Jump to content

Entrepreneurs Challenge Prize Winner Uses Artificial Intelligence to Identify Methane Emissions


NASA

Recommended Posts

  • Publishers

The NASA Science Mission Directorate (SMD) instituted the Entrepreneurs Challenge to identify innovative ideas and technologies from small business start-ups with the potential to advance the agency’s science goals. Geolabe—a prize winner in the latest Entrepreneurs Challenge—has developed a way to use artificial intelligence to identify global methane emissions. Methane is a greenhouse gas that significantly contributes to global warming, and this promising new technology could provide data to help decision makers develop strategies to mitigate climate change.

SMD sponsored Entrepreneurs Challenge events in 2020, 2021, and 2023. Challenge winners were awarded prize money—in 2023 the total Entrepreneurs Challenge prize value was $1M. To help leverage external funding sources for the development of innovative technologies of interest to NASA, SMD involved the venture capital community in Entrepreneurs Challenge events. Numerous challenge winners have subsequently received funding from both NASA and external sources (e.g., other government agencies or the venture capital community) to further develop their technologies.

Each Entrepreneurs Challenge solicited submissions in specific focus areas such as mass spectrometry technology, quantum sensors, metamaterials-based sensor technologies, and more. The focus areas of the latest 2023 challenge included lunar surface payloads and climate science.

A recent Entrepreneurs Challenge success story involves 2023 challenge winner Geolabe—a startup founded by Dr. Claudia Hulbert and Dr. Bertrand Rouet-Leduc in 2020 in Los Alamos, New Mexico. The Geolabe team developed a method that uses artificial intelligence (AI) to automatically detect methane emissions on a global scale.

emissions-tech-highlights.png?w=1019
This image taken from a NASA visualization shows the complex patterns of methane emissions around the globe in 2018, based on data from satellites, inventories of human activities, and NASA global computer models.
Credit: NASA’s Scientific Visualization Studio

As global temperatures rise to record highs, the pressure to curb greenhouse gas emissions has intensified. Limiting methane emissions is particularly important since methane is the second largest contributor to global warming, and is estimated to account for approximately a third of global warming to date. Moreover, because methane stays in the atmosphere for a shorter amount of time compared to CO2, curbing methane emissions is widely considered to be one of the fastest ways to slow down the rate of global warming.

However, monitoring methane emissions and determining their quantities has been challenging due to the limitations of existing detection methods. Methane plumes are invisible and odorless, so they are typically detected with specialized equipment such as infrared cameras. The difficulty in finding these leaks from space is akin to finding a needle in a haystack. Leaks are distributed around the globe, and most of the methane plumes are relatively small, making them easy to miss in satellite data.

Multispectral satellite imagery has emerged as a viable methane detection tool in recent years, enabling routine measurements of methane plumes at a global scale every few days. However, with respect to methane, these measurements suffer from very poor signal to noise ratio, which has thus far allowed detection of only very large emissions (2-3 tons/hour) using manual methods.

85258398-xl-normal-none.png?w=2048
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.
Credit: NASA, ESA, CSA, and STScI

The Geolabe team has developed a deep learning architecture that automatically identifies methane signatures in existing open-source spectral satellite data and deconvolves the signal from the noise. This AI method enables automatic detection of methane leaks at 200kg/hour and above, which account for over 85% of the methane emissions in well-studied, large oil and gas basins. Information gained using this new technique could help inform efforts to mitigate methane emissions on Earth and automatically validate their effects. This Geolabe project was featured in Nature Communications on May 14, 2024.

SPONSORING ORGANIZATION

NASA Science Mission Directorate

Share

Details

Last Updated
Aug 20, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Sun rises above the Flight Research Building at NASA’s Glenn Research Center in Cleveland.Credit: NASA NASA‘s Watts on the Moon Challenge, designed to advance the nation’s lunar exploration goals under the Artemis campaign by challenging United States innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions, concludes on Friday, Sept. 20, at the Great Lakes Science Center in Cleveland.
      “For astronauts to maintain a sustained presence on the Moon during Artemis missions, they will need continuous, reliable power,” said Kim Krome-Sieja, acting program manager, Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “NASA has done extensive work on power generation technologies. Now, we’re looking to advance these technologies for long-distance power transmission and energy storage solutions that can withstand the extreme cold of the lunar environment.”
      The technologies developed through the Watts on the Moon Challenge were the first power transmission and energy storage prototypes to be tested by NASA in an environment that simulates the extreme cold and weak atmospheric pressure of the lunar surface, representing a first step to readying the technologies for future deployment on the Moon. Successful technologies from this challenge aim to inspire, for example, new approaches for helping batteries withstand cold temperatures and improving grid resiliency in remote locations on Earth that face harsh weather conditions.
      Media and the public are invited to attend the grand finale technology showcase and awards ceremony for the $5 million, two-phase competition. U.S. and international media interested in covering the event should confirm their attendance with Lane Figueroa by 3 p.m. CDT Tuesday, Sept. 17, at: lane.e.figueroa@nasa.gov. NASA’s media accreditation policy is available online. Members of the public may register as an attendee by completing this form, also by Friday, Sept. 17.
      During the final round of competition, finalist teams refined their hardware and delivered a full system prototype for testing in simulated lunar conditions at NASA’s Glenn Research Center in Cleveland. The test simulated a challenging power system scenario where there are six hours of solar daylight, 18 hours of darkness, and the user is three kilometers from the power source.
      “Watts on the Moon was a fantastic competition to judge because of its unique mission scenario,” said Amy Kaminski, program executive, Prizes, Challenges, and Crowdsourcing, Space Technology Mission Directorate at NASA Headquarters in Washington. “Each team’s hardware was put to the test against difficult criteria and had to perform well within a lunar environment in our state-of-the-art thermal vacuum chambers at NASA Glenn.”
      Each finalist team was scored based on Total Effective System Mass (TESM), which determines how the system works in relation to its mass. At the awards ceremony, NASA will award $1 million to the top team who achieves the lowest TESM score, meaning that during testing, that team’s system produced the most efficient output-to-mass ratio. The team with the second lowest mass will receive $500,000. The awards ceremony stream live on NASA Glenn’s YouTube channel and NASA Prize’s Facebook page.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA has contracted HeroX to support the administration of this challenge.
      For more information on NASA’s Watts on the Moon Challenge, visit:
      https://www.nasa.gov/wattson
      -end- 
      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Ala.
      256-932-1940
      lane.e.figueroa@nasa.gov
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-460-9726
      brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Sep 13, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Prizes, Challenges, and Crowdsourcing Program Artemis Centennial Challenges Glenn Research Center Marshall Space Flight Center Space Technology Mission Directorate View the full article
    • By NASA
      Image Credit: BitGrit The Digital Information Platform (DIP) Sub-Project of Air Traffic Management – eXploration (ATM-X) is seeking to make available in the National Airspace System a variety of live data feeds and services built on that data. The goal is to allow external partners to build advanced, data-driven services using this data, and to make these services available to flight operators, who will use these capabilities to save fuel and avoid delays. Different wind directions, weather conditions at or near the airport, inoperative runway, etc., affects the runway configurations to be used and impacts the overall arrival throughputs. Knowing the arrival runway and its congestion level ahead of time will enable aviation operators to perform a better flight planning and improve the flight efficiency. This competition seeks to make better predictions of runway throughputs using machine learning or other techniques. This competition engages students, faculty members and other individuals employed by United States universities to develop a machine learning model that provides a short-term forecast of estimated airport runway throughput using simulated real-time information from historical NAS and weather forecast data, as well as other factors such as meteorological conditions, airport runway configuration, and airspace congestion.
      Award: $120,000 in total prizes
      Open Date: September 13, 2024
      Close Date: December 8, 2024
      For more information, visit: https://bitgrit.net/competition/23
      View the full article
    • By NASA
      4 Min Read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training
      Credits:
      NASA/Trevor Graff/Robert Markowitz Black and gray sediment stretches as far as the eye can see. Boulders sit on top of ground devoid of vegetation. Humans appear almost miniature in scale against a swath of shadowy mountains. At first glance, it seems a perfect scene from an excursion on the Moon’s surface … except the people are in hiking gear, not spacesuits.
      Iceland has served as a lunar stand-in for training NASA astronauts since the days of the Apollo missions, and this summer the Artemis II crew took its place in that long history. NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, along with their backups, NASA astronaut Andre Douglas and CSA astronaut Jenni Gibbons, joined geology experts for field training on the Nordic island.
      NASA astronaut and Artemis II mission specialist Christina Koch stands in the desolate landscape of Iceland during a geology field training course. NASA/Robert Markowitz NASA/Robert Markowitz “Apollo astronauts said Iceland was one of the most lunar-like training locations that they went to in their training,” said Cindy Evans, Artemis geology training lead at NASA’s Johnson Space Center in Houston. “It has lunar-like planetary processes – in this case, volcanism. It has the landscape; it looks like the Moon. And it has the scale of features astronauts will both be observing and exploring on the Moon.”
      Iceland’s geology, like the Moon’s, includes rocks called basalts and breccias. Basalts are dark, fine-grained, iron-rich rocks that form when volcanic magma cools and crystalizes quickly. In Iceland, basalt lavas form from volcanoes and deep fissures. On the Moon, basalts can form from both volcanoes and lava pooling in impact basins. Breccias are angular fragments of rock that are fused together to create new rocks. In Iceland, volcanic breccias are formed from explosive volcanic eruptions and on the Moon, impact breccias are formed from meteoroids impacting the lunar surface.
      Apollo astronauts said Iceland was one of the most lunar-like training locations that they went to in their training.
      Cindy Evans
      Artemis Geology Training Lead
      Along with exploring the geology of Iceland, the astronauts practiced navigation and expeditionary skills to prepare them for living and working together, and gave feedback to instructors, who used this as an opportunity to hone their instruction and identify sites for future Artemis crew training. They also put tools to the test, learning to use hammers, scoops, and chisels to collect rock samples.
      Caption: The Artemis II crew, NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and Canadian Space Agency (CSA) astronaut Jeremy Hansen, and backup crew members NASA astronaut Andre Douglas and CSA astronaut Jenni Gibbons trek across the Icelandic landscape during their field geology training. NASA/Robert Markowitz “The tools we used during the Apollo missions haven’t changed that much for what we’re planning for the Artemis missions,” said Trevor Graff, exploration geologist and the hardware and testing lead on the Artemis science team at NASA Johnson. “Traditionally, a geologist goes out with just standard tool sets of things like rock hammers and scoops or shovels to sample the world around them, both on the surface and subsurface.”
      The Artemis tools have a bit of a twist from traditional terrestrial geology tools, though. Engineers must take into consideration limited mass availability during launch, how easy it is to use a tool while wearing pressurized gloves, and how to ensure the pristine nature of the lunar samples is preserved for study back on Earth.
      There’s really transformational science that we can learn by getting boots back on the Moon, getting samples back, and being able to do field geology with trained astronauts on the surface.
      Angela Garcia
      Exploration Geologist and Artemis II Science Officer
      Caption: Angela Garcia, Artemis II science officer and exploration geologist, demonstrates how to use a rock hammer and chisel to dislodge a rock sample from a large boulder during the Artemis II field geology training in Iceland. NASA/Robert Markowitz “There’s really transformational science that we can learn by getting boots back on the Moon, getting samples back, and being able to do field geology with trained astronauts on the surface,” said Angela Garcia, exploration geologist and an Artemis II science officer at NASA Johnson.
      The Artemis II test flight will be NASA’s first mission with crew under Artemis and will pave the way to land the first woman, first person of color, and first international partner astronaut on the Moon on future missions. The crew will travel approximately 4,600 miles beyond the far side of the Moon. While the Artemis II astronauts will not land on the surface of the Moon, the geology fundamentals they develop during field training will be critical to meeting the science objectives of their mission.
      These objectives include visually studying a list of surface features, such as craters, from orbit. Astronauts will snap photos of the features, and describe their color, reflectivity, and texture — details that can reveal their geologic history.
      The Artemis II crew astronauts, their backups, and the geology training field team pose in a valley in Iceland’s Vatnajökull national park. From front left: Angela Garcia, Jacob Richardson, Cindy Evans, Jenni Gibbons, Jacki Mahaffey, back row from left: Jeremy Hansen, John Ramsey, Reid Wiseman, Ron Spencer, Scott Wray, Kelsey Young, Patrick Whelley, Christina Koch, Andre Douglas, Jacki Kagey, Victor Glover, Rick Rochelle (NOLS), Trevor Graff. “Having humans hold the camera during a lunar pass and describe what they’re seeing in language that scientists can understand is a boon for science,” said Kelsey Young, lunar science lead for Artemis II and Artemis II science officer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In large part, that’s what we’re training astronauts to do when we take them to these Moon-like environments on Earth.”

      Read More

      Share








      Details
      Last Updated Sep 13, 2024 Related Terms
      Analog Field Testing Andre Douglas Apollo Artemis Astronauts Christina H. Koch Earth’s Moon G. Reid Wiseman Humans in Space Missions The Solar System Victor J. Glover Explore More
      2 min read Hubble Examines a Spiral Star Factory


      Article


      6 hours ago
      5 min read NASA’s Webb Peers into the Extreme Outer Galaxy


      Article


      1 day ago
      23 min read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon
      The next full Moon will be Tuesday, September 17, 2024, at 10:35 PM EDT. The…


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Astromaterials



      Humans In Space



      Our Solar System



      Artemis Science


      A Time Capsule The Moon is a 4.5-billion-year-old time capsule, pristinely preserved by the cold vacuum of space. It is…

      View the full article
    • By NASA
      NASA wants you to visualize the future of space exploration! This art challenge is looking for creative, artistic images to represent NASA’s Moon to Mars Architecture, the agency’s roadmap for crewed exploration of deep space. With NASA’s Moon to Mars Objectives in hand, the agency is developing an architecture for crewed exploration of the Moon, Mars, and beyond. Using systems engineering processes, NASA has begun to perform the analyses and studies needed to make informed decisions about a sustained lunar evolution and initial human missions to Mars. NASA’s Moon to Mars Architecture currently includes four segments of increasing complexity: Human Lunar Return, Foundational Exploration, Sustained Lunar Evolution, and Humans to Mars. For this competition, NASA is interested in your artistic interpretation of the latter two segments: Sustained Lunar Evolution and Humans to Mars. These depictions could include operations in space, on the surface, or both. Artists may develop and submit a still image for either the lunar and Mars exploration segments.
      Award: $10,000 in total prizes
      Open Date: September 12, 2024
      Close Date: October 31, 2024
      For more information, visit: https://nasa.yet2.com/
      View the full article
    • By European Space Agency
      The Global Methane Budget 2024 paints a troubling picture of the current state of global methane emissions. The new report, which uses data from the Copernicus Sentinel-5P satellite, reveals that human activities are now responsible for at least two-thirds of global methane emissions.
      This marks a significant increase in human-produced methane sources over the past two decades, with emissions rising by 20%, with the fastest rise occurring over the last five years.
      View the full article
  • Check out these Videos

×
×
  • Create New...