Jump to content

Xiaoyi Li Engineers Instruments and the Teams that Get Them Done


Recommended Posts

  • Publishers
Posted

Name: Xiaoyi Li

Title: Instrument Systems Engineer (ISE) of Venus Atmospheric Structure Investigation (VASI) for the Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging (DAVINCI) and Deputy ISE of Comprehensive Auroral Precipitation Experiment (CAPE) instrument for the Geospace Dynamics Constellation (GDC) mission

Formal Job Classification: Instrument Systems Engineer

Organization: Instrument/Payload Systems Engineering Branch, Engineering Directorate (Code 592)

Xiaoyi Li in a shirt with NASA's logo and "Goddard Space Flight Center" photographed against a background of greenery
Xiaoyi Li is an instrument systems engineer at NASA’s Goddard Space Flight Center in Greenbelt, Md. “My role involves not only managing technical tasks but also blending a variety of technical skills and personalities,” she said. “Understanding of the technical connections between different components is essential to ensure the integrated systems meet requirements. In addition, helping to cultivate collaboration and synthesize diverse expertise is vital. I find the process of learning about and achieving integration of different personalities within the team particularly rewarding.”
Photo Courtesy Xiaoyi Li

What do you do and what is most interesting about your role here at Goddard?

I have two roles. As the instrument systems engineer of VASI, I lead the technical team to develop a sensor suite for this component of NASA’s upcoming DAVINCI mission to Venus. I am also the deputy instrument systems engineer of CAPE where I assist the lead for developing the CAPE instrument for the Geospace Dynamics Constellation mission. The most intriguing aspect of my job is to collaborate with two talented and diverse technical teams, learn from team members, and come up with solutions to resolve technical challenges within budget and schedule.

What is your educational background?

I received a bachelor’s degree in mechanical engineering from Tongji University in Shanghai, China. I furthered my education at the University of New South Wales, Australia, where I earned a master’s in mechanical engineering. After I moved to the U.S., I received a Ph.D. in mechanical engineering from the University of Central Florida in Orlando. My doctorate was funded by a NASA grant to design, build and test a spaceflight cryocooler.

Why did you become a mechanical engineer?

I grew up in an engineering family. My mother was a chemical engineer. My father was an architect and structural engineer. I grew up watching them build large factories. While I would like to think I would have become an engineer without their influence, growing up with such incredible role models gave me access to, and an understanding of engineering disciplines that I never really considered any other profession.

What brought you to Goddard?

Upon completing my Ph.D. in 2005, I started out as a mission analyst for launch service programs at NASA’s Kennedy Space Center in Florida. In 2009, I began working as a thermal engineer for NASA’s Wallops Flight Facility in Virginia. In 2010, I came across a position that brought me back to my Ph.D. days and I couldn’t pass up the opportunity. I joined the Cryogenics and Fluids Branch at Goddard.

What did you do at Goddard before your current position?

I contributed to multiple engineering and science studies, proposals, and projects as a cryogenics engineer. Notably, I served as the principal investigator for two IRAD studies. One of the studies was submitted to the Patent Office and later was granted a new patent. Additionally, I was a co-inventor for another patent. Prior to joining my current group, I held the position of instrument cryogenics lead for the Roman Space Telescope. I served as the associate branch head in my current organization before devoting full time as an instrument systems engineer.

What are your main responsibilities as the instrument systems engineer for CAPE and VASI?

As the deputy instrument systems engineer for CAPE, my main responsibility is to assist the lead to coordinate multiple technical teams. The main focus is to work with the mechanical, electrical, thermal, structural, and other engineers to build electron/ion analyzers. For the VASI instrument, which has a smaller team, I take a more direct role in organizing and coordinating the technical work. This position allows me to engage in hands-on engineering tasks, which is extremely gratifying being able to get “my hands dirty.”

My role involves not only managing technical tasks but also blending a variety of technical skills and personalities. Understanding of the technical connections between different components is essential to ensure the integrated systems meet requirements. In addition, helping to cultivate collaboration and synthesize diverse expertise is vital. I find the process of learning about and achieving integration of different personalities within the team particularly rewarding.

How do you coordinate between all the different systems and personalities?

My experience includes over eight years in leadership roles, supported by extensive training and a robust technical background. This includes a one-year detail assignment in Goddard’s Science Mission Directorate. In this role, I facilitate collaboration within the engineering team, as well as between the engineers and the scientists to ensure that the instrument meets scientific objectives while adhering to well established engineering best practices and principles. Additionally, I empower our subject matter experts to pursue their innovative ideas while guiding them toward a unified direction through a shared vision. Although individual approaches may vary, we are all committed to the collective goal of a successful mission.

Who were your mentors and what did they advise?

I am grateful for the guidance of two mentors who have been instrumental in my development. Mr. Dave Everett, a systems engineer by trade and the current head of our branch, has been my technical mentor. He taught me, among many other things, the importance of understanding the overall system. Ms. Maria So, my leadership mentor, is a former senior executive service (SES) member at Goddard. As a fellow Chinese woman and engineer, her influence has been profound. She has guided me and acted as a sounding board for some very exciting but challenging decisions these past years. She also taught me the importance of seeing the bigger picture and the critical organizational leadership role to systems engineering, which has shaped my approach to leadership.

In turn, I apply these teachings and ideas when I informally mentor the younger engineers on my team. I encourage them to tackle problems independently by providing the necessary background knowledge and allowing them the autonomy to make decisions. I guide them when needed, but I believe in balance and the importance of learning through one’s own mistakes.

two women standing in an auditorium
Li with her leadership mentor, Maria So, at a Goddard “Taste of Asia” event celebrating Asian American, Native Hawaiian and Pacific Islander Heritage Month. “Her influence has been profound,” Li said. “She has guided me and acted as a sounding board for some very exciting but challenging decisions these past years. She also taught me the importance of seeing the bigger picture and the critical organizational leadership role to systems engineering, which has shaped my approach to leadership.”
Photo courtesy Xiaoyi Li

What is your involvement with the Asian American Native Hawaiian and Pacific Islander Employee Resource Group (AANHPI)?

I have been actively involved with the group, and I recently served as co-chair for three years. Our group is dedicated to advocating for the wellness of the Asian American community within Goddard. Our group also addresses any concerns from the community members by reporting directly to Goddard senior management. In addition, we foster a sense of community and support among members through community events including our annual “Taste of Asia and the Pacific Islands” lunch event at Goddard.

What do you do for fun?

I enjoy cooking a variety of cuisines, including Chinese and Thai (which I learned in Australia), as well as classic American dishes. My favorite culinary challenge is a rib roast using suis vide method, which involves 18 hours of slow cooking before finishing it in the oven! Additionally, I enjoy playing video games with my family and friends, which is a great way to relax and connect.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Aug 14, 2024
Editor
Rob Garner
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA marked a key milestone Feb. 18 with installation of RS-25 engine No. E20001, the first new production engine to help power the SLS (Space Launch System) rocket on future Artemis missions to the Moon.
      The engine, built by lead SLS engines contractor L3Harris (formerly Aerojet Rocketdyne), was installed on the Fred Haise Test Stand in preparation for acceptance testing next month. It represents the first of 24 new flight engines being built for missions, beginning with Artemis V.
      Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin The NASA Stennis test team will conduct a full-duration, 500-second hot fire, providing critical performance data to certify the engine for use on a future mission. During missions to the Moon, RS-25 engines fire for about 500 seconds and up to the 111% power level to help launch SLS, with the Orion spacecraft, into orbit.
      The engine arrived at the test stand from the L3Harris Engine Assembly Facility on the engine transport trailer before being lifted onto the vertical engine installer (VEI) on the west side deck. After rolling the engine into the stand, the team used the VEI to raise and secure it in place.
      The upcoming acceptance test follows two certification test series that helped verify the new engine production process and components meet all performance requirements. Four RS-25 engines help launch SLS, producing up to 2 million pounds of combined thrust.
      All RS-25 engines for Artemis missions are tested and proven flightworthy at NASA Stennis prior to use. RS-25 tests are conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
      Explore More NASA Stennis Images View the full article
    • By NASA
      How Long Does it Take to Get to the Moon... Mars... Jupiter? We Asked a NASA Expert
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      During the Apollo program, when NASA sent humans to the Moon, those missions took several days to reach the Moon. The fastest of these was Apollo 8, which took just under three days to go from Earth orbit to orbit around the Moon.

      Now it’s possible to save some fuel by flying different kinds of trajectories to the Moon that are shaped in such a way to save fuel. And those trajectories can take more time, potentially weeks or months, to reach the Moon, depending on how you do it.

      Mars is further away, about 50 percent further away from the Sun than Earth is. And reaching Mars generally takes somewhere between seven to ten months, flying a relatively direct route.

      NASA’s Mars Reconnaissance Orbiter mission took about seven and a half months to reach Mars. And NASA’s MAVEN mission took about ten months to reach Mars.

      Jupiter is about five times further away from the Sun than the Earth is. And so in order to make those missions practical, we have to find ways to reduce the fuel requirements. And the way we do that is by having the spacecraft do some flybys of Earth and or Venus to help shape the spacecraft’s trajectory and change the spacecraft’s speed without using fuel. And using that sort of approach, it takes between about five to six years to reach Jupiter.

      So NASA’s Galileo mission, the first mission to Jupiter, took just a little over six years. And then NASA’s second mission to Jupiter, which was called Juno, took just under five years.

      So to get to the Moon takes several days. To get to Mars takes seven to ten months. And getting to Jupiter takes between five and six years.

      [END VIDEO TRANSCRIPT]

      Full Episode List
      Full YouTube Playlist
      Share
      Details
      Last Updated Feb 19, 2025 Related Terms
      Science Mission Directorate Planetary Science Planetary Science Division The Solar System Explore More
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
      In 2023 and 2024, two eclipses crossed the United States, and the NASA Science Activation…
      Article 18 hours ago 2 min read NASA Science: Being Responsive to Executive Orders
      February 18, 2025 To the NASA Science Community –  As the nation’s leader in Earth…
      Article 19 hours ago 5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging
      One of the ultimate goals in astrophysics is the discovery of Earth-like planets that are…
      Article 22 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The National Academy of Engineering (NAE) has elected three new members with NASA affiliations. Two employees and one retiree from three different NASA centers around the country were awarded the honor on Feb. 7.
      Election to the NAE is among the highest professional distinctions accorded to an engineer. Individuals in the newly elected class will be formally inducted during the NAE’s annual meeting Oct. 1.
      Academy membership honors those who have made outstanding contributions to “engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature” and to ‘the pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education.”    
      Christine Mann Darden, director (retired), Strategic Communications Office, NASA Langley Research Center, Hampton, Virginia.u003cstrongu003eu003cemu003eCredits: NASAu003c/emu003eu003c/strongu003e Christine Mann Darden, director (retired), Strategic Communications Office, NASA Langley Research Center, Hampton, Virginia, was awarded for pioneering research in supersonic flight technologies and leadership in advancing aerodynamics design to produce low-boom sonic effects. She is internationally known for her research into supersonic aircraft noise, especially sonic boom reduction, and recognized for her groundbreaking achievement as the first African American woman at NASA Langley to be appointed to the top management rank of Senior Executive Service. She is equally known for her efforts to inspire and educate generations of aerospace scientists and engineers.
      Christa D. Peters-Lidard, deputy director, Science and Exploration, NASA Goddard Space Flight Center, Greenbelt, Maryland.u003cstrongu003eu003cemu003eCredits: NASA Office of the Chief Information Officeru003c/emu003eu003c/strongu003e Christa D. Peters-Lidard, director, Science and Exploration, NASA Goddard Space Flight Center, Greenbelt, Maryland, was honored for contributions to understanding land-atmosphere interactions, soil moisture monitoring and modeling, and leadership in Earth system modeling. Her research interests include the application of high-performance computing and communications technologies in Earth system modeling, for which her Land Information System team was awarded the 2005 NASA Software of the Year Award.
      Vanessa E. Wyche, director, NASA Johnson Space Center, Houston.u003cstrongu003eu003cemu003eCredits: NASAu003c/emu003eu003c/strongu003e Vanessa E. Wyche, director, NASA’s Johnson Space Center, Houston, received the honor for leadership of NASA Johnson, enabling a commercial low-Earth orbit space economy and future Moon and Mars missions. She is responsible for a broad range of human spaceflight activities, including development and operation of human spacecraft, NASA astronaut selection and training, and mission control. Wyche oversees commercialization of low-Earth orbit – ensuring commercially provided destinations to continue research there following transition from the International Space Station in 2030. Additionally, she leads Johnson’s role in exploring the Moon and Mars with NASA’s Artemis spacecraft, including surface system capabilities for human and commercial robotic missions, and partners with academia, industry, and international community to establish a sustainable lunar economy.
      Rob Gutro
      NASA’s Goddard Space Flight Center
      Robert.j.gutro@nasa.gov
      L. Eileen Erickson / Kim Case
      National Academy of Engineering
      lerickson@nae.edu / KCase@nae.edu
      Explore More
      8 min read John Moisan Studies the Ocean Through the ‘Eyes’ of AI
      Article 14 mins ago 5 min read Mark SubbaRao Brings Data to Life Through Art
      Article 14 mins ago 5 min read NASA Scientists & Historian Named AAAS 2022 Fellows
      Article 14 mins ago Share
      Details
      Last Updated Feb 10, 2025 Related Terms
      Goddard Space Flight Center Johnson Space Center Langley Research Center People of Goddard View the full article
    • By NASA
      NASA/Ben Smegelsky A NASA photographer took this portrait of a curious sandhill crane on March 24, 2021, near the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Sandhill cranes are just one of the hundreds of types of birds that call the Merritt Island National Wildlife Refuge, which shares space with NASA Kennedy, their home.
      See more photos of birds at NASA Kennedy.
      Image credit: NASA/Ben Smegelsky
      View the full article
  • Check out these Videos

×
×
  • Create New...