Jump to content

Wildland Fire Management Initiative Description


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A fire burns in Fishlake National Forest, as part of the Fall 2023 FASMEE prescribed burn. Grace Weikert / Goddard
A fire burns in Fishlake National Forest, as part of the Fall 2023 FASMEE prescribed burn.
NASA/ Grace Weikert

Background

Fire is a natural occurrence in many ecosystems and can promote ecological health. However, wildfires are growing in scope and occurring more often than in the past. Among other causes this is due to human-caused climate impacts and the expansion of communities into areas with wildland vegetation. These blazes continue to significantly harm communities, public health, and natural ecosystems. NASA is leveraging cutting-edge science and technology to better understand wildland fire behavior and provide valuable tools for fire policy, response, and mitigation. 

NASA’s Stake in Wildfire

NASA’s contributions to wildland fire management span decades. This includes research to better understand the role fire plays in Earth’s dynamic atmosphere, and airborne and spaceborne sensors to analyze fire lifecycles. Much of this research and technology is still used by wildfire agencies across the globe today. NASA is building on this research and technology development with the Wildland Fire Management Initiative (WMI).  

WMI leverages expertise across the Agency in space technology, science, and aeronautics to improve wildfire research and response. Through this effort, NASA and its partners will continue to provide tools and technologies for improved predictive fire modeling, risk assessment, fire prevention, suppression and post-fire recovery operations. NASA’s WMI aims to equip responders with improved tools for managing these fires

How NASA is Tackling Wildfire

NASA is collaborating with other government agencies, academia, and commercial industries to build a concept of operations for the future of wildland fire management. This means identifying gaps in current wildland fire technologies and procedures and laying out clear solutions to address those challenges.  

NASA will perform a demonstration of wildland fire technologies – including X – in the coming years. 

To provide a well-rounded toolkit for improving wildland operations, NASA and is tackling every aspect of wildland fire response. These efforts include: 

Pre-Fire 

  • Fuel fire maps with improved accuracy  
  • Tools that identify where and when safe, preventative burn treatments would be most effective 
  • Airspace management and safety technologies to enable mainstream use of uncrewed aircraft systems in prescribed burns 

Active Fire 

  • Fire detection and tracking imagery  
  • Improved fire information management systems 
  • Models for changing fire conditions, including fire behavior, and wind and atmospheric tracking for quality forecasts 
  • Uncrewed aircraft and high-altitude balloons for real-time communications for fighting fires in harsh environments 
  • Uncrewed Aircraft Systems Traffic Management (UTM) to expand use of uncrewed aircraft systems in fire response, particularly in environments where traditional air traffic control technologies aren’t available 
  • An airspace awareness and communications system to enable remotely piloted aircraft to identify, monitor, and suppress wildfires 24 hours a day 

Post-Fire 

  • Improved fire impact assessments, including fire severity, air and water quality, risks of landslides, debris flows, and burn scars 
  • Ground-based, airborne, and spaceborne observations to develop monitoring systems for air quality and map burn severity and develop and enhance models and predictions of post-fire hazards 

NASA’s Disasters Response Coordination System (DRCS) supports all three fire response aspects listed above. The DRCS, developed under the Agency’s Earth Science Division’s Disasters Program, provides decisional support to international and domestic operational response agencies. This support includes products for understanding wildfire movement and potential pathways, burn-area maps, and impacts of fire, ash, and smoke to population and critical infrastructure. DCRS tools also provide assessments of post-fire flooding and debris flow susceptibility. 

NASA’s Investment in New Wildland Fire Technologies  

NASA’s WMI offers grants, contracts, and prizes to small businesses, research institutions, and other wildland technology innovators. Some related technology development activities underway include: 

  • Testing communications technologies for incident response teams in areas with no cellphone coverage via a high-altitude balloon 60,000 feet above ground level 
  • Developing wildfire detection systems and instruments for crewed and uncrewed aircraft  
  • Funding early-stage technology development for remote sensing instruments and sensor systems 
  • Developing and flight testing integrated, compact systems for small spacecraft and other platforms for autonomous detection, location tracking, and data collection of transient smoke plumes, early wildfires and other events 
  • Licensing technologies relevant to wildland fire management and hosting wildland fire webinars to promote NASA technology licensing 

Partners 

The NASA Wildland Fire Management Initiative team collaborates with industry, academia, philanthropic institutions, and other government agencies for a more fire-resilient future. These include:  

  • U.S. Forest Service 
  • The California Department of Forestry and Fire Protection 
  • The National Oceanic and Atmospheric Administration 
  • The Federal Aviation Administration 
  • The Department of Homeland Security 
  • The Department of Defense 
  • The National Wildfire Coordinating Group 

WMI Deliverables

Through these combined efforts, NASA aims to address urgent wildland fire management challenges and ensure communities are better prepared for wildland fires. NASA will continue to expand partnerships within wildland fire management agencies for technology development and adoptions. 

For more information, email: Agency-WildlandFiresInitiative@mail.nasa.gov 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA, along with members of the FAA and commercial drone engineers, gathered in the Dallas area May 25, 2024, to view multiple delivery drones operating in a shared airspace beyond visual line of sight using an industry-developed, NASA-originated uncrewed aircraft system traffic management system.NASA NASA’s Uncrewed Aircraft Systems Traffic Management Beyond Visual Line of Sight (UTM BVLOS) subproject aims to support the growing demand for drone flights across the globe.  
      Uncrewed aircraft systems (UAS), or drones, offer an increasing number of services, from package delivery to critical public safety operations, like search and rescue missions. However, without special waivers, these flights are currently limited to visual line of sight – or only as far as the pilot can see – which is roughly no farther than one mile from the operator. As the FAA works to authorize flights beyond this point, NASA is working with industry and the Federal Aviation Administration (FAA) to operationalize an uncrewed traffic management system for these operations.  
      NASA’s UTM Legacy  
      NASA’s Uncrewed Aircraft Systems Traffic Management, or UTM, was first developed at NASA’s Ames Research Center in California’s Silicon Valley in 2013, and enables drones to safely and efficiently integrate into air traffic that is already flying in low-altitude airspace. UTM is based on digital sharing of each user’s planned flight details, ensuring each user has the same situational awareness of the airspace. 
      NASA performed a series of drone flight demonstrations using UTM concepts in rural areas and densely populated cities under the agency’s previous UTM project . And commercial drone companies have since utilized NASA’s UTM concepts and delivery operations in limited areas.  
      Several projects supporting NASA’s Advanced Air Mobility or AAM mission are working on different elements to help make AAM a reality and one of these research areas is automation.NASA / Graphics UTM Today 
      NASA research is a driving force in making routine drone deliveries a reality. The agency is supporting a series of commercial drone package deliveries beyond visual line of sight, some of which kicked off in August 2024 in Dallas, Texas. Commercial operators are using NASA’s UTM-based capabilities during these flights to share data and planned flight routes with other operators in the airspace, detect and avoid hazards, and maintain situational awareness. All of these capabilities allow operators to safely execute their operations in a shared airspace below 400 feet and away from crewed aircraft. These drone operations in Dallas are a collaboration between NASA, the FAA, industry drone operators, public safety operators, and others. 
      These initial flights will help validate UTM capabilities through successful flight operation evaluations and inform the FAA’s rulemaking for safely expanding drone operations beyond visual line of sight. 
      The agency will continue to work with industry and government partners on more complex drone operations in communities across the country. NASA is also working with partners to leverage UTM for other emerging operations, including remotely piloted air cargo delivery and air taxi flights. UTM infrastructure could also support high-altitude operations for expanded scientific research, improved disaster response, and more. 
      NASA UTM BVLOS 
      NASA’s UTM Beyond Visual Line of Site (UTM BVLOS) subproject is leading this effort, under the Air Traffic Management eXploration portfolio within the agency’s Aeronautics Research Mission Directorate. This work is in support of NASA’s Advanced Air Mobility Mission, which seeks to transform our communities by bringing the movement of people and goods off the ground, on demand, and into the sky.
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 22 min read
      NASA’s BlueFlux Campaign Supports Blue Carbon Management in South Florida
      Photo 1. A Mangrove stand lines the bank of Shark River, an Everglades distributary that carries water into the Gulf of Mexico’s Ponce De Leon Bay. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Introduction
      Along the southernmost rim of the Florida Peninsula, the arching prop roots or “knees” of red mangroves (Rhizophora mangle) line the coast – see Photo 1. Where they dip below the water’s surface, fish lay their eggs, enjoying the protection from predators that the trees provide. Among their branches, wading birds, such as the great blue heron and the roseate spoonbill establish rookeries to rear their young. The tangled matrix of roots collects organic matter and ocean-bound sediments, adding little-by-little to the coastline and shielding inland biology from the erosive force of the sea. In these ways, mangroves are equal parts products and engineers of their environment, but their ecological value extends far beyond this local sphere of influence.
      Mangroves are an important carbon dioxide (CO2) sink – responsible for removing CO2 from the atmosphere with impressive efficiency. Current estimates suggest mangroves sequester CO2 10 times faster and store up to 5 times more carbon than rainforests and old-growth forests. But as part of the ever-changing line between land and sea, they’re exceptionally vulnerable to climate disturbances such as sea level rise, hurricanes, and changes in ocean salinity. As these threats intensify, Florida’s sub-tropical wetlands – and their role as a critical sink of CO2 – face an uncertain future.  
      NASA’s BlueFlux Campaign, a three-year (2021–2024), $1.5-million project operating under the agency’s Carbon Monitoring System, used field, aircraft, and satellite data to study the impact of both natural and anthropogenic pressures on South Florida’s coastal ecology. BlueFlux consists of a series of ground-based and airborne fieldwork campaigns, providing a framework for the development of a satellite-based data product that will estimate daily rates of surface-atmosphere gas transfer or gaseous flux across coastal ecosystems in Florida and the Caribbean. “The goal is to enhance our understanding of how blue-carbon ecosystems fit into the global carbon market,” said Ben Poulter [NASA’s Goddard Space Flight Center (GSFC)—Project Lead]. “BlueFlux will ultimately answer scientific questions and provide policy-related solutions on the role that coastal wetlands play in reducing atmospheric greenhouse gas (GHG) concentrations.”
      This article provides an overview of BlueFlux fieldwork operations – see Figure 1 – and outlines how the project might help refine global GHG budgets and support the restoration of Florida’s wetland ecology.
      Figure 1. A map of South Florida overlaying a true-color image captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board NASA’s Terra satellite. Red triangles mark locations of primary ground-based fieldwork operations described in this article. Figure Credit: NASA’s Goddard Space Flight Center (GSFC) BlueFlux Ground-based Fieldwork
      Across the street from the Flamingo Visitors center, at the base of the Everglades National Park, there was once a thriving mangrove population. Now, the skeletal remains of the trees form one of the Everglades’ largest ghost forests – see Photo 2. When Hurricane Irma made landfall in September 2017, violent winds battered the shore and a storm surge swept across the coast, decimating large swaths of the mangrove forest. Most of Florida’s mangroves recovered swiftly. But seven years later, this site and others like it have seen little to no growth.
      “At this point, I doubt they’ll ever recover,” said David Lagomasino [East Carolina University].
      Photo 2. A mangrove ghost forest is all that remains of a once-thriving mangrove stand, preserving an image of Hurricane Irma’s lasting impact on South Florida’s wetland ecology. Most of the ghost forests in the region are a product of natural depressions in the landscape that collect saltwater following severe storms. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Lagomasino was in the Everglades this summer conducting research as part of the fifth leg of BlueFlux fieldwork – see Photo 3. His team focused on measuring how changes in wetland ecology affect the sequestration and emission rates of both CO2 and methane (CH4). In areas where vegetative health is severely degraded, like in ghost forests, a general decline in CO2 uptake is accompanied by an increase in CH4 production, the net effect of which could dramatically amplify the atmosphere’s ability to trap heat. Ghost forests offer an example at one end of an extreme, but defining the way more subtle gradients among wetland variables – such as changes in water level, tree height, canopy coverage, ocean salinity, or mangrove species distribution – might influence flux is harder to tease out of the limited data available. 
      Photo 3. Assistant professor David Lagomasino and Ph.D. candidate Daystar Babanawo [both from East Carolina University] explore the lower Everglades by boat. Due to the relative inaccessibility of the region, measurements of flux in wetland ecosystems are limited. The plant life here consists almost entirely of Florida’s three Mangrove species (red, black, and white), which are among the only vegetation that can withstand the brackish waters characteristic of coastal wetlands. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) In the Everglades, flux measurements are confined to a handful of eddy covariance towers – or flux towers – constructed as part of the National Science Foundation’s (NSF) Long-Term Ecological Research (LTER) Network. 
      The first flux tower in this network, erected in June 2003, stands near the edge of Shark River at a research site called SRS-6, short for Shark River Slough site 6. A short walk from the riverbank, across a snaking path of rain-weathered, wooden planks, sits a small platform where the flux tower is anchored to the forest floor – see Photo 4. About 20 m (65 feet) above the platform, the tower breaches the canopy, where a suite of instruments continuously measures wind velocity, temperature, humidity, and the vertical movement of trace atmospheric gases, such as water vapor (H2Ov), CO2, and CH4. It’s these measurements collectively that are used to calculate flux. 
      Photo 4. At SRS-6, an eddy covariance tower measures C02 and CH4 flux among a dense grove of red, black, and white mangroves. The term eddy covariance refers to the statistical technique used to calculate gaseous flux based on the meteorological and scalar atmospheric data collected by the flux towers. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) “Hundreds of research papers have come from this site,” said Lagomasino. The abundance of research generated from the data captured at SRS-6 speaks in part to the value of the measurements that the tower makes. It also points to the gaps that exist just beyond each tower’s reach. A significant goal of the BlueFlux campaign is to explain flux on a scale that isn’t covered by existing data – to fill in the gaps between the towers.
      One way to do that is by gathering data by hand.
      On Lagomasino’s boat is a broad, black case carrying a tool called a Russian peat auger. The instrument is designed to extract core samples from soft soils – see Photo 5.
      Everglades peat, which is made almost entirely of the partially decomposed roots, stems, and leaves of the surrounding mangroves, offers a perfect study subject. Each thin, half-cylinder sample gets sealed and shipped back to the lab, where it will be sliced into flat discs. The discs will be analyzed for their age and carbon content by Lagomasino’s team and partners at Yale University. These cores are like biomass time capsules. In Florida’s mangrove forests, a 1-m (3-ft) core might represent more than 300 years of carbon accumulation. On average, a 1 to 3 mm (0.04 to 0.12 in) layer of matter is added to the forest floor each year, building up over time like sand filling an hourglass.
      Photo 5. David Lagomasino holds a Russian peat auger containing a sample of Everglades peat. The primary source of the soil’s elevated carbon content – evident from its coarse, fibrous texture – is the partially decayed plant tissue of the surrounding mangroves. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Although coastal wetlands account for less than 2% of the planet’s land-surface area, they house a disproportionate amount of blue carbon – carbon stored in marine and coastal environments. In the Everglades, the source of this immense accumulation of organic material is the quick-growing vegetation – see Photo 6.
      When a CO2 molecule finds its way through one of the many small, porous openings on a mangrove leaf ­– called stomata – its next step is one of creation, where it plays a part in the miraculous transformation of inorganic matter into living tissue. Inside the leaf’s chloroplasts, energy from stored sunlight kickstarts a long chain of chemical reactions that will ultimately divide CO2 into its constituent parts. Oxygen atoms are returned to the atmosphere as the byproduct of photosynthesis, but the carbon stays behind to help build the sugar molecules that will fuel new plant growth. In short, the same carbon that once flowed through the atmosphere defines the molecular structure of all wetland vegetation. When a plant dies or a gust of wind pulls a leaf to the forest floor, this carbon-based matter finds its way into the soil, where it can stay locked in place for thousands of years thanks to a critical wetland ingredient: water.
      The inundated, anoxic – an environment deficient or absent of oxygen – peat soils characteristic of wetlands host microbial populations that are uniquely adapted to their environment. In these low- to no-oxygen conditions, the prevailing microbiota consumes organic material slowly, leading to an accumulation of carbon in the soil. As wetland conditions change, the soil’s microbial balance shifts. For example, a decline in water level, which can increase the oxygen-content of the soil, produces conditions favorable to aerobic bacteria. These oxygen-breathing lifeforms consume organic matter far more rapidly than their anaerobic counterparts – and release more CO2 into the atmosphere as a result.
      Water level isn’t the only environmental condition that influences rates of carbon sequestration. The soil cores collected during the campaign will be analyzed alongside records of interrelated variables such as water salinity, sea surface height, and temperature to understand not just the timescales associated with blue carbon development in mangrove forests but how and why rates of soil deposition change in response to specific environmental pressures. In many parts of the Everglades, accumulated peat can reach depths of up to 3 m (9.8 feet) – holding thousands of years’ worth of insights that would otherwise be lost to time.
      Photo 6. Mangroves are viviparous plants. Their propagules – or seedlings – germinate while still attached to their parent tree. Propagules that fall to the forest floor are primed to begin life as soon as they hit the ground. But even those that fall into bodies of water and are carried out to sea can float for months before finding a suitable place to lay their roots. The high growth rate of mangroves contributes to the efficiency with which mangrove forests remove CO2 from the atmosphere. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Lola Fatoyinbo [NASA’s Goddard Space Flight Center (GSFC), Biospheric Sciences Lab] and Peter Raymond [Yale University’s School of the Environment] led additional fieldwork teams tasked with collecting forest inventory data in locations where vegetation was dead, regenerating, or recently disturbed by severe weather events. A terrestrial laser system was used to obtain three-dimensional (3D) images of mangrove forest structure, which provided maps of stem density, vertical distributions of biomass, and stand volume surface area. Spectroradiometers were also used to acquire visible, near infrared, and shortwave infrared spectra, delivering detailed information about species composition, vegetative health, water levels, and soil properties.
      To tie these variables to flux, the researchers made measurements using chambers – see Figure 2 – designed to adhere neatly to points where significant rates of gas exchange occur, (i.e., mangrove lenticels—cell-sized breathing pores found on tree bark and root systems— and the forest floor). As an example, black mangroves (Avicennia germinans) possess unique aerial roots called pneumatophores that, similar to the prop roots of red mangroves, provide them with access to atmospheric oxygen. Pneumatophores sprout vertically from the forest floor and line up like matchsticks around the base of each tree. The team used cylindrical chambers to measure the transfer of gas between a single pneumatophore and the atmosphere – see Figure 2a.
      These observations are archived in NASA’s Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) and publicly available to researchers who wish to monitor and identify trends in the data. After nearly three years of field work, these data have already given scientists a more detailed picture of how Florida’s wetlands are responding to environmental pressures.
      Research based on data from early BlueFlux fieldwork deployments confirms that aerobic, methanogenic microbes living in flooded, wetland soils naturally release a significant amount of CH4 as a byproduct of the process by which they create their own energy.
      “We’re especially interested in this methane part,” said Fatoyinbo. “It’s the least understood, and there’s a lot more of it than we previously thought.” Fatoyinbo also noted a “significant difference in CO2 and CH4 fluxes between healthy mangroves and degraded ones.” In areas where mangrove health is in decline, due to reduced freshwater levels or as the result of damage sustained during severe weather events, “you can end up with more ‘bad’ gases in the atmosphere,” she said. Since CH4 is roughly 80 times more potent than CO2 over 100-year period, these emissions can undermine some of the net benefits that blue carbon ecosystems provide as a sink of atmospheric carbon.
      Figure 2. To directly measure the emission and sequestration rates of CO2 and CH4 in mangrove forests, chambers were designed to adhere to specific targets where gas exchange occurs (i.e. mangrove lenticles, root systems, and the forest floor). Credit: GSFC Airborne Research Teams Measure GHG Flux from Above 
      Florida’s mangrove forests blanket roughly 966 km2 (600 mi2) of coastal terrain. Even with over 20 years of tower data and the extensive measurements from ground-based fieldwork operations, making comprehensive inferences about the entire ecosystem is tenuous work. To provide flux data at scale – and help quantify the atmospheric influence that Florida’s coastal wetlands carry as a whole – NASA’s BlueFlux campaign relies on a relatively new, airborne technique for measuring flux – see Photo 7.
      Photo 7. At the Miami Executive Airfield, members of NASA’s BlueFlux airborne science team stand in front of the Beechcraft 200 King Air before the final flight of the fieldwork campaign. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Between 2022 and 2024, over 5 deployments, the team conducted more than 34 carefully planned flights – see Figure 3 – collecting flux data over Florida’s wetlands by plane. Each flight is equipped with a payload known colloquially as “CARAFE,” short for the CARbon Airborne Flux Experiment, which is the airborne campaign’s primary means of data collection. “This is one of the first times an instrument like this has flown over a mangrove forest anywhere in the world,” said Fatoyinbo. “So, it’s really just kind of groundbreaking.”
      Figure 3. An example of flight paths from eight BlueFlux airborne deployments flown in April 2023. The flight paths are highlighted in blue. The legs of each flight where flux measurements were taken are highlighted in green. Accurate flux calculations rely on stable measurements of the aircraft’s speed and orientation, which is why the flux legs of each flight are flown in straight lines. Credit: GSFC In the air, GHG concentrations are measured using a well-established technique called cavity ringdown spectroscopy, which involves firing a laser into a small cavity where it will ping back and forth between two highly reflective mirrors. Most gas-phase molecules absorb light at specific wavelengths, depending on their atomic makeup. Since the target molecules in this case are CO2 and CH4, the laser is configured to emit light at a wavelength that only these molecules will absorb. As the laser bounces between the mirrors, a fraction of the light is absorbed by any molecules present in the chamber. The rate of the light’s decay is used to estimate CO2 and CH4 concentrations, generating a time series with continuous readings of gas concentrations, measured in parts per million – see Photo 8. This information is combined with measurements of vertical wind velocity to calculate a corresponding time series of fluxes along the flight track. While these measurements are important on their own, a priority for the airborne team is understanding GHG fluxes in relation to what’s happening on the ground. 
      Photo 8. The CARAFE payload is responsible for taking readings of atmospheric CO2, CH4, and H2Ov levels using a wind probe and two optical spectroscopy instruments manufactured by Picarro: the G2401m Gas Concentration Analyzer and the G2311f Gas Concentration Analyzer. The readings pictured above were made by the G2311f, which measures gas concentrations at a faster rate than the G2401m. The G2401m makes slower but more stable measurements, which are necessary for verifying the accuracy of measurements made by the G2311f. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Unlike flux towers, which only collect data within a 100 m2 (328 ft2) “footprint,” airborne readings have a footprint that can stretch up to 1 km (0.6 mi) in upwind directions. The plane’s speed, position, and orientation are used to help link flux data to fixed points along the flight’s path – so the team can make comparisons between aerial measurements and those made by the ground-based towers – see Photo 9.
      “One challenge with that is the flux towers are much lower to the ground, and their footprint is much smaller,” said Glenn Wolfe [GSFC—BlueFlux Flight Lead]. “So, we have to be really careful with our airborne observations, to make sure they closely resemble our ground-based measurements.”
      Part of decoding the airborne data involves overlaying each footprint with detailed maps of different surface properties, such as vegetation cover, soil water depth, or leaf-area index, so the team can constrain the measurements and assign fluxes to specific sources – whether its mangroves, sawgrass, or even water. 
      Photo 9. The BlueFlux airborne science team collects flux measurements from 90m (300ft) above Florida’s mangrove forests. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Data Upscaling – Making Daily Flux Predictions from Space
      The coupling of BlueFlux’s ground-based and airborne data provides the framework for the production of a broader, regional image of GHG flux.
      “The eddy flux towers give us information about the temporal variability,” said Cheryl Doughty [GSFC]. “And the airborne campaign gives us this great intermediate dataset that allows us to go from individual trees to a much larger area.”
      Doughty is now using BlueFlux data to train a remote-sensing data product, the prototype of which is called Daily Flux Predictions for South Florida. The product’s underlying model relies on machine learning algorithms and an ensemble modeling technique called random forest regression. It will make flux predictions based on surface reflectance data captured by the Moderate Resolution Imaging Spectroradiometer (MODIS), an instrument that flies on NASA’s polar-orbiting Aqua and Terra satellites – see Figure 4.
      “We’re really at the mercy of the data that’s out there,” said Doughty. “One of the things we’re trying to produce as part of this project is a daily archive of fluxes, so MODIS is an amazing resource, because it has over 20 years of data at a daily temporal resolution.”
      This archival flux data will help researchers explain how fluxes change in relation to processes that are directly described by MODIS surface reflectance data, including sea-level rise, land use, water management, and disturbances from hurricanes and fires.
      Figure 4. Sample of methane flux upscaling, in which MODIS surface reflectance retrievals are used to predict CH4 flux for South Florida at a regional scale [bottom row, left]. The model inputs rely on a composite of MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Radiance (NBAR) measurements from all available MODIS land bands: [top row, left to right]: red (620–670 nm), green (545–565 nm), blue (459–479 nm); [middle row, left to right] near infrared 1, or NIR1 (841–876 nm), NIR2 (1230–1250 nm), shortwave IR 1, or SWIR1 (1628–1652 nm), and SWIR 2 (2105–2155 nm). The Everglades National Park boundary is indicated on each image with a white line. Output of the model is shown [bottom row, left] as well as a comparison between modeled fluxes of MODIS NBAR with Terra and Aqua [bottom row, right]. Credit: GSFC To help validate the model, researchers must reformat flux measurements from the airborne campaign to match the daily temporal resolution and 500m2 (0.3mi2) spatial resolution of MODIS reflectance retrievals.
      “It’s best practice to meet the data at the coarsest resolution,” said Doughty. “So, we have to take an average of the hourly estimates to match MODIS’ daily scale.”
      The matching process is slightly more complicated for spatial datasets. BlueFlux’s airborne flux measurements produce roughly 20 data points for each 500 m2 (0.3 mi2) area, the same resolution as a single MODIS pixel.
      “We’re essentially taking an average of all those CARAFE points to get an estimate that corresponds to one pixel,” said Doughty.
      This symmetry is critical, allowing the team to test, train, and tune the model using measurements that capture what’s really happening on the ground – ensuring the accuracy of flux measurements generated from satellite data alone.
      Researchers don’t expect the model to serve as a perfect reconstruction of reality. The heterogenous nature of Florida’s wetland terrain – which consists of a patchwork of sawgrass marshland, mangrove forests, hardwood hammocks, and freshwater swamps – contributes to high degree of variability in CO2 removal rates within and across its distinct regions. The daily flux product accounts for some of this complexity by making hundreds of calculations at a time, each with slightly different parameters based on in-situ measurements.
      “The goal isn’t to just give people one flux measurement but an estimate of the uncertainty that is so inherent to these wetlands,” explained Doughty.
      The prototype of the product will be operational by early 2025 and accessible to the public through NASA’s ORNL­ DAAC. Doughty hopes it will help stakeholders and decision makers evaluate policies related to water management, land use, and conservation that might impact critical stocks of blue carbon. 
      From Drainage to Restoration in the Florida Everglades
      In the late 19th century, land developers were drawn to South Florida, where they hoped the fertile soil and tropical climate could support year-round cultivation of commodities such as exotic fruits, vegetables, and sugar cane. There was just one thing standing in the way – the water. If they could find a way to tame Florida’s wilderness, to drain the wetland of its excess water, Florida would offer Americans a new agricultural frontier.
      Progress was made incrementally, but the Everglades drainage project idled for more than 50 years as its organizers wrestled with the literal and political morass surrounding South Florida’s wetland topography. It was mother nature’s hand that ultimately accelerated the drainage project. In 1926 and 1928, two large hurricanes tore through the barrier along Lake Okeechobee’s southern shore built to prevent water from spilling onto the newly settled, small-scale farmland just south of the lake. The second of the two storms – 1928’s Okeechobee Hurricane – made landfall in early September and resulted in nearly 3,000 recorded fatalities. In some areas, the torrent of flood water was deep enough that even those who sought refuge from the flood on the roofs of their homes were swept away by the current. The federal government was forced to step in.
      By 1938, the U.S. Army Corps of Engineers had completed construction of the Hoover Dike, adding to a collection of four canals responsible for siphoning water away from Lake Okeechobee’s floodplain and into the Atlantic Ocean. Seasonal flooding was brought under control, but the complete reclamation of South Florida’s wetlands proved more challenging than anticipated. As water levels fell and freshly cleared lands dried out, the high organic content of the soil fueled tremendous peat and muck fires that could burn for days, spreading through underground seams where water once flowed. In some areas, fires consumed the entire topsoil layer – exposing the limestone substrata to the atmosphere for the first time in thousands of years. The engineers in charge of Florida’s early wetland reclamation projects underestimated the value of the state’s hydrological system and overestimated its capacity to withstand human interference. 
      “Those initial four canals were enough to drain the everglades three times over,” said Fred Sklar [South Florida Water Management District—Everglades System Sciences Director]. “And they still exist, but now there are more than seven million people who rely on them for drinking water and flood control.”
      Today, much of the Water Management District’s work involves unwinding the damage wrought by earlier drainage efforts.
      “One thing we’re trying to do is make sure these peat fires never happen again,” said Sklar.
      But restoring natural water flow to the Everglades ­– which is critical to the region’s ecological health – isn’t an option. Even if drainage could be reversed, it would subject Florida’s residents to the same flood risks that made drainage a priority. Some residents, including members of the Miccosukee and Seminole tribes, live directly alongside or within Everglades wilderness areas, where the risk of flooding is even greater than it is in the state’s highly populated coastal communities. These areas are also out of reach of the Water Management District’s existing infrastructure. It’s not as simple as turning the tap on and off.
      Photo 10. The Tamiami Trail Canal runs across the Florida Peninsula from west to east, towards a saltwater treatment facility near the Miami River. Construction was completed in 1928, shortly after the first four drainage canals opened. It quickly became apparent that the canal and its adjacent roadway dramatically impede water flow to the Everglades wilderness areas to their south, cutting off the region’s vegetation and wildlife from a critical source of freshwater. New modifications to the canal are currently underway, which aim to introduce a hydrological regime that more closely resembles the pre-drainage system. Photo credit: U.S. National Park Service Florida’s Water Management District works with federal agencies, including the U.S. Army Corps of Engineers, to monitor and govern the flow of Florida’s freshwater. The District has overseen the construction and management of dozens of canals, dikes, levees, dredges, and pumps over the last half-century that offer a higher degree of control over Florida’s complex hydrological network – see Photo 10.
      “The goal is to restore as much acreage as we can, but we also need to restore it functionally, without degrading the whole system or putting residents at risk,” summarized Sklar. “To do this effectively, we need a detailed understanding of how the hydrology functions and how it influences all of these other systems, such as carbon sequestration.”
      Since the 1920s, more than half of Florida’s original wetland coverage has been lost. The present system also carries 65% less peat coverage and 77% less stored carbon than it did prior to drainage. As atmospheric CO2 concentrations climb at unprecedented rates, an accompanying rise in sea levels, severe weather, and ocean salinity all present serious threats to Florida’s wetland ecology – see Figure 5.
      “We’re worried about losing that stored carbon,” said Poulter. “But blue carbon also offers tremendous opportunities for climate mitigation if conservation and restoration are properly supported by science.”
      Figure 5. A map of the BlueFlux study region, showing mangrove extent (green) and the paths of tropical storms and hurricanes from 2011 to 2021 (red). These storms drive losses in mangrove forest coverage – the result of erosion and wind damage. The inset regions at the top of the image highlight proposed targets for the airborne component of NASA’s BlueFlux Campaign. Figure credit: GSFC Conclusion – The Future of Flux
      Every few years, the Intergovernmental Panel on Climate Change (IPCC) releases emissions data and budget reports that have important policy implications related to the Paris Agreement’s goal of limiting global warming to between 1.5°C (2.7°F) and 2°C (3.6°F) compared to pre-industrial levels. Refining the accuracy of global carbon budgets is paramount to reaching that goal, and wetland ecosystems – which have been historically under-represented in climate research – are an important part of the equation.
      Early estimates based on BlueFlux fieldwork deployments and upscaled using MODIS surface reflectance data suggest that wetland CH4 emissions in South Florida offset CO2 removal in the region by about 5% based on a 100-year CH4 warming potential, resulting in a net annual CO2 removal of 31.8 Tg (3.18 million metric tons) per year. This is a small fraction of total CO2 emissions in the U.S. and an even smaller fraction of global emissions. In 2023, an estimated 34,800 Tg (34.8 billion metric tons) of CO2 were released into the atmosphere. But relative to their size, the CO2 removal services provided by tropical wetlands are hardly dismissible.
      “We’re finding that massive amounts of CO2 are removed and substantial amounts of CH4 are produced, but overall, these ecosystems provide a net climate benefit by removing more greenhouse gases than they produce,” Poulter said.
      Access to a daily satellite data product also provides researchers with the means to make more regular adjustments to budgets based on how Florida’s mutable landscape is responding to climate disturbances and restoration efforts in real time.
      With the right resources in hand, the scientists who dedicate their careers to understanding and restoring South Florida’s ecology share a hopeful outlook.
      “Nature and people can absolutely coexist,” said Meenakshi Chabba [The Everglades Foundation—Ecologist and Resilience Scientist]. “But what we need is good science and good management to reach that goal.”
      The Everglades Foundation provides scientific evaluation and guidance to the elected officials and governmental institutions responsible for the implementation of the Comprehensive Everglades Restoration Plan (CERP), a federal program approved by Congress in 2000 that outlines a 30-year plan to restore Florida’s wetland ecology. The Foundation sees NASA’s BlueFlux campaign as an important accompaniment to that goal.
      “The [Daily Flux Predictions for South Florida] data product is incredibly valuable, because it provides us with an indicator of the health of the whole system,” said Steve Davis [The Everglades Foundation—Chief Science Officer]. “We know how valuable the wetlands are, but we need this reliable science from NASA and the BlueFlux Campaign to help translate those benefits into something we can use to reach people as well as policymakers.”
      Researchers hope the product can inform decisions about the management of Florida’s wetlands, the preservation of which is not only a necessity but – to many – a responsibility.
      “These impacts are of our own doing,” added Chabba. “So, now it’s incumbent upon us to make these changes and correct the mistakes of the past.”
      Next, the BlueFlux team is shifting their focus to what they call BlueFlux 2. This stage of the project centers around further analysis of the data collected during fieldwork campaigns and outlines the deployment of the beta version of Daily BlueFlux Predictions for South Florida, which will help generate a more accurate evaluation of flux for the many wetland ecosystems that exist beyond Florida’s borders.
      “We’re trying to contribute to a better understanding of global carbon markets and inspire further and more ambitious investments in these critical stocks of blue carbon,” said Poulter. “First, we want to scale this work to the Caribbean, where we have these great maps of mangrove distribution but limited data on flux.”
      An additional BlueFlux fieldwork deployment is slated for 2026, with plans to make flux measurements above sites targeted by the state for upcoming restoration initiatives, such as the Everglades Agricultural Area Environmental Protection District. In the Agricultural Area, construction is underway on a series of reservoirs that will store excess water during wet seasons and provide a reserve source of water for wildlife and residents during dry seasons. As the landscape evolves, BlueFlux will help local officials evaluate how Florida’s wetlands are responding to efforts designed to protect the state’s most precious natural resource – and all those who depend on it. 
      Nathan Marder
      NASA’s Goddard Space Flight Center/Global Science and Technology Inc.
      nathan.marder@nasa.gov
      Share








      Details
      Last Updated Nov 12, 2024 Related Terms
      Earth Science View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Jacquelyn Shuman visually assesses a prescribed fire at Ft. Stewart in Georgia, working with partner organizations as part of the Department of Defense Ft. Stewart 2024 Fire Research Campaign. USFS/Linda Chappell Jacquelyn Shuman, FireSense Project Scientist at NASA Ames Research Center, originally wanted to be a veterinarian. By the time she got to college, Shuman had switched interests to biology, which became a job teaching middle and high school science. Teaching pivoted to finance for a year, before Shuman returned to the science world to pursue a PhD.

      It was in a forest ecology class taught by her future PhD advisor, Herman “Hank” Shugart, that she first discovered a passion for ecosystems and dynamic vegetation that led her into the world of fire science, and eventually to NASA Ames.

      While Shuman’s path into the world of fire science was not a direct one, she views her diverse experiences as the key to finding a fulfilling career. “Do a lot of different things and try a lot of different things, and if one thing isn’t connecting with you, then do something different,” Shuman said.

      Diving into the World of Fire

      Shuman’s PhD program focused on boreal forest dynamics across Russia, examining how the forest changes in response to climate change and wildfire. During her research, she worked mainly with scientists from Russia, Canada, and the US through the Northern Eurasia Earth Science Partnership Initiative (NEESPI), where Shugart served as the NEESPI Chief Scientist. “The experience of having a highly supportive mentor, being a part of the NEESPI community, and working alongside other inspiring female scientists from across the globe helped me to stay motivated within my own research,” Shuman said.

      After completing her PhD, Shuman wanted to become involved in collaborative science with a global impact, which led her to the National Center for Atmospheric Research (NCAR). There, she spent seven years working as a project scientist on the Next Generation Ecosystem Experiment NGEE-Tropics) on a dynamic vegetation model project called FATES (Functionally Assembled Terrestrial Ecosystem Simulator). As part of the FATES team, Shuman used computer modeling to test vegetation structure and function in tropical and boreal forests after wildfires, and was the lead developer for updating the fire portion of the model.

      This figure shows fire characteristics from an Earth system model that uses vegetation structure and interactive fire. The FATES model captures the fire intensity associated with burned land and grass growth in the Southern Hemisphere. Shuman et al. 2024 GMD Fire has also played a powerful role in Shuman’s personal life. In 2021, the Marshall Fire destroyed neighborhoods near her hometown of Boulder, Colorado, causing over $513 million of damage and securing its place as the state’s most destructive wildfire. Despite this, Shuman is determined to not live in fear. “Fire is part of our lives, it’s a part of the Earth system, and it’s something we can plan for. We can live more sustainably with fires.” The way to live safely in a fire-inclusive ecosystem, according to Shuman, is to develop ways to accurately track and forecast wildfires and smoke, and to respond to them efficiently: efforts the fire community is continuously working on improving.

      The Fire Science Community

      Collaboration is a critical element of wildland fire management. Fire science is a field that involves practitioners such as firefighters and land managers, but also researchers such as modelers and forecasters; the most effective efforts, according to Shuman, come when this community works together. “People in fire science might be out in the field and carrying a drip torch and marching along in the hilltops and the grasslands or be behind a computer and analyzing remote sensing data,” Shuman said. “We need both pieces.”

      Protecting communities from wildfire impacts is one of the most fulfilling aspects of Shuman’s career, and a goal that unites this community. “Fire research poses tough questions, but the people who are thinking about this are the people who are acting on it,” Shuman said. “They are saying, ‘What can we do? How can we think about this? What information do we need? What are the questions?’ It’s a special community to be a part of.”

      Looking to the Future of Fire

      Currently at NASA Ames Research Center, Shuman is the Project Scientist for FireSense: a project focused on delivering NASA science and technology to practitioners and operational agencies. Shuman acts as the lead for the project office, identifying and implementing tools and strategies. Shuman still does ecosystem modeling work, including implementing vegetation models that forecast the impact of fire, but also spends time traveling to active fires across the country so she can help partners implement NASA tools and strategies in real time.

      FireSense Project Scientist Jacquelyn Shuman stands with Roger Ottmar (United States Forest Service), surveying potential future locations for prescribed burns in Fishlake National Forest. NASA Ames/Milan Loiacono
      “Right now, many different communities are all recognizing that we can partner to identify the best path forward,” Shuman said. “We have an opportunity to use everyone’s strengths and unique perspectives. It can be a devastating thing for a community and an ecosystem when a fire happens. Everyone is interested in using all this collective knowledge to do more, together.”


      Written by Molly Medin, NASA Ames Research Center

      Share
      Details
      Last Updated Oct 17, 2024 Related Terms
      General Earth Science Earth Science Division Explore More
      4 min read Navigating Space and Sound: Jesse Bazley Supports Station Integration and Colleagues With Disabilities
      Article 18 hours ago 3 min read Sacrifice and Success: NASA Engineer Honors Family Roots
      Article 19 hours ago 7 min read What is a Coral Reef?
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to Fire Science Landing Page
      FireSage
      San José State University (SJSU) and NASA Ames Research Center are offering the FireSage Program; a premier summer internship opportunity designed to equip students with expertise in fire ecology and remote sensing technologies. This 10-week internship program offers a paid opportunity to work on-site at NASA Ames Earth Science Division and SJSU’s Wildfire Interdisciplinary Research Center (WIRC) Geofly Lab and FireEcology Lab. Here, interns will be introduced to cutting-edge technologies and methodologies for wildfire research and management and benefit from a comprehensive learning environment including a one-on-one setting with NASA Scientists and SJSU Faculty.
      Learn More About the FireSage Internship
      Fire & Air
      Ames Research Center and California State University, Stanislaus (CSUStan) are partnering together to offer the Fire & Air program: a yearlong internship for CSUStan undergraduates, with opportunities to work with both NASA Subject Matter Experts and CSUStan MSI Mentors. The program focuses on two main research areas: atmospheric effects and causes of wildfires, and the study of aerosols in biomass burning.
      Learn More About the Fire and Air Internship
      Back to Fire Science Landing Page Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      General Earth Science Earth Science Division Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to Fire Science Landing Page FireSense
      The FireSense project is focused on delivering NASA’s unique Earth science and technological capabilities to operational agencies, striving to address challenges in US wildland fire management. The project concentrates on four use-cases to support decisions before, during, and after wildland fires. These include the measurement of pre-fire fuels conditions, active fire dynamics, post fire impacts and threats, as well as air quality forecasting, each co-developed with identified wildland fire management agency stakeholders.

      Strategic Tac Radio and Tac Overwatch (STRATO)
      The Strategic Tac Radio and Tac Overwatch (STRATO) system is designed to provide real-time fire observations and last-mile communications with firefighters from stratospheric platforms. By providing persistent communications to a wildfire response team for a week or longer, STRATO is expected to offer capabilities beyond the currently used tethered balloons, which have a limited range and coverage area. By achieving station-keeping at altitudes up to 70,000 feet above ground level—to be demonstrated in flight testing—the STRATO will be able to provide communications to incident response teams in areas with no cellphone coverage.

      Surface Biology and Geology (SBG)


      Arctic Boreal Vulnerability Experiment (ABoVE)
      Climate change in the Arctic and Boreal region is unfolding faster than anywhere else on Earth, resulting in reduced Arctic sea ice, thawing of permafrost soils, decomposition of long- frozen organic matter, widespread changes to lakes, rivers, coastlines, and alterations of ecosystem structure and function. NASA’s Terrestrial Ecology Program is conducting a major field campaign, the Arctic-Boreal Vulnerability Experiment (ABoVE), in Alaska and western Canada, from 2015 – 2025. ABoVE seeks a better understanding of the vulnerability and resilience of ecosystems and society to this changing environment.

      Tactical Fire Remote Sensing Advisory Committee (TFRSAC)


      Embracing CSDA-Supported Spaceborne SAR Data in NASA FireSense Airborne Campaigns
      This project aims to determine the capability of Umbra X-band Synthetic Aperture Radar (SAR) data to characterize rapidly changing fire landscapes during NASA’s FireSense airborne campaigns.

      Opti-SAR
      Opti-SAR is focused on accurate and timely mapping of forest structure and aboveground biomass (AGB) with integrated space-based optical and radar observations. This project will make a fundamental contribution to an integrated Earth System Observatory by using the mathematical foundation of RADAR-VSPI and VSPI to integrate SAR and optical data to achieve breakthroughs in forest monitoring and assessment.

      Tropospheric Regional Atmospheric Composition and Emissions Reanalysis – 1 (TRACER-1)
      TRACER-1 is a 20-year atmospheric composition re-analysis product that will enable researchers to answer questions about changes in wildfire emissions and the impact of extreme wildfire events on regional air quality. Active dates: 2005 – 2024

      Cultural Burning
      The Indigenous People’s Initiative partners with indigenous groups in the US and across the world, many of whom practice a long history of cultural burning.

      Back to Fire Science Landing Page Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      General Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...