Jump to content

Xiaoyi Li Engineers Instruments and the Teams that Get Them Done


Recommended Posts

  • Publishers
Posted

Name: Xiaoyi Li

Title: Instrument Systems Engineer (ISE) of Venus Atmospheric Structure Investigation (VASI) for the Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging (DAVINCI) and Deputy ISE of Comprehensive Auroral Precipitation Experiment (CAPE) instrument for the Geospace Dynamics Constellation (GDC) mission

Formal Job Classification: Instrument Systems Engineer

Organization: Instrument/Payload Systems Engineering Branch, Engineering Directorate (Code 592)

Xiaoyi Li in a shirt with NASA's logo and "Goddard Space Flight Center" photographed against a background of greenery
Xiaoyi Li is an instrument systems engineer at NASA’s Goddard Space Flight Center in Greenbelt, Md. “My role involves not only managing technical tasks but also blending a variety of technical skills and personalities,” she said. “Understanding of the technical connections between different components is essential to ensure the integrated systems meet requirements. In addition, helping to cultivate collaboration and synthesize diverse expertise is vital. I find the process of learning about and achieving integration of different personalities within the team particularly rewarding.”
Photo Courtesy Xiaoyi Li

What do you do and what is most interesting about your role here at Goddard?

I have two roles. As the instrument systems engineer of VASI, I lead the technical team to develop a sensor suite for this component of NASA’s upcoming DAVINCI mission to Venus. I am also the deputy instrument systems engineer of CAPE where I assist the lead for developing the CAPE instrument for the Geospace Dynamics Constellation mission. The most intriguing aspect of my job is to collaborate with two talented and diverse technical teams, learn from team members, and come up with solutions to resolve technical challenges within budget and schedule.

What is your educational background?

I received a bachelor’s degree in mechanical engineering from Tongji University in Shanghai, China. I furthered my education at the University of New South Wales, Australia, where I earned a master’s in mechanical engineering. After I moved to the U.S., I received a Ph.D. in mechanical engineering from the University of Central Florida in Orlando. My doctorate was funded by a NASA grant to design, build and test a spaceflight cryocooler.

Why did you become a mechanical engineer?

I grew up in an engineering family. My mother was a chemical engineer. My father was an architect and structural engineer. I grew up watching them build large factories. While I would like to think I would have become an engineer without their influence, growing up with such incredible role models gave me access to, and an understanding of engineering disciplines that I never really considered any other profession.

What brought you to Goddard?

Upon completing my Ph.D. in 2005, I started out as a mission analyst for launch service programs at NASA’s Kennedy Space Center in Florida. In 2009, I began working as a thermal engineer for NASA’s Wallops Flight Facility in Virginia. In 2010, I came across a position that brought me back to my Ph.D. days and I couldn’t pass up the opportunity. I joined the Cryogenics and Fluids Branch at Goddard.

What did you do at Goddard before your current position?

I contributed to multiple engineering and science studies, proposals, and projects as a cryogenics engineer. Notably, I served as the principal investigator for two IRAD studies. One of the studies was submitted to the Patent Office and later was granted a new patent. Additionally, I was a co-inventor for another patent. Prior to joining my current group, I held the position of instrument cryogenics lead for the Roman Space Telescope. I served as the associate branch head in my current organization before devoting full time as an instrument systems engineer.

What are your main responsibilities as the instrument systems engineer for CAPE and VASI?

As the deputy instrument systems engineer for CAPE, my main responsibility is to assist the lead to coordinate multiple technical teams. The main focus is to work with the mechanical, electrical, thermal, structural, and other engineers to build electron/ion analyzers. For the VASI instrument, which has a smaller team, I take a more direct role in organizing and coordinating the technical work. This position allows me to engage in hands-on engineering tasks, which is extremely gratifying being able to get “my hands dirty.”

My role involves not only managing technical tasks but also blending a variety of technical skills and personalities. Understanding of the technical connections between different components is essential to ensure the integrated systems meet requirements. In addition, helping to cultivate collaboration and synthesize diverse expertise is vital. I find the process of learning about and achieving integration of different personalities within the team particularly rewarding.

How do you coordinate between all the different systems and personalities?

My experience includes over eight years in leadership roles, supported by extensive training and a robust technical background. This includes a one-year detail assignment in Goddard’s Science Mission Directorate. In this role, I facilitate collaboration within the engineering team, as well as between the engineers and the scientists to ensure that the instrument meets scientific objectives while adhering to well established engineering best practices and principles. Additionally, I empower our subject matter experts to pursue their innovative ideas while guiding them toward a unified direction through a shared vision. Although individual approaches may vary, we are all committed to the collective goal of a successful mission.

Who were your mentors and what did they advise?

I am grateful for the guidance of two mentors who have been instrumental in my development. Mr. Dave Everett, a systems engineer by trade and the current head of our branch, has been my technical mentor. He taught me, among many other things, the importance of understanding the overall system. Ms. Maria So, my leadership mentor, is a former senior executive service (SES) member at Goddard. As a fellow Chinese woman and engineer, her influence has been profound. She has guided me and acted as a sounding board for some very exciting but challenging decisions these past years. She also taught me the importance of seeing the bigger picture and the critical organizational leadership role to systems engineering, which has shaped my approach to leadership.

In turn, I apply these teachings and ideas when I informally mentor the younger engineers on my team. I encourage them to tackle problems independently by providing the necessary background knowledge and allowing them the autonomy to make decisions. I guide them when needed, but I believe in balance and the importance of learning through one’s own mistakes.

two women standing in an auditorium
Li with her leadership mentor, Maria So, at a Goddard “Taste of Asia” event celebrating Asian American, Native Hawaiian and Pacific Islander Heritage Month. “Her influence has been profound,” Li said. “She has guided me and acted as a sounding board for some very exciting but challenging decisions these past years. She also taught me the importance of seeing the bigger picture and the critical organizational leadership role to systems engineering, which has shaped my approach to leadership.”
Photo courtesy Xiaoyi Li

What is your involvement with the Asian American Native Hawaiian and Pacific Islander Employee Resource Group (AANHPI)?

I have been actively involved with the group, and I recently served as co-chair for three years. Our group is dedicated to advocating for the wellness of the Asian American community within Goddard. Our group also addresses any concerns from the community members by reporting directly to Goddard senior management. In addition, we foster a sense of community and support among members through community events including our annual “Taste of Asia and the Pacific Islands” lunch event at Goddard.

What do you do for fun?

I enjoy cooking a variety of cuisines, including Chinese and Thai (which I learned in Australia), as well as classic American dishes. My favorite culinary challenge is a rib roast using suis vide method, which involves 18 hours of slow cooking before finishing it in the oven! Additionally, I enjoy playing video games with my family and friends, which is a great way to relax and connect.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Aug 14, 2024
Editor
Rob Garner
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has selected 12 student teams to develop solutions for storing and transferring the super-cold liquid propellants needed for future long-term exploration beyond Earth orbit.
      The agency’s 2025 Human Lander Challenge is designed to inspire and engage the next generation of engineers and scientists as NASA and its partners prepare to send astronauts to the Moon through the Artemis campaign in preparation for future missions to Mars. The commercial human landing systems will serve as the primary mode of transportation that will safely take astronauts and, later, large cargo from lunar orbit to the surface of the Moon and back.
      For its second year, the competition invites university students and their faculty advisors to develop innovative, “cooler” solutions for in-space cryogenic, or super cold, liquid propellant storage and transfer systems. These cryogenic fluids, like liquid hydrogen or liquid oxygen, must stay extremely cold to remain in a liquid state, and the ability to effectively store and transfer them in space will be increasingly vital for future long-duration missions. Current technology allows cryogenic liquids to be stored for a relatively short amount of time, but future missions will require these systems to function effectively over several hours, weeks, and even months.
      The 12 selected finalists have been awarded a $9,250 development stipend to further develop their concepts in preparation for the next stage of the competition.
      The 2025 Human Lander Challenge finalist teams are:
      California State Polytechnic University, Pomona, “THERMOSPRING: Thermal Exchange Reduction Mechanism using Optimized SPRING” Colorado School of Mines, “MAST: Modular Adaptive Support Technology” Embry-Riddle Aeronautical University, “Electrical Capacitance to High-resolution Observation (ECHO)” Jacksonville University, “Cryogenic Complex: Cryogenic Tanks and Storage Systems – on the Moon and Cislunar Orbit” Jacksonville University, “Cryogenic Fuel Storage and Transfer: The Human Interface – Monitoring and Mitigating Risks” Massachusetts Institute of Technology, “THERMOS: Translunar Heat Rejection and Mixing for Orbital Sustainability” Old Dominion University, “Structural Tensegrity for Optimized Retention in Microgravity (STORM)” Texas A&M University, “Next-generation Cryogenic Transfer and Autonomous Refueling (NeCTAR)” The College of New Jersey, “Cryogenic Orbital Siphoning System (CROSS)” The Ohio State University, “Autonomous Magnetized Cryo-Couplers with Active Alignment Control for Propellant Transfer (AMCC-AAC) University of Illinois, Urbana-Champaign, “Efficient Cryogenic Low Invasive Propellant Supply Exchange (ECLIPSE)” Washington State University, “CRYPRESS Coupler for Liquid Hydrogen Transfer” Finalist teams will now work to submit a technical paper further detailing their concepts. They will present their work to a panel of NASA and industry judges at the 2025 Human Lander Competition Forum in Huntsville, Alabama, near NASA’s Marshall Space Flight Center, in June 2025. The top three placing teams will share a total prize purse of $18,000.
      “By engaging college students in solving critical challenges in cryogenic fluid technologies and systems-level solutions, NASA fosters a collaborative environment where academic research meets practical application,” said Tiffany Russell Lockett, office manager for the Human Landing System Mission Systems Management Office at NASA Marshall. “This partnership not only accelerates cryogenics technology development but also prepares the Artemis Generation – the next generation of engineers and scientists – to drive future breakthroughs in spaceflight.”
      NASA’s Human Lander Challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
      For more information on NASA’s 2025 Human Lander Challenge, including team progress, visit the challenge website.
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      4 Min Read Ways Community College Students Can Get Involved With NASA
      For many students, the path to a NASA career begins at a community college. These local, two-year institutions offer valuable flexibility and options to those aspiring to be part of the nation’s next generation STEM workforce. NASA offers several opportunities for community college students to expand their horizons, make connections with agency experts, add valuable NASA experiences to their resumes, and home in on the types of STEM roles that best fit their skills and interests. Below are some of the exciting NASA activities and experiences available to community college students.
      NASA Community College Aerospace Scholars
      Get an introduction to NASA, its missions, and its workplace culture through NASA Community College Aerospace Scholars (NCAS). This three-part series enables students to advance their knowledge of the agency, grow their STEM capabilities, interact with NASA experts, and learn about the different pathways to a NASA career.
      Mission 1: Discover is a five-week, online orientation course that serves as an introduction to NASA.
      Mission 2: Explore is a gamified mission to the Moon or Mars in which students develop a design solution while learning about the agency as a workplace.
      Mission 3: Innovate is a three-week hybrid capstone project consisting of two weeks of online preparation and one week participating in a hands-on engineering design challenge at a NASA center.
      NCAS begins with Mission 1 and students must complete each mission to be eligible for the next.
      Members of a college student team monitor the performance of their robot during a NASA Community College Aerospace Scholars (NCAS) Mission 3: Innovate robotics competition.
      NASA Student Challenges
      NASA’s student challenges and competitions invite students across a range of ages and education levels to innovate and build solutions to many of the agency’s spaceflight and aviation needs – and community college students across the U.S. are eligible for many of these opportunities. In NASA’s Student Launch challenge, each team designs, builds, and tests a high-powered rocket carrying a scientific or engineering payload. In the MUREP Innovation Tech Transfer Idea Competition (MITTIC)Teams from U.S.-designated Minority-Serving Institutions, including community colleges, have the opportunity to brainstorm and pitch new commercial products based on NASA technology.
      NASA’s student challenges and competitions are active at varying times throughout the year – new challenges are sometimes added, and existing opportunities evolve – so we recommend students visit the NASA STEM Opportunities and Activities page and research specific challenges to enable planning and preparation for future participation.
      NASA’s Student Launch tasks student teams from across the U.S. to design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload. The annual challenge culminates with a final launch in Huntsville, Alabama, home of NASA’s Marshall Space Flight Center.
      NASA NASA RockOn! and RockSat Programs
      Build an experiment and launch it aboard a sounding rocket! Through the hands-on RockOn! and RockSat programs, students gain experience designing and building an experiment to fly as a payload aboard a sounding rocket launched from NASA’s Wallops Flight Facility in Wallops Island, Virginia. In RockOn!, small teams get an introduction to creating a sounding rocket experiment, while RockSat-C and RockSat-X are more advanced experiment flight opportunities.
      Students watch as their experiments launch aboard a sounding rocket for the RockSat-X program from NASA’s Wallops Flight Facility Aug. 11, 2022, at 6:09 p.m. EDT. The Terrier-Improved Malemute rocket carried the experiments to an altitude of 99 miles before descending via a parachute and landing in the Atlantic Ocean.
      NASA Wallops/Terry Zaperach NASA Internships
      Be a part of the NASA team! With a NASA internship, students work side-by-side with agency experts, gaining authentic workforce experience while contributing to projects that align with NASA’s goals. Internships are available in a wide variety of disciplines in STEM and beyond, including communications, finance, and more. Each student has a NASA mentor to help guide and coach them through their internship.
      NASA interns gain hands-on experience while contributing to agency projects under the guidance of a NASA mentor.
      NASA National Space Grant College and Fellowship Program
      The National Space Grant College and Fellowship Project, better known as Space Grant, is a national network of colleges and universities working to expand opportunities for students and the public to participate in NASA’s aeronautics and space projects. Each state has its own Space Grant Consortium that may provide STEM education and training programs; funding for scholarships and/or internships; and opportunities to take part in research projects, public outreach, state-level student challenges, and more. Programs, opportunities, and offerings vary by state; students should visit their state’s Space Grant Consortium website to find out about opportunities available near them.
      Students from the Erie Huron Ottawa Vocational Education Career Center are pictured at the 3KVA Mobile Photovoltaic Power Plant at NASA’s Glenn Research Center.
      NASA Additional Resources
      NASA Community College Network NASA Earth Science Division Early Career Research NASA STEM Gateway Careers at NASA
      View the full article
    • By European Space Agency
      Image: ESA's Atomic Clock Ensemble in Space at NASA's Kennedy Space Center View the full article
    • By NASA
      This year’s RASC-AL competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond.ASANASA Fourteen university teams have been selected as finalists for NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition. This year’s competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond. Finalists will present their proposed concepts to a panel of NASA and aerospace industry leaders.  
      The 2025 Finalists are: 
      Sustained Lunar Evolution – An Inspirational Moment:  Massachusetts Institute of Technology, “M.I.S.T.R.E.S.S. – Moon Infrastructure for Sustainable Technologies, Resource Extraction, and Self-Sufficiency”  Tulane University, “Scalable Constructs for Advanced Lunar Activities and Research (SCALAR)”  Virginia Polytechnic Institute and State University, “Project Aeneas”  Virginia Polytechnic Institute and State University, “Project Khonsu”  Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign:   Auburn University, “Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER)”  University of Illinois, Urbana-Champaign, “MATER: Mars Architecture for Technology Evaluation and Research”  Virginia Polytechnic Institute and State University, “Project Vehicles for Engineering Surface Terrain Architectures (VESTA)”  Small Lunar Servicing and Maintenance Robot:   Arizona State University, “DIANA – Diagnostic and Intelligent Autonomously Navigated Assistant”  South Dakota State University, “Next-gen Operations and Versatile Assistant (NOVA)”  South Dakota State University, “MANTIS: Maintenance and Navigation for Technical Infrastructure Support”  Texas A&M University, “R.A.M.S.E.E.: Robotic Autonomous Maintenance System for Extraterrestrial Environments”  University of Maryland, “Servicing Crane Outfitted Rover for Payloads, Inspection, Operations, N’stuff (SCORPION)”  University of Puerto Rico, Mayagüez, “Multi-functional Operational Rover for Payload Handling and Navigation (MORPHN)”  Virginia Polytechnic Institute & State University, “Adaptive Device for Assistance and Maintenance (ADAM)”  The RASC-AL Competition is designed to engage university students and academic institutions in innovation within the field of aerospace engineering. By providing a platform for students to develop and present their ideas, NASA aims to cultivate foundational research for new concepts and technologies for the future of space exploration. This year’s RASC-AL projects include scalable lunar infrastructure and services, a lunar robot that can work autonomously or be controlled remotely, and a concept for a science or technology demonstration mission using human-scale launch, transportation, entry, and landing capabilities at Mars. All of these functions are critical to future NASA missions. 
      “This year’s RASC-AL projects are not just academic exercises; they will contribute real solutions to some of the most pressing challenges we currently face. The competition continues to highlight the importance of innovation and interdisciplinary collaboration in aerospace,” said Daniel Mazanek, RASC-AL program sponsor and senior space systems engineer from NASA’s Langley Research Center in Hampton, VA. 
      These finalist teams will move forward to the next phase of the competition, where they will prepare and submit a detailed technical paper outlining their designs, methodologies, and anticipated impacts. Each team will present their concepts at the 2025 RASC-AL Competition Forum in June 2025 showcasing their work to a judging panel of NASA and industry experts for review and discussion. 
      “The ingenuity and out-of-the-box designs showcased by these students is inspiring,” added Dr. Christopher Jones, RASC-AL program sponsor and chief technologist for the Systems Analysis and Concepts Directorate at NASA’S Langley  “We are excited to see how their ideas can contribute to NASA’s ongoing missions and future exploration goals. This is just the beginning of their journey, and we are proud to be part of it.” 
      To learn more about NASA’s RASC-AL Competition, visit NASA’s RASC-AL Competition Website. RASC-AL is sponsored by the Strategy and Architecture Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA’s Langley Research Center. It is administered by the National Institute of Aerospace. 
      Genevieve Ebarle / Victoria O’Leary
      National Institute of Aerospace
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA / Lillian Gipson NASA has selected three university teams to help solve 21st century aviation challenges that could transform the skies above our communities. 
      As part of NASA’s University Leadership Initiative (ULI), both graduate and undergraduate students on faculty-led university teams will contribute directly to real-world flight research while gaining hands-on experience working with partners from other universities and industry. 
      By combining faculty expertise, student innovation, and industry experience, these three teams will advance NASA’s vision for the future of 21st century aviation.
      koushik datta
      NASA Project Manager
      This is NASA’s eighth round of annual ULI awards. Research topics include: 
      New aviation systems for safer, more efficient flight operations   Improved communications frequency usage for more effective and reliable information transfer  Autonomous flight capabilities that could advance research in areas such as NASA’s Advanced Air Mobility mission  “By combining faculty expertise, student innovation, and industry experience, these three teams will advance NASA’s vision for the future of 21st century aviation,” said Koushik Datta, NASA University Innovation project manager at the Agency’s Ames Research Center in California. 
      This eighth round of annual ULI selections would lead to awards totaling up to $20.7 million for the three teams during the next three years. For each team, the proposing university will serve as lead. The new ULI selections are: 
      Florida Institute of Technology, Melbourne, Florida 
      The team will create a framework for developing trustworthy increasingly autonomous aviation safety systems, such as those that could potentially employ artificial intelligence and machine learning.  
      Team members include: The Pennsylvania State University in University Park; North Carolina Agricultural and Technical State University in Greensboro; University of Florida in Gainesville; Stanford University in California; Santa Fe Community College in New Mexico; and the companies Collins Aerospace of Charlotte in North Carolina; and ResilienX of Syracuse, New York. 
      University of Colorado Boulder 
      This team will investigate tools for understanding and leveraging the complex communications environment of collaborative, autonomous airspace systems.  
      Team members include: Massachusetts Institute of Technology in Cambridge; The University of Texas at El Paso; University of Colorado in Colorado Springs; Stanford University in California; University of Minnesota Twin Cities in Minneapolis, North Carolina State University in Raleigh; University of California inSanta Barbara; El Paso Community College in Texas; Durham Technical Community College in North Carolina; the Center for Autonomous Air Mobility and Sensing research partnership; the company Aurora Flight Sciences, a Boeing Company, in Manassas, Virginia; and the nonprofit Charles Stark Draper Laboratory in Cambridge, Massachusetts. 
      Embry-Riddle Aeronautical University, Daytona Beach, Florida 
      This team will research continuously updating, self-diagnostic vehicle health management to enhance the safety and reliability of Advanced Air Mobility vehicles.  
      Team members include: Georgia Institute of Technology in Atlanta; The University of Texas at Arlington; University of Southern California in Los Angeles; the company Collins Aerospace of Charlotte, North Carolina; and the Argonne National Laboratory. 
      NASA’s ULI is managed by the agency’s University Innovation project, which also includes the University Student Research Challenge and the Gateways to Blue Skies competition.
      Watch the NASA Aeronautics solicitations page for the announcement of when the next opportunity will be to submit a proposal for consideration during the next round of ULI selections. 
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA Marks 110 Years Since Founding of Predecessor Organization
      Article 1 week ago 3 min read NASA’s X-59 Completes Electromagnetic Testing
      Article 2 weeks ago 4 min read NASA University Research Program Makes First Award to a Community College Project
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Mar 10, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
      University Leadership Initiative Aeronautics Flight Innovation Transformative Aeronautics Concepts Program University Innovation View the full article
  • Check out these Videos

×
×
  • Create New...