Jump to content

Tyler Parsotan Takes a Long Look at the Transient Universe with NASA’s Swift


Recommended Posts

  • Publishers
Posted

Through a nonlinear path to success, research astrophysicist Tyler Parsotan discovers transformational science using Swift’s observations. 

Name: Tyler Parsotan
Formal Job Classification: Research astrophysicist
Organization: Astroparticle Physics Laboratory (Code 661), Astrophysics Science Division, Sciences and Exploration Directorate 

Headshot against a black background. Tyler Parsotan wears a wears a white shirt with a black tie.
Dr. Tyler Parsotan is a research astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md. He helps operate the Bust Alert Telescope on board the Neil Gehrels Swift Observatory.
Courtesy of Tyler Parsotan

What do you do and what is most interesting about your role here at Goddard? 

I help operate the Burst Alert Telescope on board the Neil Gehrels Swift Observatory to study some of the most powerful astrophysical processes in the universe. What is most interesting is the engineering capabilities that have gone into the spacecraft to make it nimble and robust, allowing it to conduct a wide range of transformative science. 

Why did you become an astrophysicist?

Ever since I was young, I was fascinated with the stars and how the world worked. All of this led me to physics with a focus on astrophysics. That is how I got into what I am doing now.

What is your educational background?

In 2015, I got a Bachelor of Science in space physics from Embry Riddle Aeronautical University in Daytona Beach, Florida. In 2019, I got a master’s in physics from Oregon State University, Corvallis, and in 2020 I got a master’s in mechanical engineering also from Oregon State University. In 2021, I got a doctorate in physics from Oregon State University. 

When I first applied to graduate school, I did not get into any. I was fortunate enough to learn about Oregon State University though a program geared towards allowing underrepresented students in STEM fields to get graduate degrees. This program, known as the Ronald E. McNair Post-baccalaureate Achievement Program, played a pivotal role in me being able to attend graduate school . 

Are you also a pilot?

Yes, I am. While I was in Oregon as a graduate student, I was able to save up enough money to get my private pilot’s license over the course of one summer from the local Corvallis airport. I would bike to the airport and get in a plane to fly all over Oregon from the coast to the Cascade Mountains. It was a very cool experience. 

How did you come to Goddard?

I did a post-doctorate fellowship starting the fall of 2021 through May 2023. My doctoral research was related to one of Swift’s many science focuses, so I wanted to continue my work at Goddard. 

What transformational science have you been involved with using Swift’s observations?

Some of the science that Swift focuses on is related to the transient universe, meaning that we primarily look at astrophysical events that come and go very quickly and typically produce a ton of energy. Swift examines the light energy produced from black holes, the majority of which are eating mass from black stars. 

While at Oregon State University, I studied the most energetic events in the universe known as gamma-ray bursts. I am now studying gamma-ray bursts at Goddard. One of the big discoveries made by Swift is that these gamma ray bursts can be seen out to early times in the universe. Some of these explosions occurred when the universe was very young, only 100,000 years old or so. Because the universe is expanding, it takes that light some time to travel to us. With Swift, we detect that light and can make some measurements about the gamma-ray bursts, such as when they occurred, how much energy they produced in these massive explosions, and some of the properties of the early universe. 

Man stands next to spacecraft model and his Robert H. Goddard Award for Exceptional Achievement for Science. He wears a blue button-down shirt and black pants.
“There are no linear paths to success,” said Tyler. “Keep looking for a way to be successful. This advice applies to life overall.”
Courtesy of Tyler Parsotan

What is the biggest discovery you have been involved with and what do you love most about working on Swift?

We are simulating the gamma-ray bursts, which was a focus of my doctorate. We cannot yet actually see these explosions, so we have to simulate them using the physics that we now know. I have been able to connect some of the large simulations to the Swift observations and measurements. This helps us better understand the underlying physics of these powerful explosions. 

The amount of energy produced in a typical gamma-ray burst is enough to blow up the Sun a few times over.

Lots of people know about Hubble, which observes the light that we can see with our eyes. The light that I deal with, gamma rays, has much higher energy and cannot be seen with our eyes. We have to use different techniques to measure this light. Designing detectors to measure this light is challenging technically but means that this area of physics is ripe for discovery. I love being part of this. 

Swift will be 20 years old in November 2024. As a relative newcomer to Swift, what are your thoughts?

I think Swift is a great observatory because it has conducted lots of transformational science, drastically expanding our knowledge of the cosmos. Even though it is getting older, it is still able to push science forward in new and exciting ways. I am looking forward to helping the Swift mission celebrate 20 years of amazing science. 

What is your advice to anyone starting and continuing a career?

There are no linear paths to success. Keep looking for a way to be successful. This advice applies to life overall. 

Are you involved in any of Goddard’s extracurricular activities?

I recently joined Goddard’s soccer league. Everyone at Goddard self organizes into teams that play each other after work during the week. We play about a game a week. The winning team gets bragging rights. I mostly play defense. Being on a team is a good way to meet people at Goddard and to stay active. 

In addition to soccer, what are your hobbies?

I enjoy hiking, mountain biking, and generally being outdoors. 

Where do you see yourself in five years?

I hope to still be at Goddard. I enjoy the type of work and the overall work environment. If Swift continues another five years, hopefully I’ll be working on it and also helping to create the next generation of gamma-ray observatories to help push science forward. We are making the science that will be in the next textbooks. 

Who do you want to thank?

My doctoral supervisor Davide Lazzati was an extremely supportive mentor and pushed me to be the best scientist that I can be. Since I arrived at Goddard, we have been good colleagues. 

My former mentor and supervisor at Goddard is Brad Cenko, the Swift principal investigator. I am grateful that he hired me and allowed me to grow as a post-doctoral researcher.

I also want to thank my entire family for being extremely supportive and understanding even though they may not fully understand what I really do. 

Who is your science hero?

Copernicus. He put forward the theory that our solar system orbits the Sun. He was obviously very instrumental in changing the way we think about the cosmos. He got into a lot of trouble with his theory, which makes his accomplishments all the more important. 

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Aug 20, 2024
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s SPHEREx, which will map millions of galaxies across the entire sky, captured one of its first exposures March 27. The observatory’s six detectors each captured one of these uncalibrated images, to which visible-light colors have been added to represent infrared wavelengths. SPHEREx’s complete field of view spans the top three images; the same area of the sky is also captured in the bottom three images. NASA/JPL-Caltech Processed with rainbow hues to represent a range of infrared wavelengths, the new pictures indicate the astrophysics space observatory is working as expected.
      NASA’s SPHEREx (short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) has turned on its detectors for the first time in space. Initial images from the observatory, which launched March 11, confirm that all systems are working as expected.
      Although the new images are uncalibrated and not yet ready to use for science, they give a tantalizing look at SPHEREx’s wide view of the sky. Each bright spot is a source of light, like a star or galaxy, and each image is expected to contain more than 100,000 detected sources.
      There are six images in every SPHEREx exposure — one for each detector. The top three images show the same area of sky as the bottom three images. This is the observatory’s full field of view, a rectangular area about 20 times wider than the full Moon. When SPHEREx begins routine science operations in late April, it will take approximately 600 exposures every day.
      Each image in this uncalibrated SPHEREx exposure contains about 100,000 light sources, including stars and galaxies. The two insets at right zoom in on sections of one image, showcasing the telescope’s ability to capture faint, distant galaxies. These sections are processed in grayscale rather than visible-light color for ease of viewing.NASA/JPL-Caltech “Our spacecraft has opened its eyes on the universe,” said Olivier Doré, SPHEREx project scientist at Caltech and NASA’s Jet Propulsion Laboratory, both in Southern California. “It’s performing just as it was designed to.”
      The SPHEREx observatory detects infrared light, which is invisible to the human eye. To make these first images, science team members assigned a visible color to every infrared wavelength captured by the observatory. Each of the six SPHEREx detectors has 17 unique wavelength bands, for a total of 102 hues in every six-image exposure.
      Breaking down color this way can reveal the composition of an object or the distance to a galaxy. With that data, scientists can study topics ranging from the physics that governed the universe less than a second after its birth to the origins of water in our galaxy.
      “This is the high point of spacecraft checkout; it’s the thing we wait for,” said Beth Fabinsky, SPHEREx deputy project manager at JPL. “There’s still work to do, but this is the big payoff. And wow! Just wow!”
      During the past two weeks, scientists and engineers at JPL, which manages the mission for NASA, have executed a series of spacecraft checks that show all is well so far. In addition, SPHEREx’s detectors and other hardware have been cooling down to their final temperature of around minus 350 degrees Fahrenheit (about minus 210 degrees Celsius). This is necessary because heat can overwhelm the telescope’s ability to detect infrared light, which is sometimes called heat radiation. The new images also show that the telescope is focused correctly. Focusing is done entirely before launch and cannot be adjusted in space.
      “Based on the images we are seeing, we can now say that the instrument team nailed it,” said Jamie Bock, SPHEREx’s principal investigator at Caltech and JPL.
      How It Works
      Where telescopes like NASA’s Hubble and James Webb space telescopes were designed to target small areas of space in detail, SPHEREx is a survey telescope and takes a broad view. Combining its results with those of targeted telescopes will give scientists a more robust understanding of our universe.
      The observatory will map the entire celestial sky four times during its two-year prime mission. Using a technique called spectroscopy, SPHEREx will collect the light from hundreds of millions of stars and galaxies in more wavelengths any other all-sky survey telescope.
      Track the real-time location of NASA’s SPHEREx space observatory using the agency’s 3D visualization tool, Eyes on the Solar System. When light enters SPHEREx’s telescope, it’s directed down two paths that each lead to a row of three detectors. The observatory’s detectors are like eyes, and set on top of them are color filters, which are like color-tinted glasses. While a standard color filter blocks all wavelengths but one, like yellow- or rose-tinted glasses, the SPHEREx filters are more like rainbow-tinted glasses: The wavelengths they block change gradually from the top of the filter to the bottom.
      “I’m rendered speechless,” said Jim Fanson, SPHEREx project manager at JPL. “There was an incredible human effort to make this possible, and our engineering team did an amazing job getting us to this point.”
      More About SPHEREx
      The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech managed and integrated the instrument. Data will be processed and archived at IPAC at Caltech. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      For more about SPHEREx, visit:
      https://science.nasa.gov/mission/spherex/
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-045
      Share
      Details
      Last Updated Apr 01, 2025 Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Galaxies Origin & Evolution of the Universe The Search for Life The Universe Explore More
      3 min read Discovery Alert: Four Little Planets, One Big Step
      The Discovery Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest…
      Article 13 hours ago 5 min read NASA Awards Astrophysics Postdoctoral Fellowships for 2025
      The highly competitive NASA Hubble Fellowship Program (NHFP) recently named 24 new fellows to its…
      Article 1 day ago 2 min read Hubble Spots a Chance Alignment
      The subject of today’s NASA/ESA Hubble Space Telescope image is the stunning spiral galaxy NGC…
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Using the unique infrared sensitivity of the NASA/ESA/CSA James Webb Space Telescope, researchers can examine ancient galaxies to probe secrets of the early Universe. Now, an international team of astronomers has identified bright hydrogen emission from a galaxy in an unexpectedly early time in the Universe’s history. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.
      View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Sees Galaxy Mysteriously Clearing Fog of Early Universe
      The incredibly distant galaxy JADES-GS-z13-1, observed just 330 million years after the big bang, was initially discovered with deep imaging from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). Full image below. Credits:
      NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), A. Pagan (STScI), M. Zamani (ESA/Webb) Using the unique infrared sensitivity of NASA’s James Webb Space Telescope, researchers can examine ancient galaxies to probe secrets of the early universe. Now, an international team of astronomers has identified bright hydrogen emission from a galaxy in an unexpectedly early time in the universe’s history. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.
      The Webb telescope discovered the incredibly distant galaxy JADES-GS-z13-1, observed to exist just 330 million years after the big bang, in images taken by Webb’s NIRCam (Near-Infrared Camera) as part of the James Webb Space Telescope Advanced Deep Extragalactic Survey (JADES). Researchers used the galaxy’s brightness in different infrared filters to estimate its redshift, which measures a galaxy’s distance from Earth based on how its light has been stretched out during its journey through expanding space.
      Image A: JADES-GS-z13-1 in the GOODS-S field (NIRCam Image)
      The incredibly distant galaxy JADES-GS-z13-1, observed just 330 million years after the big bang, was initially discovered with deep imaging from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). Now, an international team of astronomers definitively has identified powerful hydrogen emission from this galaxy at an unexpectedly early period in the universe’s history. JADES-GS-z-13 has a redshift (z) of 13, which is an indication of its age and distance. NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), A. Pagan (STScI), M. Zamani (ESA/Webb) Image B: JADES-GS-z13-1 (NIRCam Close-Up)
      This image shows the galaxy JADES GS-z13-1 (the red dot at center), imaged with NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) as part of the JWST Advanced Deep Extragalactic Survey (JADES) program. These data from NIRCam allowed researchers to identify GS-z13-1 as an incredibly distant galaxy, and to put an estimate on its redshift value. Webb’s unique infrared sensitivity is necessary to observe galaxies at this extreme distance, whose light has been shifted into infrared wavelengths during its long journey across the cosmos. NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), M. Zamani (ESA/Webb) The NIRCam imaging yielded an initial redshift estimate of 12.9. Seeking to confirm its extreme redshift, an international team lead by Joris Witstok of the University of Cambridge in the United Kingdom, as well as the Cosmic Dawn Center and the University of Copenhagen in Denmark, then observed the galaxy using Webb’s Near-Infrared Spectrograph instrument.
      In the resulting spectrum, the redshift was confirmed to be 13.0. This equates to a galaxy seen just 330 million years after the big bang, a small fraction of the universe’s present age of 13.8 billion years old. But an unexpected feature stood out as well: one specific, distinctly bright wavelength of light, known as Lyman-alpha emission, radiated by hydrogen atoms. This emission was far stronger than astronomers thought possible at this early stage in the universe’s development.
      “The early universe was bathed in a thick fog of neutral hydrogen,” explained Roberto Maiolino, a team member from the University of Cambridge and University College London. “Most of this haze was lifted in a process called reionization, which was completed about one billion years after the big bang. GS-z13-1 is seen when the universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-alpha emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.”
      Image C: JADES-GS-z13-1 Spectrum Graphic
      NASA’s James Webb Space Telescope has detected unexpected light from a distant galaxy. The galaxy JADES-GS-z13-1, observed just 330 million years after the big bang (corresponding to a redshift of z=13.05), shows bright emission from hydrogen known as Lyman-alpha emission. This is surprising because that emission should have been absorbed by a dense fog of neutral hydrogen that suffused the early universe. NASA, ESA, CSA, J. Witstok (University of Cambridge, University of Copenhagen), J. Olmsted (STScI) Before and during the era of reionization, the immense amounts of neutral hydrogen fog surrounding galaxies blocked any energetic ultraviolet light they emitted, much like the filtering effect of colored glass. Until enough stars had formed and were able to ionize the hydrogen gas, no such light — including Lyman-alpha emission — could escape from these fledgling galaxies to reach Earth. The confirmation of Lyman-alpha radiation from this galaxy, therefore, has great implications for our understanding of the early universe.
      “We really shouldn’t have found a galaxy like this, given our understanding of the way the universe has evolved,” said Kevin Hainline, a team member from the University of Arizona. “We could think of the early universe as shrouded with a thick fog that would make it exceedingly difficult to find even powerful lighthouses peeking through, yet here we see the beam of light from this galaxy piercing the veil. This fascinating emission line has huge ramifications for how and when the universe reionized.”
      The source of the Lyman-alpha radiation from this galaxy is not yet known, but it may include the first light from the earliest generation of stars to form in the universe.
      “The large bubble of ionized hydrogen surrounding this galaxy might have been created by a peculiar population of stars — much more massive, hotter, and more luminous than stars formed at later epochs, and possibly representative of the first generation of stars,” said Witstok. A powerful active galactic nucleus, driven by one of the first supermassive black holes, is another possibility identified by the team.
      This research was published Wednesday in the journal Nature.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Bethany Downer – Bethany.Downer@esawebb.org
      ESA/Webb, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more about cosmic history, the early universe, and cosmic reionization.
      Article: Learn about what Webb has revealed about galaxies through time.
      Video: How Webb reveals the first galaxies
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What Is a Galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Universe


      Share








      Details
      Last Updated Mar 25, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Science & Research The Universe View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researcher Ann Raiho measures sunlight interacting with yellow Coreopsis gigantea flowers during field work in the Jack and Laura Dangermond Preserve in California’s Santa Barbara County in 2022.NASA/Yoseline Angel For many plant species, flowering is biologically synced with the seasons. Scientists are clocking blooms to understand our ever-changing planet.
      NASA research is revealing there’s more to flowers than meets the human eye. A recent analysis of wildflowers in California shows how aircraft- and space-based instruments can use color to track seasonal flower cycles. The results suggest a potential new tool for farmers and natural-resource managers who rely on flowering plants.
      In their study, the scientists surveyed thousands of acres of nature preserve using a technology built by NASA’s Jet Propulsion Laboratory in Southern California. The instrument — an imaging spectrometer — mapped the landscape in hundreds of wavelengths of light, capturing flowers as they blossomed and aged over the course of months.
      It was the first time the instrument had been deployed to track vegetation steadily through the growing season, making this a “first-of-a-kind study,” said David Schimel, a research scientist at JPL.
      In this illustration, an imaging spectrometer aboard a research plane measures sunlight reflecting off California coastal scrub. In the data cube below, the top panel shows the true-color view of the area. Lower panels depict the spectral fingerprint for every point in the image, capturing the visible range of light (blue, green, and red wavelengths) to the near-infrared (NIR) and beyond. Spatial resolution is around 16 feet (5 meters).NASA For many plant species from crops to cacti, flowering is timed to seasonal swings in temperature, daylight, and precipitation. Scientists are taking a closer look at the relationship between plant life and seasons — known as vegetation phenology — to understand how rising temperatures and changing rainfall patterns may be impacting ecosystems.
      Typically, wildflower surveys rely on boots-on-the-ground observations and tools such as time-lapse photography. But these approaches cannot capture broader changes that may be happening in different ecosystems around the globe, said lead author Yoseline Angel, a scientist at the University of Maryland-College Park and NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      “One challenge is that compared to leaves or other parts of a plant, flowers can be pretty ephemeral,” she said. “They may last only a few weeks.”
      To track blooms on a large scale, Angel and other NASA scientists are looking to one of the signature qualities of flowers: color.
      NASA’s AVIRIS sensors have been used to study wildfires, World Trade Center wreckage, and critical minerals, among numerous airborne missions over the years. AVIRIS-3 is seen here on a field campaign in Panama, where it helped analyze vegetation in many wavelengths of light not visible to human eyes.NASA/Shawn Serbin Mapping Native Shrubs
      Flower pigments fall into three major groups: carotenoids and betalains (associated with yellow, orange, and red colors), and anthocyanins (responsible for many deep reds, violets, and blues). The different chemical structures of the pigments reflect and absorb light in unique patterns.
      Spectrometers allow scientists to analyze the patterns and catalog plant species by their chemical “fingerprint.” As all molecules reflect and absorb a unique pattern of light, spectrometers can identify a wide range of biological substances, minerals, and gases.
      Handheld devices are used to analyze samples in the field or lab. To survey moons and planets, including Earth, NASA has developed increasingly powerful imaging spectrometers over the past 45 years.
      One such instrument is called AVIRIS-NG (short for Airborne Visible/InfraRed Imaging Spectrometer-Next Generation), which was built by JPL to fly on aircraft. In 2022 it was used in a large ecology field campaign to survey vegetation in the Jack and Laura Dangermond Preserve and the Sedgwick Reserve, both in Santa Barbara County. Among the plants observed were two native shrub species — Coreopsis gigantea and Artemisia californica — from February to June.
      The scientists developed a method to tease out the spectral fingerprint of the flowers from other landscape features that crowded their image pixels. In fact, they were able to capture 97% of the subtle spectral differences among flowers, leaves, and background cover (soil and shadows) and identify different flowering stages with 80% certainty.
      Predicting Superblooms
      The results open the door to more air- and space-based studies of flowering plants, which represent about 90% of all plant species on land. One of the ultimate goals, Angel said, would be to support farmers and natural resource managers who depend on these species along with insects and other pollinators in their midst. Fruit, nuts, many medicines, and cotton are a few of the commodities produced from flowering plants.
      Angel is working with new data collected by AVIRIS’ sister spectrometer that orbits on the International Space Station. Called EMIT (Earth Surface Mineral Dust Source Investigation), it was designed to map minerals around Earth’s arid regions. Combining its data with other environmental observations could help scientists study superblooms, a phenomenon where vast patches of desert flowers bloom after heavy rains.
      One of the delights of researching flowers, Angel said, is the enthusiasm from citizen scientists. “I have social media alerts on my phone,” she added, noting one way she stays on top of wildflower activity around the world.
      The wildflower study was supported as part of the Surface Biology and Geology High-Frequency Time Series (SHIFT) campaign. An airborne and field research effort, SHIFT was jointly led by the Nature Conservancy, the University of California, Santa Barbara, and JPL. Caltech, in Pasadena, manages JPL for NASA.
      The AVIRIS instrument was originally developed through funding from NASA’s Earth Science Technology Office.
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      Written by Sally Younger
      2025-041
      Share
      Details
      Last Updated Mar 24, 2025 Related Terms
      Earth Earth Science Jet Propulsion Laboratory Explore More
      11 min read The Earth Observer Editor’s Corner: January–March 2025
      NASA’s Earth Observing fleet continues to age gracefully. While several new missions have joined the…
      Article 4 days ago 5 min read Celebrating 25 Years of Terra
      Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer On December 18, 2024,…
      Article 4 days ago 2 min read The FireSense Project
      Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer Wind is a major…
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...