Members Can Post Anonymously On This Site
Ghostly Reflections in the Pleiades
-
Similar Topics
-
By NASA
4 min read
NASA X-ray Telescopes Reveal the “Bones” of a Ghostly Cosmic Hand
Credit: X-ray: NASA/CXC/Stanford Univ./R. Romani et al. (Chandra); NASA/MSFC (IXPE); Infared: NASA/JPL-Caltech/DECaPS; Image Processing: NASA/CXC/SAO/J. Schmidt) Rotating neutron stars with strong magnetic fields, or pulsars, serve as laboratories for extreme physics, offering high-energy conditions that cannot be replicated on Earth. Young pulsars can create jets of matter and antimatter moving away from the poles of the pulsar, along with an intense wind, forming a “pulsar wind nebula”.
In 2001, NASA’s Chandra X-ray Observatory first observed the pulsar PSR B1509-58 and revealed that its pulsar wind nebula (referred to as MSH 15-52) resembles a human hand. The pulsar is located at the base of the “palm” of the nebula. Now Chandra’s data of MSH 15-52 have been combined with data from NASA’s newest X-ray telescope, the Imaging X-ray Polarimetry Explorer (IXPE) to unveil the magnetic field “bones” of this remarkable structure, as reported in our press release. IXPE stared at MSH 15-52 for 17 days, the longest it has looked at any single object since it launched in December 2021.
By combining data from Chandra and IXPE, astronomers are learning more about how a pulsar is injecting particles into space and shaping its environment. The X-ray data are shown along with infrared data from the Dark Energy Camera in Chile. Young pulsars can create jets of matter and antimatter moving away from the poles of the pulsar, along with an intense wind, forming a “pulsar wind nebula”. This one, known as MSH 15-52, has a shape resembling a human hand and provides insight into how these objects are formed.Credit: X-ray: NASA/CXC/Stanford Univ./R. Romani et al. (Chandra); NASA/MSFC (IXPE); Infared: NASA/JPL-Caltech/DECaPS; Image Processing: NASA/CXC/SAO/J. Schmidt In a new composite image, Chandra data are seen in orange (low-energy X-rays), green, and blue (higher-energy X-rays), while the diffuse purple represents the IXPE observations. The pulsar is in the bright region at the base of the palm and the fingers are reaching toward low energy X-ray clouds in the surrounding remains of the supernova that formed the pulsar. The image also includes infrared data from the second data release of the Dark Energy Camera Plane Survey (DECaPS2) in red and blue.
The IXPE data provides the first map of the magnetic field in the ‘hand’. It reveals information about the electric field orientation of X-rays determined by the magnetic field of the X-ray source. This is called “X-ray polarization”.
An additional X-ray image shows the magnetic field map in MSH 15-52. In this image, short straight lines represent IXPE polarization measurements, mapping the direction of the local magnetic field. Orange “bars” mark the most precise measurements, followed by cyan and blue bars with less precise measurements. The complex field lines follow the `wrist’, ‘palm’ and ‘fingers’ of the hand, and probably help define the extended finger-like structures.
Credit: X-ray: NASA/CXC/Stanford Univ./R. Romani et al. (Chandra); NASA/MSFC (IXPE); Infared: NASA/JPL-Caltech/DECaPS; Image Processing: NASA/CXC/SAO/J. Schmidt The amount of polarization — indicated by bar length — is remarkably high, reaching the maximum level expected from theoretical work. To achieve that strength, the magnetic field must be very straight and uniform, meaning there is little turbulence in those regions of the pulsar wind nebula.
One particularly interesting feature of MSH 15-52 is a bright X-ray jet directed from the pulsar to the “wrist” at the bottom of the image. The new IXPE data reveal that the polarization at the start of the jet is low, likely because this is a turbulent region with complex, tangled magnetic fields associated with the generation of high-energy particles. By the end of the jet the magnetic field lines appear to straighten and become much more uniform, causing the polarization to become much larger.
A paper describing these results by Roger Romani of Stanford University and collaborators was published in The Astrophysical Journal on October 23, 2023, and is available at https://arxiv.org/abs/2309.16067 IXPE is a collaboration between NASA and the Italian Space Agency with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. Ball Aerospace, headquartered in Broomfield, Colorado, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
For more Chandra images, multimedia and related materials, visit:
https://www.nasa.gov/chandra
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034
Share
Details
Last Updated Oct 30, 2023 Related Terms
Astrophysics Chandra X-Ray Observatory IXPE (Imaging X-ray Polarimetry Explorer) Marshall Space Flight Center The Universe Explore More
5 min read The Crab Nebula Seen in New Light by NASA’s Webb
Article 5 hours ago 6 min read NASA Rocket to See Sizzling Edge of Star-Forming Supernova
A new sounding rocket mission is headed to space to understand how explosive stellar deaths…
Article 3 days ago 2 min read Hubble Captures a Galactic Dance
This striking image from the NASA/ESA Hubble Space Telescope captures the interacting galaxy pair known…
Article 3 days ago View the full article
-
By USH
A man captured the moment he spotted a "ghostly figure" walking alongside him in the Lake District. Chris Randall, 45, was hiking when he spotted a Brocken spectre - a large shadow of an observer cast onto cloud or mist - out of the corner of his eye. Chris was camping alone on Red Pike near Wasdale Head in Cumbria when he saw the "ghostly" phenomenon.
A Brocken spectre also called Brocken bow or mountain spectre, is the magnified (and apparently enormous) shadow of an observer cast upon clouds or mist opposite the Sun's direction.
The figure's head is often surrounded by the halo-like rings of coloured light forming a glory, which appears opposite the Sun's direction when uniformly-sized water droplets in clouds or mist refract and backscatter sunlight.
The phenomenon can appear on any misty mountainside or cloud bank, even when seen from an airplane, but the frequent fogs and low-altitude accessibility of the Brocken, a peak in the Harz Mountains in Germany, have created a local legend from which the phenomenon draws its name.
The Brocken spectre was observed and described by Johann Silberschlag in 1780, and has since been recorded often in literature about the region.
Here are two more videos of this eerie 'Brocken spectre' phenomenon. Video 1 - Video 2View the full article
-
By USH
Since the widespread proliferation of camera drones in the mid-2010s many fast moving objects of bright white color have been recorded flying in earth's airspace at low altitude.
Their traveling speed seems to range from a few hundred km/h to several times the speed of sound.
The video analyzed by GoFastUFO reveals some further properties of WFMs (White Fast Movers - also called: UFO Fast Walkers): they often travel fast at a constant altitude, they are not or only weakly affected by gravitational forces, they often fly along a linear trajectory or a curve with a very large radius, they do not crash into obstacles.
In most cases of the here presented WFM footage the data reliably shows that they cannot be birds, insects or common technical devices such as model airplanes.
View the full article
-
By European Space Agency
Europe’s Vega has delivered Pléiades Neo-4 and four auxiliary payloads, SunStorm, RadCube and LEDSAT developed through ESA, and BRO-4, to their planned orbits.
View the full article
-
By HubbleSite
The universe is a bubbling cauldron of matter and energy that have mixed together over billions of years to create a witches' brew of birth and destruction.
Firestorms of star birth sweeping across the heavens. Dying stars rattling the very fabric of space in titanic explosions. Death Star-like beams of energy blasting out of overfed black holes at nearly the speed of light. Large galaxies devouring smaller companions, like cosmic Pac-Men. Colossal collisions between galaxies flinging stars around like breaking pool balls. Hubble has seen them all.
This compulsive mayhem in space can produce weird-looking shapes that resemble creepy creatures seemingly conjured up in stories of the paranormal. Among them is the object in this new Hubble image.
The snapshot reveals what looks like an uncanny pair of glowing eyes glaring menacingly in our direction. The piercing "eyes" are the most prominent feature of what resembles the face of an otherworldly creature. This frightening object is actually the result of a titanic head-on collision between two galaxies.
Each "eye" is the bright core of a galaxy, the result of one galaxy slamming into another. The outline of the face is a ring of young blue stars. Other clumps of new stars form a nose and mouth.
The system is catalogued as Arp-Madore 2026-424, from the Arp-Madore "Catalogue of Southern Peculiar Galaxies and Associations."
Although galaxy collisions are common—especially back in the young universe—most of them are not head-on smashups, like the collision that likely created this Arp-Madore system. The violent encounter gives the system an arresting "ring" structure for only a short amount of time, about 100 million years. The two galaxies will merge completely in about 1 to 2 billion years, hiding their messy past.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.