Jump to content

Super Blue Moons: Your Questions Answered


NASA

Recommended Posts

  • Publishers

4 min read

Super Blue Moons: Your Questions Answered

At twilight, a full moon rises over a broad river with vegetated banks. The Moon appears peach-colored in a dim pink-and-blue sky.
Moonrise over the Syr Darya river, Sunday, Nov. 13, 2016, Baikonur, Kazakhstan.
NASA/Bill Ingalls

A trifecta of labels is being applied to the Moon of Aug. 19, 2024. It’s a full moon, a supermoon, and finally a blue moon. You may hear it referred to as a super blue moon as a result. It sounds exciting, but what does that really mean? We’ve got you covered.

What is a supermoon?

The Moon travels around our planet in an elliptical orbit, or an elongated circle, with Earth closer to one side of the ellipse. Each month, the Moon passes through the point closest to Earth (perigee) and the point farthest from Earth (apogee). When the Moon is at or near its closest point to Earth at the same time as it is full, it is called a “supermoon.” During this event, because the full moon is a little bit closer to us than usual, it appears especially large and bright in the sky.

Because the Moon’s orbit wobbles and differs depending on where the Sun and Earth are in their orbits, the exact distance of these closest and furthest points varies. But the Moon can look up to 14 percent bigger at perigee than apogee.

This animation shows the difference between a Moon at its closest point to Earth, when supermoons occur, and at its farthest. Distance to apogee and perigee vary by event. Credit: NASA/JPL-Caltech

OK, so what is a blue moon?

A monthly blue moon occurs when we see the full moon twice in a single month. The Moon’s cycle is 29.5 days, so just a bit shorter than the average length of a calendar month. Eventually that gap results in a full moon happening at the beginning of a month with enough days still remaining for another full cycle ― so a second full moon in the same month. In other words, a full moon that happens on the 1st or 2nd of a month will probably be followed by a second full moon on the 30th or 31st. This happens every two to three years.

A seasonal blue moon occurs when there are four full moons in a single season (spring, summer, fall and winter) instead of the usual three. The third moon in this lineup is a blue moon. This Aug. 19 moon is a seasonal blue moon.

Will the Moon be blue?

No, that’s just the term for two full moons in a month, or the third full moon in a season with four.

Is the Moon ever blue?

On rare occasions, tiny particles in the air ― typically of smoke or dust ― can scatter away red wavelengths of light, causing the Moon to appear blue.

Will this Moon be bigger and more “super?”

You probably won’t notice a big difference in size. When the Moon is closest to Earth (a “supermoon”), it can look up to 14 percent bigger than when it’s farthest from Earth. This is similar to the size difference between a quarter and a nickel. Because the Moon will be close to us in its orbit, it will appear a bit brighter than usual.

Image Before/After

Do blue moons and supermoons always occur together?

No. The term “supermoon” is used to describe a full Moon that occurs within a day or so of perigee, so they happen three to four times a year. About 25 percent of all full moons are supermoons, but only 6 percent of full moons are blue moons (seasonal and monthly). The time between super blue moons is quite irregular ― it can be as much as 20 years ― but in general, 10 years is the average. However, if you like to celebrate both seasonal and monthly blue moons, the gap is closer to five years.

Monthly blue moons always occur in the last two or three days of the month. A monthly blue moon in January is usually followed by another one in March of the same year. And in fact, the next monthly super blue moons will occur as a pair, in January and March 2037. Seasonal blue moons always occur almost exactly one month before an equinox or a solstice. The next seasonal blue moon will be on Aug. 21, 2032.

So if it’s not blue and not super-sized, is this worth checking out?

Hey, it’s always a good time to look at the Moon! Try our Daily Moon Guide to see if you can locate some of our recommended daily Moon sights.

Share

Details

Last Updated
Aug 19, 2024

Related Terms

Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 Min Read Why NASA Is a Great Place to Launch Your Career 
      Students at NASA's Jet Propulsion Laboratory pose for photos around the laboratory wearing their eclipse glasses. Credits: NASA/JPL-Caltech  Recently recognized as the most prestigious internship program by Vault.com, NASA has empowered countless students and early-career professionals to launch careers in science, technology, engineering, and mathematics (STEM) fields. NASA interns make real contributions to space and science missions, making it one of the best places to start your career. 
      “NASA internships give students the chance to work on groundbreaking projects alongside experts, providing impactful opportunities for professional growth,” said Mike Kincaid, associate administrator for NASA’s Office of STEM Engagement. “Since starting my career as an intern at NASA’s Johnson Space Center in Houston, I’ve experienced firsthand how NASA creates lasting connections and open doors—not just for me, but for former interns who are now colleagues across the agency. These internships build STEM skills, confidence, and networks, preparing the next generation of innovators and leaders.” 
      NASA interns achieve impressive feats, from discovering new exoplanets to becoming astronauts and even winning Webby Awards for their science communication efforts. These valuable contributors play a crucial role in NASA’s mission to explore the unknown for the benefit of all. Many NASA employees start their careers as interns, a testament to the program’s lasting impact. 
      Students congratulate the 23rd astronaut class at NASA’s Johnson Space Center in Houston on March 5, 2024.NASA/Josh Valcarcel Additionally, NASA is recognized as one of America’s Best Employers for Women and one of America’s Best Employers for New Graduates by Forbes, reflecting the agency’s commitment to fostering a diverse and inclusive environment. NASA encourages people from underrepresented groups to apply, creating a diverse cohort of interns who bring a wide range of perspectives and ideas to the agency.  
      “My internship experience has been incredible. I have felt welcomed by everyone I’ve worked with, which has been so helpful as a Navajo woman as I’ve often felt like an outsider in male-dominated STEM spaces,” said Tara Roanhorse, an intern for NASA’s Office of STEM Engagement. 
      If you’re passionate about space, technology, and making a difference in the world, NASA’s internship program is the perfect place to begin your journey toward a fulfilling and impactful career.  
      To learn more about NASA’s internship programs, visit: https://www.intern.nasa.gov/ 
      Keep Exploring Discover More STEM Topics From NASA
      For Colleges and Universities
      For Students Grades 9-12
      Join Artemis
      Learning Resources
      View the full article
    • By NASA
      This content is password protected. To view it please enter your password below:
      Password:
      View the full article
    • By NASA
      5 Min Read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      A NASA study using a series of supercomputer simulations reveals a potential new solution to a longstanding Martian mystery: How did Mars get its moons? The first step, the findings say, may have involved the destruction of an asteroid. 
      The research team, led by Jacob Kegerreis, a postdoctoral research scientist at NASA’s Ames Research Center in California’s Silicon Valley, found that an asteroid passing near Mars could have been disrupted – a nice way of saying “ripped apart” – by the Red Planet’s strong gravitational pull.
      The team’s simulations show the resulting rocky fragments being strewn into a variety of orbits around Mars. More than half the fragments would have escaped the Mars system, but others would’ve stayed in orbit. Tugged by the gravity of both Mars and the Sun, in the simulations some of the remaining asteroid pieces are set on paths to collide with one another, every encounter further grinding them down and spreading more debris. 
      Many collisions later, smaller chunks and debris from the former asteroid could have settled into a disk encircling the planet. Over time, some of this material is likely to have clumped together, possibly forming Mars’ two small moons, Phobos and Deimos.
      To assess whether this was a realistic chain of events, the research team explored hundreds of different close encounter simulations, varying the asteroid’s size, spin, speed, and distance at its closest approach to the planet. The team used their high-performance, open-source computing code, called SWIFT, and the advanced computing systems at Durham University in the United Kingdom to study in detail both the initial disruption and, using another code, the subsequent orbits of the debris.
      In a paper published Nov. 20 in the journal Icarus, the researchers report that, in many of the scenarios, enough asteroid fragments survive and collide in orbit to serve as raw material to form the moons. 
      “It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s,” said Kegerreis. “Furthermore, this new model makes different predictions about the moons’ properties that can be tested against the standard ideas for this key event in Mars’ history.”
      Two hypotheses for the formation of the Martian moons have led the pack. One proposes that passing asteroids were captured whole by Mars’ gravity, which could explain the moons’ somewhat asteroid-like appearance. The other says that a giant impact on the planet blasted out enough material – a mix of Mars and impactor debris – to form a disk and, ultimately, the moons. Scientists believe a similar process formed Earth’s Moon.
      The latter explanation better accounts for the paths the moons travel today – in near-circular orbits that closely align with Mars’ equator. However, a giant impact ejects material into a disk that, mostly, stays close to the planet. And Mars’ moons, especially Deimos, sit quite far away from the planet and probably formed out there, too. 
      “Our idea allows for a more efficient distribution of moon-making material to the outer regions of the disk,” said Jack Lissauer, a research scientist at Ames and co-author on the paper. “That means a much smaller ‘parent’ asteroid could still deliver enough material to send the moons’ building blocks to the right place.”
      It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s.
      Jacob Kegerreis
      Postdoctoral research scientist at NASA’s Ames Research Center
      Testing different ideas for the formation of Mars’ moons is the primary goal of the upcoming Martian Moons eXploration (MMX) sample return mission led by JAXA (Japan Aerospace Exploration Agency). The spacecraft will survey both moons to determine their origin and collect samples of Phobos to bring to Earth for study. A NASA instrument on board, called MEGANE – short for Mars-moon Exploration with GAmma rays and Neutrons – will identify the chemical elements Phobos is made of and help select sites for the sample collection. Some of the samples will be collected by a pneumatic sampler also provided by NASA as a technology demonstration contribution to the mission. Understanding what the moons are made of is one clue that could help distinguish between the moons having an asteroid origin or a planet-plus-impactor source.
      Before scientists can get their hands on a piece of Phobos to analyze, Kegerreis and his team will pick up where they left off demonstrating the formation of a disk that has enough material to make Phobos and Deimos. 
      “Next, we hope to build on this proof-of-concept project to simulate and study in greater detail the full timeline of formation,” said Vincent Eke, associate professor at the Institute for Computational Cosmology at Durham University and a co-author on the paper. “This will allow us to examine the structure of the disk itself and make more detailed predictions for what the MMX mission could find.”  
      For Kegerreis, this work is exciting because it also expands our understanding of how moons might be born – even if it turns out that Mars’ own formed by a different route. The simulations offer a fascinating exploration, he says, of the possible outcomes of encounters between objects like asteroids and planets. These events were common in the early solar system, and simulations could help researchers reconstruct the story of how our cosmic backyard evolved. 
      This research is a collaborative effort between Ames and Durham University, supported by the Institute for Computational Cosmology’s Planetary Giant Impact Research group. The simulations used were run using the open-source SWIFT code, carried out on the DiRAC (Distributed Research Utilizing Advanced Computing) Memory Intensive service (“COSMA”), hosted by Durham University on behalf of the DiRAC High-Performance Computing facility.
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Mars Ames Research Center Ames Research Center's Science Directorate General High-Tech Computing Mars Moons Martian Moon Exploration (MMX) Missions NASA Centers & Facilities Planets Technology The Solar System Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever…
      Article 1 hour ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 2 hours ago 2 min read About the Office of the Chief Knowledge Officer (OCKO)
      Article 6 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The thermal protection system on the outside of the space shuttle included hundreds of ceramic tiles custom made for the orbiter. These reflected heat off the shuttle’s outside surface during atmospheric re-entry and were an inspiration for the ceramic ingredients in Super Therm. Credit: NASA Without proper insulation, sunlight can make buildings feel like ovens. In the late 1980s, Joseph Pritchett aimed to solve this problem by developing a coating for building insulation. He knew of NASA’s experience with thermal testing, particularly with ceramics, which have several uses for the agency. Their heat-resistant properties make them excellent materials for spacecraft reentry shields, and their durability is perfect for airplane components. Pritchett thought by infusing paints with both insulating ceramic compounds and tough, resilient polymers, he could develop an insulation coating with the best features of both. 

      Pritchett contacted the materials lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, through the center’s Technology Transfer Office. The facility had many ways to test heat-resistant materials, and the Marshall engineers and research scientists provided Pritchett with lists of material compounds to test for his insulation coating.  
      Super Therm has been applied in several places, including handrails on the Hoover Dam Bypass Bridge over the Colorado River. The selection of its makeup of ceramic and polymeric materials was assisted by NASA scientists.Credit: Superior Products InternationaI II, LLC Over a period of six years, Pritchett tested every compound on the lists NASA provided, narrowing down the potential compounds until he found the ideal insulation. Pritchett founded Superior Products International II, Inc. of Shawnee, Kansas, in 1995. His product, dubbed Super Therm, is a composite of both ceramic and polymeric materials. In 2011, when tested by Oak Ridge National Laboratory in Tennessee, Pritchett’s product proved successful in saving energy when cooling homes.

      The engineers at Marshall played a pivotal role in Super Therm’s development, as their knowledge was key to finding the right ceramic material. In addition to insulation for buildings, the material has been used in other industrial applications, such as keeping equipment like tanks and pumps cool on oil rigs. Pritchett’s Super Therm is yet another example of how NASA’s Technology Transfer Program within the agency’s Space Technology Mission Directorate drives innovation in commercial industry.  
      Read More Share
      Details
      Last Updated Nov 19, 2024 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read From Mars Rovers to Factory Assembly Lines
      NASA-funded AI technology enabling autonomous rovers and drones now keeps an eye on conveyor belts
      Article 3 weeks ago 2 min read The View from Space Keeps Getting Better  
      After 50 years of Landsat, discovery of new commercial and scientific uses is only accelerating
      Article 1 month ago 2 min read Controlled Propulsion for Gentle Landings 
      A valve designed for NASA rover landings enables effective stage separations for commercial spaceflight
      Article 1 month ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Thermal Protection Materials Branch
      Marshall Space Flight Center
      Technology
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s EMIT collected this hyperspectral image of the Amazon River in northern Brazil on June 30 as part of an effort to map global ecosystem biodiversity. The instrument was originally tasked with mapping minerals over deserts; its data is now being used in research on a diverse range of topics. NASA/JPL-Caltech The imaging spectrometer measures the colors of light reflected from Earth’s surface to study fields such as agriculture, hydrology, and climate science.
      Observing our planet from the International Space Station since July 2022, NASA’s EMIT (Earth Surface Mineral Dust Source Investigation) mission is beginning its next act.
      At first the imaging spectrometer was solely aimed at mapping minerals over Earth’s desert regions to help determine the cooling and heating effects that dust can have on regional and global climate. The instrument soon added another skill: pinpointing greenhouse gas emission sources, including landfills and fossil fuel infrastructure.
      Following a mission extension this year, EMIT is now collecting data from regions beyond deserts, addressing topics as varied as agriculture, hydrology, and climate science.
      Imaging spectrometers like EMIT detect the light reflected from Earth, and they separate visible and infrared light into hundreds of wavelength bands — colors, essentially. Scientists use patterns of reflection and absorption at different wavelengths to determine the composition of what the instrument is observing. The approach echoes Isaac Newton’s prism experiments in 1672, in which the physicist discovered that visible light is composed of a rainbow of colors.
      Perched on the International Space Station, NASA’s EMIT can differentiate between types of vegetation to help researchers understand the distribution and traits of plant communities. The instrument collected this data over the mid-Atlantic U.S. on April 23.NASA/JPL-Caltech “Breakthroughs in optics, physics, and chemistry led to where we are today with this incredible instrument, providing data to help address pressing questions on our planet,” said Dana Chadwick, EMIT’s applications lead at NASA’s Jet Propulsion Laboratory in Southern California. 
      New Science Projects
      In its extended mission, EMIT’s data will be the focus of 16 new projects under NASA’s Research Opportunities in Space and Earth Science (ROSES) program, which funds science investigations at universities, research institutions, and NASA.
      For example, the U.S. Geological Survey (USGS) and the U.S. Department of Agriculture’s (USDA) Agricultural Research Service are exploring how EMIT can assess climate-smart agricultural practices. Those practices — winter cover crops and conservation tillage — involve protecting cropland during non-growing seasons with either living plants or dead plant matter to prevent erosion and manage nitrogen.
      Imaging spectrometers are capable of gathering data on the distribution and characteristics of plants and plant matter, based on the patterns of light they reflect. The information can help agricultural agencies incentivize farmers to use sustainable practices and potentially help farmers manage their fields. 
      “We’re adding more accuracy and reducing error on the measurements we are supplying to end users,” said Jyoti Jennewein, an Agricultural Research Service research physical scientist based in Fort Collins, Colorado, and a project co-lead.
      The USGS-USDA project is also informing analytical approaches for NASA’s future Surface Biology and Geology-Visible Shortwave Infrared mission. The satellite will cover Earth’s land and coasts more frequently than EMIT, with finer spatial resolution.
      Looking at Snowmelt
      Another new project will test whether EMIT data can help refine estimates of snowpack melting rates. Such an improvement could inform water management in states like California, where meltwater makes up the majority of the agricultural water supply.
      Imaging spectrometers like EMIT measure the albedo of snow — the percentage of solar radiation it’s reflecting. What isn’t reflected is absorbed, so the observations indicate how much energy snow is taking in, which in turn helps with estimates of snow melt rates. The instruments also discern what’s affecting albedo: snow-grain size, dust or soot contamination, or both.
      For this work, EMIT’s ability to measure beyond visible light is key. Ice is “pretty absorptive at near-infrared and the shortwave infrared wavelengths,” said Jeff Dozier, a University of California, Santa Barbara professor emeritus and the project’s principal investigator.
      Other ROSES-funded projects focus on wildflower blooming, phytoplankton and carbon dynamics in inland waters, ecosystem biodiversity, and functional traits of forests.
      Dust Impacts
      Researchers with EMIT will continue to study the climate effects of dust. When lofted into the air by windstorms, darker, iron-filled dust absorbs the Sun’s heat and warms the surrounding air, while lighter-colored, clay-rich particles do the opposite. Scientists have been uncertain whether airborne dust has overall cooling or warming effects on the planet. Before EMIT, they could only assume the color of particles in a region.
      The EMIT mission is “giving us lab-quality results, everywhere we need to know,” said Natalie Mahowald, the mission’s deputy principal investigator and an Earth system scientist at Cornell University in Ithaca, New York. Feeding the data into Earth system computer models, Mahowald expects to get closer to pinpointing dust’s climate impact as Earth warms.
      Greenhouse Gas Detection
      The mission will continue to identify point-source emissions of methane and carbon dioxide, the greenhouse gases most responsible for climate change, and observations are available through EMIT’s data portal and the U.S. Greenhouse Gas Center.
      The EMIT team is also refining the software that identifies and measures greenhouse-gas plumes in the data, and they’re working to streamline the process with machine-learning automation. Aligning with NASA’s open science initiative, they are sharing code with public, private, and nonprofit organizations doing similar work.
      “Making this work publicly accessible has fundamentally pushed the science of measuring point-source emissions forward and expanded the use of EMIT data,” said Andrew Thorpe, the JPL research technologist heading the EMIT greenhouse gas effort.
      More About EMIT
      The EMIT instrument was developed by NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California. Launched to the International Space Station in July 2022, EMIT is on an extended three-year mission in which it’s supporting a range of research projects. EMIT’s data products are available at the NASA Land Processes Distributed Active Archive Center for use by other researchers and the public.
      To learn more about the mission, visit:
      https://earth.jpl.nasa.gov/emit/
      How the new NISAR satellite will track Earth’s changing surface A planet-rumbling Greenland tsunami seen from above News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2024-159
      Share
      Details
      Last Updated Nov 14, 2024 Related Terms
      EMIT (Earth Surface Mineral Dust Source Investigation) Earth Earth Science Earth Science Division Jet Propulsion Laboratory Explore More
      4 min read NASA and Forest Service Use Balloon to Help Firefighters Communicate
      Article 12 mins ago 9 min read The Earth Observer Editor’s Corner: Fall 2024
      On September 18, 2024, the National Oceanic and Atmospheric Administration (NOAA) shared the first images…
      Article 35 mins ago 3 min read Summary of Aura 20th Anniversary Event
      Snippets from The Earth Observer’s Editor’s Corner The last of NASA’s three EOS Flagships –…
      Article 37 mins ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...