Members Can Post Anonymously On This Site
Xiaoyi Li Engineers Instruments and the Teams that Get Them Done
-
Similar Topics
-
By NASA
NASA has selected 12 student teams to develop solutions for storing and transferring the super-cold liquid propellants needed for future long-term exploration beyond Earth orbit.
The agency’s 2025 Human Lander Challenge is designed to inspire and engage the next generation of engineers and scientists as NASA and its partners prepare to send astronauts to the Moon through the Artemis campaign in preparation for future missions to Mars. The commercial human landing systems will serve as the primary mode of transportation that will safely take astronauts and, later, large cargo from lunar orbit to the surface of the Moon and back.
For its second year, the competition invites university students and their faculty advisors to develop innovative, “cooler” solutions for in-space cryogenic, or super cold, liquid propellant storage and transfer systems. These cryogenic fluids, like liquid hydrogen or liquid oxygen, must stay extremely cold to remain in a liquid state, and the ability to effectively store and transfer them in space will be increasingly vital for future long-duration missions. Current technology allows cryogenic liquids to be stored for a relatively short amount of time, but future missions will require these systems to function effectively over several hours, weeks, and even months.
The 12 selected finalists have been awarded a $9,250 development stipend to further develop their concepts in preparation for the next stage of the competition.
The 2025 Human Lander Challenge finalist teams are:
California State Polytechnic University, Pomona, “THERMOSPRING: Thermal Exchange Reduction Mechanism using Optimized SPRING” Colorado School of Mines, “MAST: Modular Adaptive Support Technology” Embry-Riddle Aeronautical University, “Electrical Capacitance to High-resolution Observation (ECHO)” Jacksonville University, “Cryogenic Complex: Cryogenic Tanks and Storage Systems – on the Moon and Cislunar Orbit” Jacksonville University, “Cryogenic Fuel Storage and Transfer: The Human Interface – Monitoring and Mitigating Risks” Massachusetts Institute of Technology, “THERMOS: Translunar Heat Rejection and Mixing for Orbital Sustainability” Old Dominion University, “Structural Tensegrity for Optimized Retention in Microgravity (STORM)” Texas A&M University, “Next-generation Cryogenic Transfer and Autonomous Refueling (NeCTAR)” The College of New Jersey, “Cryogenic Orbital Siphoning System (CROSS)” The Ohio State University, “Autonomous Magnetized Cryo-Couplers with Active Alignment Control for Propellant Transfer (AMCC-AAC) University of Illinois, Urbana-Champaign, “Efficient Cryogenic Low Invasive Propellant Supply Exchange (ECLIPSE)” Washington State University, “CRYPRESS Coupler for Liquid Hydrogen Transfer” Finalist teams will now work to submit a technical paper further detailing their concepts. They will present their work to a panel of NASA and industry judges at the 2025 Human Lander Competition Forum in Huntsville, Alabama, near NASA’s Marshall Space Flight Center, in June 2025. The top three placing teams will share a total prize purse of $18,000.
“By engaging college students in solving critical challenges in cryogenic fluid technologies and systems-level solutions, NASA fosters a collaborative environment where academic research meets practical application,” said Tiffany Russell Lockett, office manager for the Human Landing System Mission Systems Management Office at NASA Marshall. “This partnership not only accelerates cryogenics technology development but also prepares the Artemis Generation – the next generation of engineers and scientists – to drive future breakthroughs in spaceflight.”
NASA’s Human Lander Challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
For more information on NASA’s 2025 Human Lander Challenge, including team progress, visit the challenge website.
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
View the full article
-
By NASA
4 Min Read Ways Community College Students Can Get Involved With NASA
For many students, the path to a NASA career begins at a community college. These local, two-year institutions offer valuable flexibility and options to those aspiring to be part of the nation’s next generation STEM workforce. NASA offers several opportunities for community college students to expand their horizons, make connections with agency experts, add valuable NASA experiences to their resumes, and home in on the types of STEM roles that best fit their skills and interests. Below are some of the exciting NASA activities and experiences available to community college students.
NASA Community College Aerospace Scholars
Get an introduction to NASA, its missions, and its workplace culture through NASA Community College Aerospace Scholars (NCAS). This three-part series enables students to advance their knowledge of the agency, grow their STEM capabilities, interact with NASA experts, and learn about the different pathways to a NASA career.
Mission 1: Discover is a five-week, online orientation course that serves as an introduction to NASA.
Mission 2: Explore is a gamified mission to the Moon or Mars in which students develop a design solution while learning about the agency as a workplace.
Mission 3: Innovate is a three-week hybrid capstone project consisting of two weeks of online preparation and one week participating in a hands-on engineering design challenge at a NASA center.
NCAS begins with Mission 1 and students must complete each mission to be eligible for the next.
Members of a college student team monitor the performance of their robot during a NASA Community College Aerospace Scholars (NCAS) Mission 3: Innovate robotics competition.
NASA Student Challenges
NASA’s student challenges and competitions invite students across a range of ages and education levels to innovate and build solutions to many of the agency’s spaceflight and aviation needs – and community college students across the U.S. are eligible for many of these opportunities. In NASA’s Student Launch challenge, each team designs, builds, and tests a high-powered rocket carrying a scientific or engineering payload. In the MUREP Innovation Tech Transfer Idea Competition (MITTIC)Teams from U.S.-designated Minority-Serving Institutions, including community colleges, have the opportunity to brainstorm and pitch new commercial products based on NASA technology.
NASA’s student challenges and competitions are active at varying times throughout the year – new challenges are sometimes added, and existing opportunities evolve – so we recommend students visit the NASA STEM Opportunities and Activities page and research specific challenges to enable planning and preparation for future participation.
NASA’s Student Launch tasks student teams from across the U.S. to design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload. The annual challenge culminates with a final launch in Huntsville, Alabama, home of NASA’s Marshall Space Flight Center.
NASA NASA RockOn! and RockSat Programs
Build an experiment and launch it aboard a sounding rocket! Through the hands-on RockOn! and RockSat programs, students gain experience designing and building an experiment to fly as a payload aboard a sounding rocket launched from NASA’s Wallops Flight Facility in Wallops Island, Virginia. In RockOn!, small teams get an introduction to creating a sounding rocket experiment, while RockSat-C and RockSat-X are more advanced experiment flight opportunities.
Students watch as their experiments launch aboard a sounding rocket for the RockSat-X program from NASA’s Wallops Flight Facility Aug. 11, 2022, at 6:09 p.m. EDT. The Terrier-Improved Malemute rocket carried the experiments to an altitude of 99 miles before descending via a parachute and landing in the Atlantic Ocean.
NASA Wallops/Terry Zaperach NASA Internships
Be a part of the NASA team! With a NASA internship, students work side-by-side with agency experts, gaining authentic workforce experience while contributing to projects that align with NASA’s goals. Internships are available in a wide variety of disciplines in STEM and beyond, including communications, finance, and more. Each student has a NASA mentor to help guide and coach them through their internship.
NASA interns gain hands-on experience while contributing to agency projects under the guidance of a NASA mentor.
NASA National Space Grant College and Fellowship Program
The National Space Grant College and Fellowship Project, better known as Space Grant, is a national network of colleges and universities working to expand opportunities for students and the public to participate in NASA’s aeronautics and space projects. Each state has its own Space Grant Consortium that may provide STEM education and training programs; funding for scholarships and/or internships; and opportunities to take part in research projects, public outreach, state-level student challenges, and more. Programs, opportunities, and offerings vary by state; students should visit their state’s Space Grant Consortium website to find out about opportunities available near them.
Students from the Erie Huron Ottawa Vocational Education Career Center are pictured at the 3KVA Mobile Photovoltaic Power Plant at NASA’s Glenn Research Center.
NASA Additional Resources
NASA Community College Network NASA Earth Science Division Early Career Research NASA STEM Gateway Careers at NASA
View the full article
-
By European Space Agency
Image: ESA's Atomic Clock Ensemble in Space at NASA's Kennedy Space Center View the full article
-
By NASA
This year’s RASC-AL competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond.ASANASA Fourteen university teams have been selected as finalists for NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition. This year’s competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond. Finalists will present their proposed concepts to a panel of NASA and aerospace industry leaders.
The 2025 Finalists are:
Sustained Lunar Evolution – An Inspirational Moment: Massachusetts Institute of Technology, “M.I.S.T.R.E.S.S. – Moon Infrastructure for Sustainable Technologies, Resource Extraction, and Self-Sufficiency” Tulane University, “Scalable Constructs for Advanced Lunar Activities and Research (SCALAR)” Virginia Polytechnic Institute and State University, “Project Aeneas” Virginia Polytechnic Institute and State University, “Project Khonsu” Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign: Auburn University, “Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER)” University of Illinois, Urbana-Champaign, “MATER: Mars Architecture for Technology Evaluation and Research” Virginia Polytechnic Institute and State University, “Project Vehicles for Engineering Surface Terrain Architectures (VESTA)” Small Lunar Servicing and Maintenance Robot: Arizona State University, “DIANA – Diagnostic and Intelligent Autonomously Navigated Assistant” South Dakota State University, “Next-gen Operations and Versatile Assistant (NOVA)” South Dakota State University, “MANTIS: Maintenance and Navigation for Technical Infrastructure Support” Texas A&M University, “R.A.M.S.E.E.: Robotic Autonomous Maintenance System for Extraterrestrial Environments” University of Maryland, “Servicing Crane Outfitted Rover for Payloads, Inspection, Operations, N’stuff (SCORPION)” University of Puerto Rico, Mayagüez, “Multi-functional Operational Rover for Payload Handling and Navigation (MORPHN)” Virginia Polytechnic Institute & State University, “Adaptive Device for Assistance and Maintenance (ADAM)” The RASC-AL Competition is designed to engage university students and academic institutions in innovation within the field of aerospace engineering. By providing a platform for students to develop and present their ideas, NASA aims to cultivate foundational research for new concepts and technologies for the future of space exploration. This year’s RASC-AL projects include scalable lunar infrastructure and services, a lunar robot that can work autonomously or be controlled remotely, and a concept for a science or technology demonstration mission using human-scale launch, transportation, entry, and landing capabilities at Mars. All of these functions are critical to future NASA missions.
“This year’s RASC-AL projects are not just academic exercises; they will contribute real solutions to some of the most pressing challenges we currently face. The competition continues to highlight the importance of innovation and interdisciplinary collaboration in aerospace,” said Daniel Mazanek, RASC-AL program sponsor and senior space systems engineer from NASA’s Langley Research Center in Hampton, VA.
These finalist teams will move forward to the next phase of the competition, where they will prepare and submit a detailed technical paper outlining their designs, methodologies, and anticipated impacts. Each team will present their concepts at the 2025 RASC-AL Competition Forum in June 2025 showcasing their work to a judging panel of NASA and industry experts for review and discussion.
“The ingenuity and out-of-the-box designs showcased by these students is inspiring,” added Dr. Christopher Jones, RASC-AL program sponsor and chief technologist for the Systems Analysis and Concepts Directorate at NASA’S Langley “We are excited to see how their ideas can contribute to NASA’s ongoing missions and future exploration goals. This is just the beginning of their journey, and we are proud to be part of it.”
To learn more about NASA’s RASC-AL Competition, visit NASA’s RASC-AL Competition Website. RASC-AL is sponsored by the Strategy and Architecture Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA’s Langley Research Center. It is administered by the National Institute of Aerospace.
Genevieve Ebarle / Victoria O’Leary
National Institute of Aerospace
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA / Lillian Gipson NASA has selected three university teams to help solve 21st century aviation challenges that could transform the skies above our communities.
As part of NASA’s University Leadership Initiative (ULI), both graduate and undergraduate students on faculty-led university teams will contribute directly to real-world flight research while gaining hands-on experience working with partners from other universities and industry.
By combining faculty expertise, student innovation, and industry experience, these three teams will advance NASA’s vision for the future of 21st century aviation.
koushik datta
NASA Project Manager
This is NASA’s eighth round of annual ULI awards. Research topics include:
New aviation systems for safer, more efficient flight operations Improved communications frequency usage for more effective and reliable information transfer Autonomous flight capabilities that could advance research in areas such as NASA’s Advanced Air Mobility mission “By combining faculty expertise, student innovation, and industry experience, these three teams will advance NASA’s vision for the future of 21st century aviation,” said Koushik Datta, NASA University Innovation project manager at the Agency’s Ames Research Center in California.
This eighth round of annual ULI selections would lead to awards totaling up to $20.7 million for the three teams during the next three years. For each team, the proposing university will serve as lead. The new ULI selections are:
Florida Institute of Technology, Melbourne, Florida
The team will create a framework for developing trustworthy increasingly autonomous aviation safety systems, such as those that could potentially employ artificial intelligence and machine learning.
Team members include: The Pennsylvania State University in University Park; North Carolina Agricultural and Technical State University in Greensboro; University of Florida in Gainesville; Stanford University in California; Santa Fe Community College in New Mexico; and the companies Collins Aerospace of Charlotte in North Carolina; and ResilienX of Syracuse, New York.
University of Colorado Boulder
This team will investigate tools for understanding and leveraging the complex communications environment of collaborative, autonomous airspace systems.
Team members include: Massachusetts Institute of Technology in Cambridge; The University of Texas at El Paso; University of Colorado in Colorado Springs; Stanford University in California; University of Minnesota Twin Cities in Minneapolis, North Carolina State University in Raleigh; University of California inSanta Barbara; El Paso Community College in Texas; Durham Technical Community College in North Carolina; the Center for Autonomous Air Mobility and Sensing research partnership; the company Aurora Flight Sciences, a Boeing Company, in Manassas, Virginia; and the nonprofit Charles Stark Draper Laboratory in Cambridge, Massachusetts.
Embry-Riddle Aeronautical University, Daytona Beach, Florida
This team will research continuously updating, self-diagnostic vehicle health management to enhance the safety and reliability of Advanced Air Mobility vehicles.
Team members include: Georgia Institute of Technology in Atlanta; The University of Texas at Arlington; University of Southern California in Los Angeles; the company Collins Aerospace of Charlotte, North Carolina; and the Argonne National Laboratory.
NASA’s ULI is managed by the agency’s University Innovation project, which also includes the University Student Research Challenge and the Gateways to Blue Skies competition.
Watch the NASA Aeronautics solicitations page for the announcement of when the next opportunity will be to submit a proposal for consideration during the next round of ULI selections.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
2 min read NASA Marks 110 Years Since Founding of Predecessor Organization
Article 1 week ago 3 min read NASA’s X-59 Completes Electromagnetic Testing
Article 2 weeks ago 4 min read NASA University Research Program Makes First Award to a Community College Project
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Mar 10, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
University Leadership Initiative Aeronautics Flight Innovation Transformative Aeronautics Concepts Program University Innovation View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.