Jump to content

NASA Invites Media to Watch Artemis II Rocket Adapter Roll Out


Recommended Posts

  • Publishers
Posted
An image that shows crews preparing to move a key adapter for NASA’s Space Launch System rocket out of Marshall Space Flight Center’s Building 4708 to the agency’s Pegasus barge. The cone-shaped launch vehicle stage adapter connects the rocket’s core stage to the upper stage and helps protect the upper stage’s engine that will help propel the Artemis II mission around the Moon.
Crews are preparing to move a key adapter for NASA’s Space Launch System rocket out of Marshall Space Flight Center’s Building 4708 to the agency’s Pegasus barge. The cone-shaped launch vehicle stage adapter connects the rocket’s core stage to the upper stage and helps protect the upper stage’s engine that will help propel the Artemis II mission around the Moon.
Credits: Sam Lott/NASA

To mark progress toward the first crewed flight test around the Moon in more than 50 years for the benefit of humanity, NASA will welcome media Wednesday, Aug. 21, to see a key adapter for the agency’s SLS (Space Launch System) rocket at its Marshall Space Flight Center in Huntsville, Alabama.

The cone-shaped launch vehicle stage adapter connects the rocket’s core stage to the upper stage and helps protect the upper stage’s engine that will help propel the Artemis II mission around the Moon. The event includes seeing the adapter on the move as it prepares for shipment to NASA’s Kennedy Space Center in Florida.

Media will have the opportunity to capture images and video and speak to subject matter experts as crews move the adapter out of NASA Marshall’s Building 4708 to the agency’s Pegasus barge. The barge will ferry the adapter first to NASA’s Michoud Assembly Facility, where it will pick up additional SLS hardware for future Artemis missions, and then travel to NASA Kennedy. In Florida, teams with NASA’s Exploration Ground Systems will prepare the adapter for stacking and launch.

This event is open to U.S. media, who must RSVP by 5 p.m. CDT on Monday, Aug. 19, to Jonathan Deal at jonathan.e.deal@nasa.gov. Additional details about timing and other details for the event are forthcoming to registered media.

Manufactured by prime contractor Teledyne Brown Engineering and the Jacobs Space Exploration Group’s ESSCA contract using NASA Marshall’s self-reacting friction-stir robotic and vertical weld tools, the launch vehicle stage adapter is the largest SLS component for Artemis II that is made at the center.

Through the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon. The rocket is part of NASA’s deep space exploration plans, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, Gateway in orbit around the Moon, and commercial human landing systems. NASA’s SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

For more on SLS, visit: 

https://www.nasa.gov/sls

–end–

Madison Tuttle/Rachel Kraft
Headquarters, Washington
202-358-1600
madison.e.tuttle@nasa.gov/rachel.h.kraft@nasa.gov

Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala. 
256-544-0034  
jonathan.e.deal@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has awarded a small business set-aside contract to Apache Innovations JV of Albuquerque, New Mexico, to provide logistics, and related support services to NASA’s Glenn Research Center in Cleveland.
      The Glenn Logistics and Metrology (GLAM) contract is a cost-plus-fixed-fee contract with a maximum potential value of approximately $72.3 million. The contract phase-in begins Monday, Feb. 17 and is followed by a two-year base period beginning April 1, a two-year option, a one-year option, and a potential extension of performance through Sept. 30, 2030. 
      Under this contract, the company will provide NASA Glenn with logistics management, disposal operations, equipment management, lifecycle logistics and supply chain management, mail management, supply and materials management operations, transportation management, and other logistical services. Apache also will perform calibration services, measuring and test equipment procurement, and supply purchases.
      For information about NASA visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-433-5644
      brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Jan 22, 2025 LocationNASA Headquarters Related Terms
      Glenn Research Center View the full article
    • By NASA
      Jon Carabello has spent his entire career at TURBOCAM, which produces 10 core stage main engine turbomachinery components for the RS-25 main engine on NASA’s SLS (Space Launch System) heavy lift exploration rocket.Photo: TURBOCAM Jon Carabello did not begin his career journey with an eye on space, but when NASA’s Artemis lunar exploration campaign came calling, he was all in.
      Born, raised, and college-educated in New Hampshire, Carabello has spent his entire professional career at TURBOCAM – a turbomachinery development and manufacturing company – in the southeast corner of the Granite State. 
      That’s a long way from the southern and western states commonly associated with U.S. human spaceflight activities.
      Asked about his early memories of America’s space program, Carabello mentions movies like Apollo 13, and notes that Christa McAulliffe, the teacher-astronaut who died in the 1986 Space Shuttle Challenger accident, taught high school in New Hampshire.
      Little did he know that his future employer, a maker of complex machined hardware for a variety of industrial applications, has long been a component supplier to programs including the Space Shuttle and the International Space Station.
      There was never much question that Carabello, who started tinkering with engines and other machinery at a young age, would make a career of mechanical engineering. “I like to solve problems – that’s my big thing,” he says. 
      He learned about TURBOCAM when company representatives made a presentation to his University of New Hampshire engineering class. “That’s how I figured out I knew wanted to work at TURBOCAM and work with 5-axis machining,” he says. “Machining amazes me.”
      Five axis machine tools can machine metal blanks from multiple angles to create geometrically complex parts for industrial hardware. TURBOCAM produces 10 core stage main engine turbomachinery components for the RS-25 main engine on NASA’s SLS (Space Launch System) heavy lift exploration rocket. L3Harris Technologies is the prime contractor for the RS-25 engines.
      It was his fascination with machining rather than the opportunity to work on rocket engines that drew Carabello to TURBOCAM, where he initially worked on machinery for the oil and gas industry, heating and air conditioning systems, and aerospace. 
      But then one day, a supervisor asked him to take over the company’s RS-25 portfolio. He remembers the conversion quite clearly.
      “It was a Thursday afternoon,” he says. “I was sitting in my office and my manager came in and said, ‘we have somebody leaving and need someone to take over project management and ownership of the RS-25.’ I said, ‘yes’ and he said, ‘you have a call with the program tomorrow.’ That was about five years ago.”
      It was a significant change, but Carabello knew the company needed his problem-solving skills on the RS-25 program. “I know how to bring a team together to deliver a quality product. It’s rewarding to know I’m helping return humans to the Moon and paving the way to Mars with the Artemis campaign.”
      Self-confidence notwithstanding, Carabello admits to being a bit nervous given that NASA astronauts will be relying on his work. That point was driven home when NASA and L3Harris representatives visited TURBOCAM in the spring of 2024 for a series of presentations on Artemis. The remark that resonated with him the most was by NASA astronaut Dr. Lee Morin, who said the most important part of any human spaceflight mission is bringing astronauts safely home. 
      “That meant a lot to me,” says Carabello, whose team is responsible for all aspects of TURBOCAM’S RS-25 effort, including quality control, inspection, and resource allocation. He is constantly reminding his team of what’s really at stake for astronauts bound for space: “We’re helping them to return home,” he says. 
      Read other I am Artemis features.
      View the full article
    • By NASA
      4 Min Read NASA 3D-Printed Antenna Takes Additive Manufacturing to New Heights
      The 3D-printed antenna mounted to a ladder prior to testing at NASA's Columbia Scientific Balloon Facility in Palestine, Texas. Credits: NASA/Peter Moschetti In fall 2024, NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth. The antenna, tested in flight using an atmospheric weather balloon, could open the door for using 3D printing as a cost-effective development solution for the ever-increasing number of science and exploration missions.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth.NASA/Kasey Dillahay Printing
      For this technology demonstration, engineers from NASA’s Near Space Network designed and built a 3D-printed antenna, tested it with the network’s relay satellites, and then flew it on a weather balloon.
      The 3D printing process, also known as additive manufacturing, creates a physical object from a digital model by adding multiple layers of material on top of each other, usually as a liquid, powder, or filament. The bulk of the 3D-printed antenna uses a low electrical resistance, tunable, ceramic-filled polymer material.
      Using a printer supplied by Fortify, the team had full control over several of the electromagnetic and mechanical properties that standard 3D printing processes do not. Once NASA acquired the printer, this technology enabled the team to design and print an antenna for the balloon in a matter of hours. Teams printed the conductive part of the antenna with one of several different conductive ink printers used during the experiment.
      For this technology demonstration, the network team designed and built a 3D-printed magneto-electric dipole antenna and flew it on a weather balloon. [JF1]  A dipole antenna is commonly used in radio and telecommunications. The antenna has two “poles,” creating a radiation pattern similar to a donut shape.
      Testing
      The antenna, a collaboration between engineers within NASA’s Scientific Balloon Program and the agency’s Space Communications and Navigation (SCaN) program, was created to showcase the capabilities of low-cost design and manufacturing.
      Following manufacturing, the antenna was assembled and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in the center’s electromagnetic anechoic chamber.
      The anechoic chamber is the quietest room at Goddard — a shielded space designed and constructed to both resist intrusive electromagnetic waves and suppress their emission to the outside world. This chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space.
      To prepare for testing, NASA intern Alex Moricette installed the antenna onto the mast of the anechoic chamber. The antenna development team used the chamber to test its performance in a space-like environment and ensure it functioned as intended.
      NASA Goddard’s anechoic chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space. Here, the antenna is installed on the mast of the anechoic chamber.NASA/Peter Moschetti Once completed, NASA antenna engineers conducted final field testing at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, before liftoff.
      The team coordinated links with the Near Space Network’s relay fleet to test the 3D-printed antenna’s ability to send and receive data.
      The team monitored performance by sending signals to and from the 3D-printed antenna and the balloon’s planned communications system, a standard satellite antenna. Both antennas were tested at various angles and elevations. By comparing the 3D-printed antenna with the standard antenna, they established a baseline for optimal performance.
      Field testing was performed at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, prior to liftoff. To do this, the 3D-printed antenna was mounted to a ladder.NASA/Peter Moschetti In the Air
      During flight, the weather balloon and hosted 3D-printed antenna were tested for environmental survivability at 100,000 feet and were safely recovered.
      For decades, NASA’s Scientific Balloon Program, managed by NASA’s Wallops Flight Facility in Virginia, has used balloons to carry science payloads into the atmosphere. Weather balloons carry instruments that measure atmospheric pressure, temperature, humidity, wind speed, and direction. The information gathered is transmitted back to a ground station for mission use.
      The demonstration revealed the team’s anticipated results: that with rapid prototyping and production capabilities of 3D printing technology, NASA can create high-performance communication antennas tailored to mission specifications faster than ever before.
      Implementing these modern technological advancements is vital for NASA, not only to reduce costs for legacy platforms but also to enable future missions.
      The Near Space Network is funded by NASA’s SCaN (Space Communications and Navigation) program office at NASA Headquarters in Washington. The network is operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      By Kendall Murphy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      About the Author
      Kendall Murphy
      Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
      Share
      Details
      Last Updated Jan 22, 2025 EditorGoddard Digital TeamContactKendall Murphykendall.t.murphy@nasa.govLocationGoddard Space Flight Center Related Terms
      Manufacturing, Materials, 3-D Printing Goddard Space Flight Center Scientific Balloons Space Communications & Navigation Program Space Communications Technology Technology Explore More
      4 min read NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 
      Article 3 months ago 3 min read NASA Enables Future of Science Observation through Tri-band Antennas
      Article 2 years ago 4 min read NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’
      Article 9 months ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      If you tell Lauren Best Ameen something is hard and cannot be done, she will likely reply, “Watch me.”  
      As deputy manager for the Cryogenic Fluid Management Portfolio Project Office at NASA’s Glenn Research Center in Cleveland, Ameen and her team look for innovative ways to keep rocket fuel cold for long-duration missions. Work in this area could be important in enabling astronauts to go to the Moon and Mars. 
      Watch the NASA Faces of Technology video that highlights her work:
      For more information about NASA’s Cryogenic Fluid Management Program, visit this page.  
      Return to Newsletter Explore More
      2 min read NASA Glenn Trains Instructors for After-School STEM Program 
      Article 7 mins ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
      Article 8 mins ago 3 min read NASA Opens New Challenge to Support Climate-Minded Business Models
      Article 5 days ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      During the 21st Century Community Learning Centers workshop, after-school educators learn to build the “Move It” student activity from NASA’s Build, Launch and Recover Student Activity Guide.Credit: Kristen Marlatt NASA and the U.S. Department of Education are teaming up to engage students in science, technology, engineering, and math (STEM) education during after-school hours. The interagency program strives to reach approximately 1,000 middle school students in more than 60 sites across 10 states to join the program, 21st Century Community Learning Centers (CCLC). 
      Members of NASA Glenn Research Center’s Office of STEM Engagement traveled to Lansing, Michigan, last month to participate in a two-day professional development training with local after-school educators and facilitators. The training focused on integrating real-world STEM challenges into the 21st CCLC programs. 
      After-school educators engage in a student activity from NASA’s Build, Launch, and Recover Student Activity Guide. In this challenge, students become engineers and NASA crawler operators while working in teams to design and build a rubber band-powered model of NASA’s crawler-transporter that can carry the most mass possible the farthest distance without failure. Credit: Kristen Marlatt  “By engaging in NASA learning opportunities, students are challenged to use critical thinking and creativity to solve real-world challenges that scientists and engineers may face,” said Darlene Walker, NASA Glenn’s Office of STEM Engagement director. “Through the 21st CCLC program, NASA and the Department of Education aim to inspire the next generation of explorers and innovators through high-quality educational content that ignites curiosity and fosters a joy of learning for students across the country.” 
      NASA Glenn education specialists will continue to provide NASA-related content and academic projects for students, in-person staff training, program support, and opportunities for students to engage with NASA scientists and engineers.  
      For more information on NASA Glenn’s STEM Engagement, visit https://www.nasa.gov/glenn-stem/
      Return to Newsletter Explore More
      1 min read NASA Faces of Technology: Meet Lauren Best Ameen
      Article 7 mins ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
      Article 8 mins ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
      Article 24 hours ago View the full article
  • Check out these Videos

×
×
  • Create New...