Jump to content

Recommended Posts

Posted
Arctic Weather Satellite and Φsat-2 lift off

Φsat-2, ESA’s groundbreaking cubesat designed to revolutionise Earth observation with artificial intelligence, has launched.

The cubesat embarked on its journey into space on 16 August at 20:56 CEST (11:56 local time) on board a SpaceX Falcon 9 rocket from the Vandenberg Space Force Base in California, US, integrated by Exolaunch as part of the Transporter-11 rideshare mission, which also included ESA’s Arctic Weather Satellite.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A super pressure balloon with the EUSO-2 payload is prepared for launch from Wānaka, New Zealand, during NASA’s campaign in 2023.NASA/Bill Rodman NASA’s Scientific Balloon Program has returned to Wānaka, New Zealand, for two scheduled flights to test and qualify the agency’s super pressure balloon technology. These stadium-sized, heavy-lift balloons will travel the Southern Hemisphere’s mid-latitudes for planned missions of 100 days or more. 
      Launch operations are scheduled to begin in late March from Wānaka Airport, NASA’s dedicated launch site for mid-latitude, ultra long-duration balloon missions.  
      “We are very excited to return to New Zealand for this campaign to officially flight qualify the balloon vehicle for future science investigations,” said Gabriel Garde, chief of NASA’s Balloon Program Office at the agency’s Wallops Flight Facility in Virginia. “Our dedicated team both in the field and at home has spent years in preparation for this opportunity, and it has been through their hard work, fortitude, and passion that we are back and fully ready for the upcoming campaign.” 
      While the primary flight objective is to test and qualify the super pressure balloon technology, the flights will also host science missions and technology demonstrations. The High-altitude Interferometer Wind Observation (HIWIND), led by High Altitude Observatory, National Center for Atmospheric Research in Boulder, Colorado, will fly as a mission of opportunity on the first flight. The HIWIND payload will measure neutral wind in the part of Earth’s atmosphere called the thermosphere. Understanding these winds will help scientists predict changes in the ionosphere, which can affect communication and navigation systems. The second flight will support several piggyback missions of opportunity, or smaller payloads, including: 
      Compact Multichannel Imaging Camera (CoMIC), led by University of Massachusetts Lowell, will study and measure how Earth’s atmosphere scatters light at high altitudes and will measure airglow, specifically the red and green emissions.   High-altitude Infrasound from Geophysical Sources (HIGS), led by NASA’s Jet Propulsion Laboratory and Sandia National Laboratories, will measure atmospheric pressure to collect signals of geophysical events on Earth such as earthquakes and volcanic eruptions. These signals will help NASA as it develops the ability to measure seismic activity on Venus from high-altitude balloons.    Measuring Ocean Acoustics North of Antarctica (MOANA), led by Sandia National Laboratories and Swedish Institute of Space Physics, aims to capture sound waves in Earth’s stratosphere with frequencies below the limit of human hearing. NASA’s Balloon Program Office at the agency’s Wallops Flight Facility is leading two technology demonstrations on the flight. The INterim Dynamics Instrumentation for Gondolas (INDIGO) is a data recorder meant to measure the shock of the gondola during the launch, termination, and landing phases of flight. The Sensor Package for Attitude, Rotation, and Relative Observable Winds – 7 (SPARROW-7), will demonstrate relative wind measurements using an ultrasonic device designed for the balloon float environment that measures wind speed and direction. NASA’s 18.8-million-cubic-foot (532,000-cubic-meter) helium-filled super pressure balloon, when fully inflated, is roughly the size of Forsyth-Barr Stadium in Dunedin, New Zealand, which has a seating capacity of more than 35,000. The balloon will float at an altitude of around 110,000 feet (33.5 kilometers), more than twice the altitude of a commercial airplane. Its flight path is determined by the speed and direction of wind at its float altitude.  
      The balloon is a closed system design to prevent gas release. It offers greater stability at float altitude with minimum altitude fluctuations during the day to night cycle compared to a zero pressure balloon. This capability will enable future missions to affordably access the near-space environment for long-duration science and technology research from the Southern Hemisphere’s mid-latitudes, including nighttime observations. 
      The public is encouraged to follow real-time tracking of the balloons’ paths as they circle the globe on the agency’s Columbia Scientific Balloon Facility website. Launch and tracking information will be shared across NASA’s social media platforms and the NASA Wallops blog.
      NASA’s return to Wānaka marks the sixth super pressure balloon campaign held in New Zealand since the agency began balloon operations there in 2015. The launches are conducted in collaboration with the Queenstown Airport Corporation, Queenstown Lake District Council, New Zealand Space Agency, and Airways New Zealand.  
      “We are especially grateful to our local hosts, partners, and collaborators who have been with us from the beginning and are critical to the success of these missions and this campaign,” said Garde. 
      NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon flight program with 10 to 16 flights each year from launch sites worldwide. Peraton, which operates NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, provides mission planning, sustaining engineering services, and field operations for NASA’s scientific balloon program. The Columbia team has launched more than 1,700 scientific balloons over some 40 years of operations. NASA’s balloons are fabricated by Aerostar. The NASA Scientific Balloon Program is funded by the NASA Headquarters Science Mission Directorate Astrophysics Division.  
      For more information on NASA’s Scientific Balloon Program, visit:
      www.nasa.gov/scientificballoons.
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Mar 14, 2025 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.govLocationWallops Flight Facility Related Terms
      Scientific Balloons Astrophysics Astrophysics Division Goddard Space Flight Center Wallops Flight Facility Explore More
      7 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
      Article 3 months ago 7 min read NASA to Launch 8 Scientific Balloons From New Mexico
      Article 7 months ago 5 min read NASA’s EXCITE Mission Prepared for Scientific Balloon Flight
      Editor’s note: EXCITE successfully launched at 9:22 a.m. EDT (7:22 a.m. MDT) Saturday, Aug. 31.…
      Article 7 months ago View the full article
    • By NASA
      NICER (left) is shown mounted to the International Space Station, and LEXI (right) is shown attached to the top of Firefly Aerospace’s Blue Ghost in an artist’s rendering.NASA/Firefly Aerospace The International Space Station supports a wide range of scientific activities from looking out at our universe to breakthroughs in medical research, and is an active proving ground for technology for future Moon exploration missions and beyond. Firefly Aerospace’s Blue Ghost Mission-1 landed on the Moon on March 2, 2025, kicking off science and technology operations on the surface, including three experiments either tested on or enabled by space station research. These projects are helping scientists study space weather, navigation, and computer performance in space— knowledge crucial for future Moon missions.
      One of the experiments, the Lunar Environment Heliospheric X-ray Imager (LEXI), is a small telescope designed to study the Earth’s magnetic environment and its interaction with the solar wind. Like the Neutron star Interior Composition Explorer (NICER) telescope mounted outside of the space station, LEXI observes X-ray sources. LEXI and NICER observed the same X-ray star to calibrate LEXI’s instrument and better analyze the X-rays emitted from Earth’s upper atmosphere, which is LEXI’s primary target. LEXI’s study of the interaction between the solar wind and Earth’s protective magnetosphere could help researchers develop methods to safeguard future space infrastructure and understand how this boundary responds to space weather.
      Other researchers sent the Radiation Tolerant Computer System (RadPC) to the Moon to test how computers can recover from radiation-related faults. Before RadPC flew on Blue Ghost, researchers tested a radiation tolerant computer on the space station and developed an algorithm to detect potential hardware faults and prevent critical failures. RadPC aims to demonstrate computer resilience in the Moon’s radiation environment. The computer can gauge its own health in real time, and RadPC can identify a faulty location and repair it in the background as needed. Insights from this investigation could improve computer hardware for future deep-space missions.
      In addition, the Lunar Global Navigation Satellite System (GNSS) Receiver Experiment (LuGRE) located on the lunar surface has officially received a GNSS signal at the farthest distance from Earth, the same signals that on Earth are used for navigation on everything from smartphones to airplanes. Aboard the International Space Station, Navigation and Communication Testbed (NAVCOM) has been testing a backup system to Earth’s GNSS using ground stations as an alternative method for lunar navigation where GNSS signals may have limitations. Bridging existing systems with emerging lunar-specific navigation solutions could help shape how spacecraft navigate the Moon on future missions.
      The International Space Station serves as an important testbed for research conducted on missions like Blue Ghost and continues to lay the foundation for technologies of the future.
      Keep Exploring Discover More Topics From NASA
      International Space Station News
      Space Station Research and Technology Tools and Information
      Commercial Lunar Payload Services (CLPS)
      The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
      Space Station Research Results
      View the full article
    • By European Space Agency
      The European Space Agency is releasing the first catalogue of astronomical data from the Euclid space telescope, including three new enormous image mosaics with zoom-ins. Follow the reveal live on Wednesday 19 March at 11:00 BST / 12:00 CET.
      View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-2 image showcases striking rocky formations amid the blue waters of Halong Bay in northeast Vietnam. View the full article
    • By European Space Agency
      The European Space Agency has unveiled the ESA Space HPC, a new resource for space in Europe. ESA Director General Josef Aschbacher was joined by ESA Council Chair Renato Krpoun and ASI president Teodoro Valente to cut the ribbon at ESA’s establishment in Italy, ESRIN.  
      View the full article
  • Check out these Videos

×
×
  • Create New...