission would help authorities survey them from space and identify damaged areas. “Then you can save your time and only go out to inspect areas that have changed. That could save a lot of money on repairs after a disaster.”
      More About NISAR
      The NISAR mission is an equal collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on hardware development for an Earth-observing mission. Managed for the agency by Caltech, JPL leads the U.S. component of the project and is providing the mission’s L-band SAR. NASA is also providing the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. The U R Rao Satellite Centre in Bengaluru, India, which leads the ISRO component of the mission, is providing the spacecraft bus, the launch vehicle, and associated launch services and satellite mission operations. The ISRO Space Applications Centre in Ahmedabad is providing the S-band SAR electronics.
      To learn more about NISAR, visit:
      https://nisar.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-155
      Share
      Details
      Last Updated Nov 08, 2024 Related Terms
      NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Science Earthquakes Jet Propulsion Laboratory Natural Disasters Volcanoes Explore More
      2 min read Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE
      On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm…
      Article 22 hours ago 3 min read Integrating Relevant Science Investigations into Migrant Children Education
      For three weeks in August, over 100 migrant children (ages 3-15) got to engage in…
      Article 2 days ago 5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: 3D-printed rovers play spot the ball View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      With one of its solar arrays deployed, NASA’s Lunar Trailblazer sits in a clean room at Lockheed Martin Space. The large silver grate attached to the spacecraft is the radiator for HVM³, one of two instruments that the mission will use to better understand the lunar water cycle.Lockheed Martin Space There’s water on the Moon, but scientists only have a general idea of where it is and what form it is in. A trailblazing NASA mission will get some answers.
      When NASA’s Lunar Trailblazer begins orbiting the Moon next year, it will help resolve an enduring mystery: Where is the Moon’s water? Scientists have seen signs suggesting it exists even where temperatures soar on the lunar surface, and there’s good reason to believe it can be found as surface ice in permanently shadowed craters, places that have not seen direct sunlight for billions of years. But, so far, there have been few definitive answers, and a full understanding of the nature of the Moon’s water cycle remains stubbornly out of reach.
      This is where Lunar Trailblazer comes in. Managed by NASA’s Jet Propulsion Laboratory and led by Caltech in Pasadena, California, the small satellite will map the Moon’s surface water in unprecedented detail to determine the water’s abundance, location, form, and how it changes over time.
      “Making high-resolution measurements of the type and amount of lunar water will help us understand the lunar water cycle, and it will provide clues to other questions, like how and when did Earth get its water,” said Bethany Ehlmann, principal investigator for Lunar Trailblazer at Caltech. “But understanding the inventory of lunar water is also important if we are to establish a sustained human and robotic presence on the Moon and beyond.”
      Future explorers could process lunar ice to create breathable oxygen or even fuel. And they could also conduct science. Using information from Lunar Trailblazer, future human or robotic scientific investigations could sample the ice for later study to determine where the water came from. For example, the presence of ammonia in ice samples may indicate the water came from comets; sulfur, on the other hand, could show that it was vented to the surface from the lunar interior when the Moon was young and volcanically active.
      This artist’s concept depicts NASA’s Lunar Trailblazer in lunar orbit about 60 miles (100 kilometers) from the surface of the Moon. The spacecraft weighs only 440 pounds (200 kilograms) and measures 11.5 feet (3.5 meters) wide when its solar panels are fully deployed.Lockheed Martin Space “In the future, scientists could analyze the ice in the interiors of permanently shadowed craters to learn more about the origins of water on the Moon,” said Rachel Klima, Lunar Trailblazer deputy principal investigator at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “Like an ice core from a glacier on Earth can reveal the ancient history of our planet’s atmospheric composition, this pristine lunar ice could provide clues as to where that water came from and how and when it got there.”
      Understanding whether water molecules move freely across the surface of the Moon or are locked inside rock is also scientifically important. Water molecules could move from frosty “cold traps” to other locations throughout the lunar day. Frost heated by the Sun sublimates (turning from solid ice to a gas without going through a liquid phase), allowing the molecules to move as a gas to other cold locations, where they could form new frost as the Sun moves overhead. Knowing how water moves on the Moon could also lead to new insights into the water cycles on other airless bodies, such as asteroids
      Two Instruments, One Mission
      Two science instruments aboard the spacecraft will help unlock these secrets: the High-resolution Volatiles and Minerals Moon Mapper (HVM3) infrared spectrometer and the Lunar Thermal Mapper (LTM) infrared multispectral imager.
      Developed by JPL, HVM3 will detect and map the spectral fingerprints, or wavelengths of reflected sunlight, of minerals and the different forms of water on the lunar surface. The spectrometer can use faint reflected light from the walls of craters to see the floor of even permanently shadowed craters.
      The LTM instrument, which was built by the University of Oxford and funded by the UK Space Agency, will map the minerals and thermal properties of the same lunar landscape. Together they will create a picture of the abundance, location, and form of water while also tracking how its distribution changes over time.
      “The LTM instrument precisely maps the surface temperature of the Moon while the HVM3 instrument looks for the spectral signature of water molecules,” said Neil Bowles, instrument scientist for LTM at the University of Oxford. “Both instruments will allow us to understand how surface temperature affects water, improving our knowledge of the presence and distribution of these molecules on the Moon.”
      Weighing only 440 pounds (200 kilograms) and measuring 11.5 feet (3.5 meters) wide when its solar panels are fully deployed, Lunar Trailblazer will orbit the Moon about 60 miles (100 kilometers) from the surface. The mission was selected by NASA’s SIMPLEx (Small Innovative Missions for Planetary Exploration) program in 2019 and will hitch a ride on the same launch as the Intuitive Machines-2 delivery to the Moon through NASA’s Commercial Lunar Payload Services initiative. Lunar Trailblazer passed a critical operational readiness review in early October at Caltech after completing environmental testing in August at Lockheed Martin Space in Littleton, Colorado, where it was assembled.
      The orbiter and its science instruments are now being put through flight system software tests that simulate key aspects of launch, maneuvers, and the science mission while in orbit around the Moon. At the same time, the operations team led by IPAC at Caltech is conducting tests to simulate commanding, communication with NASA’s Deep Space Network, and navigation.
      More About Lunar Trailblazer
      Lunar Trailblazer is managed by JPL, and its science investigation and mission operations are led by Caltech with the mission operations center at IPAC. Managed for NASA by Caltech, JPL also provides system engineering, mission assurance, the HVM3 instrument, as well as mission design and navigation. Lockheed Martin Space provides the spacecraft, integrates the flight system, and supports operations under contract with Caltech.
      SIMPLEx mission investigations are managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of the Discovery Program at NASA Headquarters in Washington. The program conducts space science investigations in the Planetary Science Division of NASA’s Science Mission Directorate at NASA Headquarters.
      For more information about Lunar Trailblazer, visit:
      https://www.jpl.nasa.gov/missions/lunar-trailblazer
      News Media Contacts
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Gordon Squires
      IPAC, Pasadena, Calif.
      626-395-3121
      squires@ipac.caltech.edu
      2024-148
      Share
      Details
      Last Updated Oct 29, 2024 Related Terms
      Lunar Trailblazer Earth's Moon Moons Planetary Science Planetary Science Division Science Mission Directorate Explore More
      4 min read New NASA Instrument for Studying Snowpack Completes Airborne Testing
      Summer heat has significant effects in the mountainous regions of the western United States. Melted…
      Article 3 hours ago 3 min read Gateway: Centering Science
      Gateway is set to advance science in deep space, bringing groundbreaking research opportunities to lunar…
      Article 4 hours ago 6 min read NASA’s Perseverance Rover Looks Back While Climbing Slippery Slope
      Article 23 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...