Jump to content

NASA Funds Research Projects Advancing STEM Career Development


Recommended Posts

  • Publishers
Posted
Image of the NASA logo
Credit: NASA

NASA has awarded $6 million to 20 teams from emerging research institutions across the United States supporting projects that offer career development opportunities for science, technology, engineering, and mathematics (STEM) students.

This is the third round of seed funding awarded through the agency’s MOSAICS (Mentoring and Opportunities in STEM with Academic Institutions for Community Success) program, formerly the Science Mission Directorate Bridge Program. The program seeks to expand access to NASA research opportunities in the science and engineering disciplines, as well as to NASA’s workforce.

“The STEM workforce continues to grow, and today’s students, studying at a variety of higher-education institutions — community colleges, primarily undergraduate institutions, and minority-serving institutions — are the STEM workforce of tomorrow, who will work to solve some of our biggest challenges at home while answering some of our biggest questions about our universe,” said Padi Boyd, director of MOSAICS at NASA Headquarters in Washington. “Exposing today’s students to the incredibly inspiring and cutting-edge discoveries made through NASA’s space science people and resources ensures that these students get the training they need to persist in STEM careers, while fostering enduring collaborations between NASA researchers and faculty at a wide range of institutions.”

NASA’s Science Mission Directorate MOSAICS program funds research projects building relationships between college faculty and researchers at the agency while providing mentorship and training for students in STEM disciplines. The projects support teams at academic institutions that historically have not been part of the agency’s research enterprise — including Hispanic-serving institutions, historically Black colleges and universities, Asian American and Native American Pacific Islander-serving institutions, and primarily undergraduate institutions.

The program previously awarded seed funding to 11 teams in February and 13 teams in April. This third cohort brings the total number of projects funded to 44 teams at 36 academic institutions in 21 U.S. states and territories, including Washington and Puerto Rico, in collaboration with seven NASA centers. A new opportunity to apply for seed funding is now open until March 28, 2025.

The following projects were selected as the third cohort to receive seed funding:

“Bridging Fundamental Ice Chemistry Studies and Ocean World Explorations”
Principal investigator: Chris Arumainayagam, Wellesley College, Massachusetts
NASA center: NASA’s Jet Propulsion Laboratory (JPL), Southern California

“Planetary Analog Field Science Experiences for Undergraduates: Advancing Fundamental Research and Testing Field Instrument Operations”
Principal investigator: Alice Baldridge, Saint Mary’s College of California
NASA center: NASA’s Goddard Space Flight Center, Greenbelt, Maryland

“Building an FSU-JPL Partnership to Advance Science Productivity Through Applications of Deep Learning”
Principal investigator: Sambit Bhattacharya, Fayetteville State University, North Carolina
NASA center: NASA JPL

“CSTAT: Establishing Center for Safe and Trustworthy Autonomous Technologies”
Principal investigator: Moitrayee Chatterjee, New Jersey City University
NASA center: NASA Goddard

“Development of Biomechanics Simulation Tool for Muscle Mechanics in Reduced Gravity to Enhance Astronaut Mission Readiness”
Principal investigator: Ji Chen, University of the District of Columbia
NASA center: NASA’s Johnson Space Center, Houston

“NASA Next Level”
Principal investigator: Teresa Ciardi, Santa Clarita Community College District, California
NASA center: NASA JPL

“Controlled Assembly of Amphiphilic Janus Particles in Polymer Matrix for Novel 3D Printing Applications in Space
Principal investigator: Ubaldo Cordova-Figueroa, Recinto Universitario Mayaguez
NASA center: NASA’s Glenn Research Center, Cleveland

“Development of a Non-Invasive Sweat Biosensor for Traumatic Brain Injury Compatible With In-Space Manufacturing to Monitor the Health of Astronauts”
Principal investigator: Lisandro Cunci, University of Puerto Rico, Rio Pedras
NASA center: NASA’s Ames Research Center, Silicon Valley, California

“Examining Climate Impacts of Cirrus Clouds Through Past, Present, and Future NASA Airborne Campaigns”
Principal investigator: Minghui Diao, San Jose State University Research Foundation, California
NASA center: NASA Ames

“CSUN-JPL Collaboration to Study Ocean Fronts Using Big Data and Open Science Structures in Coastal North America”
Principal investigator: Mario Giraldo, California State University, Northridge
NASA center: NASA JPL

“Accelerating Electric Propulsion Development for Planetary Science Missions With Optical Plasma Diagnostics”
Principal investigator: Nathaniel Hicks, University of Alaska, Anchorage
NASA center: NASA JPL

“Advancing Students Through Research Opportunities in Los Angeles (ASTRO-LA)”
Principal investigator: Margaret Lazzarini, California State University, Los Angeles
NASA center: NASA JPL

“Bridging Toward a More Inclusive Learning Environment Through Gamma-ray Burst Studies With Machine Learning and Citizen Science”
Principal investigator: Amy Lien, University of Tampa, Florida
NASA center: NASA Goddard

“Hampton University STEM Experience With NASA Langley Research Center: Polarimetry for Aerosol Characterization”
Principal investigator: Robert Loughman, Hampton University, Virginia
NASA center: NASA’s Langley Research Center, Hampton, Virginia

“Aerocapture Analysis and Development for Uranus and Neptune Planetary Missions”
Principal investigator: Ping Lu, San Diego State University
NASA center: NASA Langley

“Pathways from Undergraduate Research to the Habitable Worlds Observatory”
Principal investigator: Ben Ovryn, New York Institute of Technology
NASA center: NASA Goddard

“Point-Diffraction Interferometer for Digital Holography”
Principal investigator: James Scire, New York Institute of Technology
NASA center: NASA Goddard

“From Sunbeams to Career Dreams: Illuminating Pathways for NMSU Students in Solar-Terrestrial Physics in Partnership With NASA GSFC”
Principal investigator: Juie Shetye, New Mexico State University
NASA center: NASA Goddard

“CONNECT-SBG: Collaborative Nexus for Networking, Education, and Career Training in Surface Biology and Geology”
Principal investigator: Gabriela Shirkey, Chapman University, California
NASA center: NASA JPL

“Multiplexed Phytohormone and Nitrate Sensors for Real-Time Analysis of Plant Responses to Pathogenic Stress in Spaceflight-Like Conditions”
Principal investigator: Shawana Tabassum, University of Texas, Tyler
NASA center: NASA’s Kennedy Space Center, Florida

Learn more about the MOSAICS program at:

https://science.nasa.gov/researchers/smd-bridge-program

-end-

Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov

Share

Details

Last Updated
Aug 14, 2024
Editor
Jessica Taveau

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has awarded a small business set-aside contract to Apache Innovations JV of Albuquerque, New Mexico, to provide logistics, and related support services to NASA’s Glenn Research Center in Cleveland.
      The Glenn Logistics and Metrology (GLAM) contract is a cost-plus-fixed-fee contract with a maximum potential value of approximately $72.3 million. The contract phase-in begins Monday, Feb. 17 and is followed by a two-year base period beginning April 1, a two-year option, a one-year option, and a potential extension of performance through Sept. 30, 2030. 
      Under this contract, the company will provide NASA Glenn with logistics management, disposal operations, equipment management, lifecycle logistics and supply chain management, mail management, supply and materials management operations, transportation management, and other logistical services. Apache also will perform calibration services, measuring and test equipment procurement, and supply purchases.
      For information about NASA visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-433-5644
      brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Jan 22, 2025 LocationNASA Headquarters Related Terms
      Glenn Research Center View the full article
    • By NASA
      4 Min Read NASA 3D-Printed Antenna Takes Additive Manufacturing to New Heights
      The 3D-printed antenna mounted to a ladder prior to testing at NASA's Columbia Scientific Balloon Facility in Palestine, Texas. Credits: NASA/Peter Moschetti In fall 2024, NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth. The antenna, tested in flight using an atmospheric weather balloon, could open the door for using 3D printing as a cost-effective development solution for the ever-increasing number of science and exploration missions.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth.NASA/Kasey Dillahay Printing
      For this technology demonstration, engineers from NASA’s Near Space Network designed and built a 3D-printed antenna, tested it with the network’s relay satellites, and then flew it on a weather balloon.
      The 3D printing process, also known as additive manufacturing, creates a physical object from a digital model by adding multiple layers of material on top of each other, usually as a liquid, powder, or filament. The bulk of the 3D-printed antenna uses a low electrical resistance, tunable, ceramic-filled polymer material.
      Using a printer supplied by Fortify, the team had full control over several of the electromagnetic and mechanical properties that standard 3D printing processes do not. Once NASA acquired the printer, this technology enabled the team to design and print an antenna for the balloon in a matter of hours. Teams printed the conductive part of the antenna with one of several different conductive ink printers used during the experiment.
      For this technology demonstration, the network team designed and built a 3D-printed magneto-electric dipole antenna and flew it on a weather balloon. [JF1]  A dipole antenna is commonly used in radio and telecommunications. The antenna has two “poles,” creating a radiation pattern similar to a donut shape.
      Testing
      The antenna, a collaboration between engineers within NASA’s Scientific Balloon Program and the agency’s Space Communications and Navigation (SCaN) program, was created to showcase the capabilities of low-cost design and manufacturing.
      Following manufacturing, the antenna was assembled and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in the center’s electromagnetic anechoic chamber.
      The anechoic chamber is the quietest room at Goddard — a shielded space designed and constructed to both resist intrusive electromagnetic waves and suppress their emission to the outside world. This chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space.
      To prepare for testing, NASA intern Alex Moricette installed the antenna onto the mast of the anechoic chamber. The antenna development team used the chamber to test its performance in a space-like environment and ensure it functioned as intended.
      NASA Goddard’s anechoic chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space. Here, the antenna is installed on the mast of the anechoic chamber.NASA/Peter Moschetti Once completed, NASA antenna engineers conducted final field testing at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, before liftoff.
      The team coordinated links with the Near Space Network’s relay fleet to test the 3D-printed antenna’s ability to send and receive data.
      The team monitored performance by sending signals to and from the 3D-printed antenna and the balloon’s planned communications system, a standard satellite antenna. Both antennas were tested at various angles and elevations. By comparing the 3D-printed antenna with the standard antenna, they established a baseline for optimal performance.
      Field testing was performed at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, prior to liftoff. To do this, the 3D-printed antenna was mounted to a ladder.NASA/Peter Moschetti In the Air
      During flight, the weather balloon and hosted 3D-printed antenna were tested for environmental survivability at 100,000 feet and were safely recovered.
      For decades, NASA’s Scientific Balloon Program, managed by NASA’s Wallops Flight Facility in Virginia, has used balloons to carry science payloads into the atmosphere. Weather balloons carry instruments that measure atmospheric pressure, temperature, humidity, wind speed, and direction. The information gathered is transmitted back to a ground station for mission use.
      The demonstration revealed the team’s anticipated results: that with rapid prototyping and production capabilities of 3D printing technology, NASA can create high-performance communication antennas tailored to mission specifications faster than ever before.
      Implementing these modern technological advancements is vital for NASA, not only to reduce costs for legacy platforms but also to enable future missions.
      The Near Space Network is funded by NASA’s SCaN (Space Communications and Navigation) program office at NASA Headquarters in Washington. The network is operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      By Kendall Murphy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      About the Author
      Kendall Murphy
      Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
      Share
      Details
      Last Updated Jan 22, 2025 EditorGoddard Digital TeamContactKendall Murphykendall.t.murphy@nasa.govLocationGoddard Space Flight Center Related Terms
      Manufacturing, Materials, 3-D Printing Goddard Space Flight Center Scientific Balloons Space Communications & Navigation Program Space Communications Technology Technology Explore More
      4 min read NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 
      Article 3 months ago 3 min read NASA Enables Future of Science Observation through Tri-band Antennas
      Article 2 years ago 4 min read NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’
      Article 9 months ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      If you tell Lauren Best Ameen something is hard and cannot be done, she will likely reply, “Watch me.”  
      As deputy manager for the Cryogenic Fluid Management Portfolio Project Office at NASA’s Glenn Research Center in Cleveland, Ameen and her team look for innovative ways to keep rocket fuel cold for long-duration missions. Work in this area could be important in enabling astronauts to go to the Moon and Mars. 
      Watch the NASA Faces of Technology video that highlights her work:
      For more information about NASA’s Cryogenic Fluid Management Program, visit this page.  
      Return to Newsletter Explore More
      2 min read NASA Glenn Trains Instructors for After-School STEM Program 
      Article 7 mins ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
      Article 8 mins ago 3 min read NASA Opens New Challenge to Support Climate-Minded Business Models
      Article 5 days ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      During the 21st Century Community Learning Centers workshop, after-school educators learn to build the “Move It” student activity from NASA’s Build, Launch and Recover Student Activity Guide.Credit: Kristen Marlatt NASA and the U.S. Department of Education are teaming up to engage students in science, technology, engineering, and math (STEM) education during after-school hours. The interagency program strives to reach approximately 1,000 middle school students in more than 60 sites across 10 states to join the program, 21st Century Community Learning Centers (CCLC). 
      Members of NASA Glenn Research Center’s Office of STEM Engagement traveled to Lansing, Michigan, last month to participate in a two-day professional development training with local after-school educators and facilitators. The training focused on integrating real-world STEM challenges into the 21st CCLC programs. 
      After-school educators engage in a student activity from NASA’s Build, Launch, and Recover Student Activity Guide. In this challenge, students become engineers and NASA crawler operators while working in teams to design and build a rubber band-powered model of NASA’s crawler-transporter that can carry the most mass possible the farthest distance without failure. Credit: Kristen Marlatt  “By engaging in NASA learning opportunities, students are challenged to use critical thinking and creativity to solve real-world challenges that scientists and engineers may face,” said Darlene Walker, NASA Glenn’s Office of STEM Engagement director. “Through the 21st CCLC program, NASA and the Department of Education aim to inspire the next generation of explorers and innovators through high-quality educational content that ignites curiosity and fosters a joy of learning for students across the country.” 
      NASA Glenn education specialists will continue to provide NASA-related content and academic projects for students, in-person staff training, program support, and opportunities for students to engage with NASA scientists and engineers.  
      For more information on NASA Glenn’s STEM Engagement, visit https://www.nasa.gov/glenn-stem/
      Return to Newsletter Explore More
      1 min read NASA Faces of Technology: Meet Lauren Best Ameen
      Article 7 mins ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
      Article 8 mins ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
      Article 24 hours ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Glenn employees donated 11 boxes of new, unwrapped gifts to the Toys for Tots program. Credit: NASA/Sara Lowthian-Hanna  NASA’s Glenn Research Center continued a decades-long tradition of participating in the Marine Corps Reserve Toys for Tots program during the 2024 holiday season. On Dec. 9, members of the Marine Corps Reserve (3rd Battalion, 25th Marines) picked up 11 boxes of toys donated by employees from NASA Glenn’s facilities in Cleveland and Sandusky, Ohio. 
      Marine Corps representatives stand at far left and far right of NASA Glenn’s Associate Director Larry Sivic, left, Center Director Dr. Jimmy Kenyon, center, and Acting Deputy Director Dr. Wanda Peters. Credit: NASA/Sara Lowthian-Hanna  The Glenn Veterans Employee Resource Group led the donation drive. The Toys for Tots campaign collects and distributes new, unwrapped toys to less fortunate children in the area for Christmas.  
      Return to Newsletter Explore More
      1 min read NASA Faces of Technology: Meet Lauren Best Ameen
      Article 7 mins ago 2 min read NASA Glenn Trains Instructors for After-School STEM Program 
      Article 7 mins ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
      Article 24 hours ago View the full article
  • Check out these Videos

×
×
  • Create New...