Jump to content

Sols 4277-4279: Getting Ready To Say Goodbye to the King!


Recommended Posts

  • Publishers
Posted

4 min read

Sols 4277-4279: Getting Ready To Say Goodbye to the King!

Left navigation camera image from Sol 4255, showing “Milestone Peak” on the left, the subject of an RMI in this plan
Left navigation camera image from Sol 4255, showing “Milestone Peak” on the left, the subject of an RMI in this plan
NASA/JPL-Caltech

Earth planning date: Friday, Aug. 16, 2024

It’s time to move on from our “Kings Canyon” drill site, so today’s plan focused on our usual tidy up routine after a drill campaign. First we need to dump out any material in the drill chambers, in an action called “RAGE” – this sounds aggressive but stands for “Rotation to Agitate Granules for Expulsion,” so it’s more of a gentle turning than an angry shaking. This ensures that the drill chambers won’t spill later and we are ready for the next drill campaign – whenever we find a worthy target! Mastcam will document the entire process, and then image the drill bit that was used, making sure it is still in good condition.

At that point, we are free to use the arm instruments again (no turret movements allowed while there is sample in the drill chamber). So our contact science focuses today on the drill tailings, the pile of ground up rock generated by the drill action. That pile has been sitting there for over two weeks, but luckily it’s not too windy right now and the pile remained more or less intact. MAHLI will image the drill hole and the tailings pile on the first afternoon, APXS will integrate on the tailings on the first night and then MAHLI will image the tailings again on the second day. This post-retract image is just to confirm that APXS did not hit the pile of loose drill fines. As APXS Science Planner today, I worked with RPs to pick out the spot we will focus on and to make sure that we are using the correct sequences to ensure safety of the instrument – but it’s always nice to confirm that we didn’t hit the pile!

ChemCam has a suite of activities, from LIBS activities close to the rover, to “passive” (non destructive) activities and RMI images (which can be relatively near field or long distance). LIBS on the bedrock target “Marck Lake” will be used to compared with the nearby Kings Canyon target and assess homogeneity across the drill block, while the passive observation of “Red Slate Mountain” will examine a large light toned block about 10 metres away from the rover. ChemCam will also acquire a long distance RMI of loose blocks and boulders about 85 metres away, looking towards “Milestone Peak” (shown in the accompanying image).

APXS will acquire an overnight “atmospheric” measurement, looking at levels of argon as part of an ongoing campaign. This is paired with ChemCam’s second passive measurement, this time of the sky. We also have monitoring of dust levels, with Mastcam taus of the atmosphere (which atmospheric scientist Alex Innanen talked about here), and a whole host of Navcam dust devil movies, and suprahorizon and zenith movies (which target different parts of the horizon). All of these … and DAN and REMS activities too – our environmental monitoring team is working hard as usual!

ChemCam has spent the last two weeks or so getting LIBS and passive measurements on “Sam Mack Meadow” – an area of darker toned, sometimes broken up rocks just outside of the current workspace. In fact, ChemCam is getting LIBS on two further targets there in this plan: “Horse Creek Spire” and the somewhat nodular “Kearsarge Pinnacles.” Mastcam will image all of the LIBS targets too. There are some interesting textures here that APXS and MAHLI are keen to sample too, so our next drive is more of a bump to get close enough to allow contact science here too. We will still be able to gaze on the King (Canyon) for another while, so I guess it’s not really goodbye just yet!

Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick

Share

Details

Last Updated
Aug 19, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4498-4499: Flexing Our Arm Once Again
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 30, 2025 — Sol 4496, or Martian day 4,496 of the Mars Science Laboratory mission — at 20:12:48 UTC. NASA/JPL-Caltech Written by Conor Hayes, Graduate Student at York University
      Earth planning date: Monday, March 31, 2025
      Planning today began with two pieces of great news. First, our 50-meter drive (about 164 feet) from the weekend plan completed successfully, bringing us oh-so-close to finally driving out of the small canyon that we’ve been traversing through and toward the “boxwork” structures to our southwest. Second, we passed our “Slip Risk Assessment Process” (SRAP), confirming that all six of Curiosity’s wheels are parked firmly on solid ground. Avid readers of this blog will be familiar with last week’s SRAP challenges, which prevented us from using the rover’s arm for the entire week. With a green light on SRAP, we were finally able to put our suite of contact science instruments back to work today.
      The arm gets to work early on the first sol of this plan, with an APXS integration on “Los Osos,” a bedrock target in our workspace, after it has been cleared of the ubiquitous Martian dust by DRT. The rest of our arm activities consist of a series of MAHLI observations later in the afternoon, both of Los Osos and “Black Star Canyon.”
      Of course, just because we managed to get contact science in this plan doesn’t mean we’re letting our remote sensing instruments take a break. In fact, we have more than two hours of remote sensing, split between the two sols and the two science teams (Geology and Mineralogy [GEO] and Atmosphere and Environment [ENV]). GEO will be using Mastcam to survey both the highs and the lows of the terrain, with mosaics of “Devil’s Gate” (some stratigraphy in a nearby ledge) and some small troughs close to the rover. We’ll also be getting even more Mastcam images of “Gould Mesa,” an imaging target in many previous plans, as we continue to drive past it. ChemCam gets involved with a LIBS observation of “Fishbowls,” which will also be imaged by Mastcam, a post-drive AEGIS, and two RMI mosaics of Gould Mesa and “Torote Bowl,” which was also imaged over the weekend.
      ENV’s activities are fairly typical for this time of year as Curiosity monitors the development of the Aphelion Cloud Belt (ACB) with several Navcam cloud movies, as well as seasonal changes in the amount of dust in and above Gale with Navcam line-of-sight observations and Mastcam taus. We’ll also be taking a Navcam dust devil movie to see if we can catch any cold-weather wind-driven dust movement. ENV also filled this plan with their usual set of REMS, RAD, and DAN observations.
      The drive planned today is significantly shorter than the one over the weekend, at just about 10 meters (about 33 feet). This is because we’re driving up a small ridge, which limits our ability to see what’s on the other side. Although our rover knows how to keep itself safe, we still prefer not to drive through terrain that we can’t see in advance, if it can be avoided. Once we’ve got a better eye on what lies in front of us, we will hopefully be able to continue our speedy trek toward the boxwork structures.
      Share








      Details
      Last Updated Apr 03, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4495-4497: Yawn, Perched, and Rollin’


      Article


      3 days ago
      3 min read Visiting Mars on the Way to the Outer Solar System


      Article


      6 days ago
      2 min read Sols 4493-4494: Just Looking Around


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4495-4497: Yawn, Perched, and Rollin’
      NASA’s Mars rover Curiosity acquired this image of the upcoming “boxwork” structures to its west, using its Chemistry & Camera (ChemCam) Remote Micro-Imager (RMI). The ChemCam instrument studies the chemical composition of rocks and soil, using a laser to vaporize materials, then analyze their elemental composition using an on-board spectrograph. The ChemCam RMI is a high-resolution camera atop the rover’s mast. Curiosity captured this image on March 27, 2025 — Sol 4493, or Martian day 4,493 of the Mars Science Laboratory mission — at 15:35:21 UTC. NASA/JPL-Caltech/LANL Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Earth planning date: Friday, March 28, 2025
      Womp, womp. Another SRAP (Slip Risk Assessment Process) issue due to wheels being perched on these massive layered sulfate rocks. With our winter power constraints as tight as they are, though, keeping the arm stowed freed up more time to check some lines off our rover’s weekend list. To do: SAM activity to exercise Oven 2 (check!), Navcam 360-degree “phase function” sky movie to monitor scattering of Martian clouds (check!), APXS atmospheric measurements of argon (check!), ChemCam passive sky measurements of oxygen (check!), and a drive of about 50 meters (about 164 feet) to the southwest (check!). Curiosity gets busy on the weekends so us PULs can do some lounging. 
      On the Mastcam team, we’ve been pretty busy in the layered sulfate unit. The rocks are rippled, layered, fractured, and surrounded by sandy troughs. Where did it all come from? What current and past processes are at play in this area? This weekend we’re collecting 70 images to help figure that out. ChemCam is helping by collecting chemistry measurements of the lowest block in this Navcam image, with two targets close by aptly named “Solana Beach” and “Del Mar.” To help conserve power, we’ve been trying to parallelize our activities as much as possible. Recently this means Mastcam has been taking images while ChemCam undergoes “TEC Cooling” to get as cold as possible before using their laser. 
      We’re all hoping the arm can come back from vacation next week.
      Share








      Details
      Last Updated Apr 01, 2025 Related Terms
      Blogs Explore More
      3 min read Visiting Mars on the Way to the Outer Solar System


      Article


      3 days ago
      2 min read Sols 4493-4494: Just Looking Around


      Article


      4 days ago
      2 min read Sols 4491-4492: Classic Field Geology Pose


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4493-4494: Just Looking Around
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 25, 2025 — sol 4491, or Martian day 4,491 of the Mars Science Laboratory mission — at 17:16:50 UTC. NASA/JPL-Caltech Written by Alex Innanen, atmospheric scientist at York University
      Earth planning date: Wednesday, March 26, 2025
      It’s my second shift of the week as the Environmental theme lead and keeper of the plan (a bit of a mouthful we shorten to ESTLK) and today started out feeling eerily similar to Monday. Once again, Curiosity is posing like a geologist, which means that once again we can’t unstow the arm and will be skipping contact science. The silver lining is that this means we have extra time to have a good look around.
      The plan also looks similar to Monday’s — targeted remote sensing on the first sol before driving away, and then untargeted remote sensing on the next. On sol 4493 we start our remote sensing, almost as remote as we can get, with a suprahorizon movie looking for clouds in the south. A dust-devil survey rounds out the sol’s environmental observations, and then the geology theme group can get down to the serious business of looking at rocks. For Mastcam this means observing a group of bedrock targets all called “Observatory Trail” (one of which you can see in the middle of the image above), pointing out some interesting veins in “Point Loma,” and casting their gaze out toward “Black Butte” (which I could not think of a fun pun for…). ChemCam has a LIBS observation of “Cholla,” as well as two long-distance observations of the Texoli Butte and the boxwork structures. Our second sol is a little more restrained, as untargeted sols tend to be. But Curiosity will still have plenty of energy after a good rest. We’re taking advantage of that with an extra-long dust-devil movie. Even though we’re in our cloudy season, we still sometimes see dust lifting, and having that extra time to look out for it increases our chances of catching a wind gust or a dust devil in action. Alongside that we also have a Mastcam tau observation to keep an eye on the amount of dust in the atmosphere, and wrap up with a ChemCam AEGIS activity to autonomously choose a LIBS target.
      Share








      Details
      Last Updated Mar 28, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4491-4492: Classic Field Geology Pose


      Article


      2 days ago
      3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)


      Article


      4 days ago
      3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain!


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Ice cover ebbs and flows through the seasons in the Arctic (left) and the Antarctic (right). Overall, ice cover has declined since scientists started tracking it half a century ago. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5099Trent Schindler/NASA’s Scientific Visualization Studio Winter sea ice cover in the Arctic was the lowest it’s ever been at its annual peak on March 22, 2025, according to NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.53 million square miles (14.33 million square kilometers), the maximum extent fell below the prior low of 5.56 million square miles (14.41 million square kilometers) in 2017. 
      In the dark and cold of winter, sea ice forms and spreads across Arctic seas. But in recent years, less new ice has been forming, and less multi-year ice has accumulated. This winter continued a downward trend scientists have observed over the past several decades. This year’s peak ice cover was 510,000 square miles (1.32 million square kilometers) below the average levels between 1981 and 2010. 
      In 2025, summer ice in the Antarctic retreated to 764,000 square miles (1.98 million square kilometers) on March 1, tying for the second lowest minimum extent ever recorded. That’s 30% below the 1.10 million square miles (2.84 million square kilometers) that was typical in the Antarctic prior to 2010. Sea ice extent is defined as the total area of the ocean with at least 15% ice concentration.
      The reduction in ice in both polar regions has led to another milestone — the total amount of sea ice on the planet reached an all-time low. Globally, ice coverage in mid-February of this year declined by more than a million square miles (2.5 million square kilometers) from the average before 2010. Altogether, Earth is missing an area of sea ice large enough to cover the entire continental United States east of the Mississippi. 
      “We’re going to come into this next summer season with less ice to begin with,” said Linette Boisvert, an ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It doesn’t bode well for the future.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Observations since 1978 show that ice cover has declined at both poles, leading to a downward trend in the total ice cover over the entire planet. In February 2025, global ice fell to the smallest area ever recorded. Download this visualization from NASA's Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5521Mark Subbaro/NASA's Scientific Visualization Studio Scientists primarily rely on satellites in the Defense Meteorological Satellite Program, which measure Earth’s radiation in the microwave range. This natural radiation is different for open water and for sea ice — with ice cover standing out brightly in microwave-based satellite images. Microwave scanners can also penetrate through cloud cover, allowing for daily global observations. The DMSP data are augmented with historical sources, including data collected between 1978 and 1985 with the Nimbus-7 satellite that was jointly operated by NASA and the National Oceanic and Atmospheric Administration. 
      “It’s not yet clear whether the Southern Hemisphere has entered a new norm with perennially low ice or if the Antarctic is in a passing phase that will revert to prior levels in the years to come,” said Walt Meier, an ice scientist with NSIDC.

      By James Riordon
      NASA’s Earth Science News Team

      Media contact: Elizabeth Vlock
      NASA Headquarters
      Share
      Details
      Last Updated Mar 27, 2025 LocationNASA Goddard Space Flight Center Related Terms
      Earth Earth's Vital Signs General Explore More
      1 min read Arctic Sea Ice Near Historic Low; Antarctic Ice Continues Decline
      This summer, Arctic sea ice decreased to a its minimum extent on September 11, 2024.…
      Article 6 months ago 1 min read Keeping PACE with the Oceans
      NASA can detect tiny organisms, phytoplankton, that affect the color of ocean from space, and…
      Article 9 months ago 1 min read Antarctic Sea Ice Hits Annual Minimum, Second Lowest On Record
      On February 20th, 2024, Antarctic sea ice officially reached its minimum extent for the year.
      Article 1 year ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4491-4492: Classic Field Geology Pose
      NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam), showing the rover’s right-front wheel perched on a small, angular block, where it ended its weekend drive of about 75 feet (23 meters). In the interest of stability, the Curiosity team prefers to have all six rover wheels on the ground before deploying its 7-foot-long robotic arm (2.1 meters), so they opted for remote sensing observations instead, then another drive higher in the canyon. Curiosity captured this image on March 23, 2025 — sol 4489, or Martian day 4,489 of the Mars Science Laboratory mission — at 15:24:49 UTC. NASA/JPL-Caltech Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center
      Earth planning date: Monday, March 24, 2025
      If you’ve ever seen a geologist in the field, you may have seen a classic stance: one leg propped up on a rock, knee bent, head down looking at the rocks at their feet, and arm pointing to the distant stratigraphy. Today Curiosity decided to give us her best field geologist impression. The weekend drive went well and the rover traversed about 23 meters (about 75 feet), but ended with the right front wheel perched on an angular block. In the Front Hazcam image above, you can see the right front wheel on a small block, and the rover’s shadow with the mast staring out at all the exciting rocks to explore. Great pose, but not what we want for planning contact science! We like to have all six wheels on the ground for stability before deploying the robotic arm. So instead of planning contact science today, the team pivoted to a lot of remote sensing observations and another drive to climb higher in this canyon.
      I was on shift as Long Term Planner today, and it was fun to see the team quickly adapt to the change in plans. Today’s two-sol plan includes targeted remote sensing and a drive on the first sol, followed by an untargeted science block on the second sol.
      On Sol 4491, ChemCam will acquire a LIBS observation of a well-laminated block in our workspace named “Big Narrows,” followed by long-distance RMI observations coordinated with Mastcam to assess an interesting debris field at “Torote Bowl.” The team planned a large Mastcam mosaic to characterize the stratigraphy at Texoli butte from a different viewing geometry than we have previously captured. Mastcam will also be used to investigate active surface processes in the sandy troughs nearby, and an interesting fracture pattern at “Bronson Cave.” Then Curiosity will drive further to the south and take post-drive imaging to prepare for the next plan. On the second sol the team added an autonomously selected ChemCam AEGIS target, along with Navcam movies to monitor clouds, wind direction, and dust.
      Keep on roving Curiosity, and please watch your step!
      Share








      Details
      Last Updated Mar 26, 2025 Related Terms
      Blogs Explore More
      3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)


      Article


      2 days ago
      3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain!


      Article


      5 days ago
      3 min read Shocking Spherules!


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...