Members Can Post Anonymously On This Site
Xiaoyi Li Engineers Instruments and the Teams that Get Them Done
-
Similar Topics
-
By NASA
This image from NASA’s James Webb Space Telescope shows the dwarf galaxy NGC 4449. ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team President Biden has named 19 researchers who contribute to NASA’s mission as recipients of the Presidential Early Career Award for Scientists and Engineers (PECASE). These recipients are among nearly 400 federally funded researchers receiving the honor.
Established in 1996 by the National Science and Technology Council, the PECASE Award is the highest honor given by the U.S. government to scientists and engineers who are beginning their research careers. The award recognizes recipients’ potential to advance the frontiers of scientific knowledge and their commitment to community service, as demonstrated through professional leadership, education or community outreach.
“I am so impressed with these winners and what they have accomplished,” said Kate Calvin, chief scientist, NASA Headquarters in Washington. “They have made valuable contributions to NASA science and engineering, and I can’t wait to see what they do in the future.”
The following NASA recipients were nominated by the agency:
Natasha Batalha, NASA Ames Research Center, Silicon Valley, California – for transformational scientific research in the development of open-source systems for the modeling of exoplanet atmospheres and observations Elizabeth Blaber, Rensselaer Polytechnic Institute, Troy, New York – for transformative spaceflight and ground-based space biology research James Burns, University of Virginia, Charlottesville – for innovative research at the intersection of metallurgy, solid mechanics and chemistry Egle Cekanaviciute, NASA Ames Research Center – for producing transformational research to enable long-duration human exploration on the Moon and Mars Nacer Chahat, NASA Jet Propulsion Laboratory, Pasadena, California – for leading the innovation of spacecraft antennas that enable NASA deep space and earth science missions Ellyn Enderlin, Boise State University, Idaho – for innovative methods to study glaciers using a wide variety of satellite datasets David Estrada, Boise State University, Idaho – for innovative research in the areas of printed electronics for in space manufacturing and sensors for harsh environments Burcu Gurkan, Case Western Reserve University, Cleveland, Ohio – for transforming contemporary approaches to energy storage and carbon capture to be safer and more economical, for applications in space and on Earth Elliott Hawkes, University of California, Santa Barbara – for highly creative innovations in bio-inspired robotics that advance science and support NASA’s mission John Hwang, University of California, San Diego – for innovative approach to air taxi design and key contributions to the urban air mobility industry James Tuttle Keane, NASA Jet Propulsion Laboratory – for innovative and groundbreaking planetary geophysics research, and renowned planetary science illustrations Kaitlin Kratter, University of Arizona, Tucson – for leadership in research about the formation and evolution of stellar and planetary systems beyond our own Lyndsey McMillon-Brown, NASA Glenn Research Center, Cleveland, Ohio – for leadership in photovoltaic research, development, and demonstrations Debbie Senesky, Stanford University, California – for research that has made it possible to operate sensing and electronic devices in high-temperature and radiation-rich environments Hélène Seroussi, Dartmouth College, Hanover, New Hampshire – for leading the cryosphere science community in new research directions about the role of ocean circulation in the destabilization of major parts of Antarctica’s ice sheets Timothy Smith, NASA Glenn Research Center – for achievements in materials science research, specifically in high temperature alloy innovation Mitchell Spearrin, University of California, Los Angeles – for pioneering scientific and technological advancements in multiple areas critical to NASA’s current and future space missions including rocket propulsion, planetary entry, and sensor systems Michelle Thompson, Purdue University, West Lafayette, Indiana – for research in planetary science and dedication to training the next generation of STEM leaders Mary Beth Wilhelm, NASA Ames Research Center – for achievements in science, technology, and community outreach through her work in the fields of space science and astrobiology The PECASE awards were created to highlight the importance of science and technology for America’s future. These early career awards foster innovative developments in science and technology, increase awareness of careers in science and engineering, provide recognition to the scientific missions of participating agencies, and enhance connections between research and challenges facing the nation. For a complete list of award winners, visit:
https://www.whitehouse.gov/ostp/news-updates/2025/01/14/president-biden-honors-nearly-400-federally-funded-early-career-scientists
View the full article
-
By NASA
Firefly Aerospace’s Blue Ghost lander getting encapsulated in SpaceX’s rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA’s Kennedy Space Center in FloridaSpaceX As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the agency is preparing to fly ten instruments aboard Firefly Aerospace’s first delivery to the Moon. These science payloads and technology demonstrations will help advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions on the Moon and beyond, for the benefit of all.
Firefly’s lunar lander, named Blue Ghost, is scheduled to launch on a SpaceX Falcon 9 rocket Wednesday, Jan.15, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After a 45-day cruise phase, Blue Ghost is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a basin approximately 340 miles wide (550 kilometers) located in the northeast quadrant of the Moon’s near side.
How can we enable more precise navigation on the Moon? How do spacecraft interact with the lunar surface? How does Earth’s magnetic field influence the effects of space weather on our home planet? NASA’s instruments on this flight will conduct first-of-their-kind demonstrations to help answer these questions and more, including testing regolith sampling technologies, lunar subsurface drilling capabilities, increasing precision of positioning and navigation abilities, testing radiation tolerant computing, and learning how to mitigate lunar dust during lunar landings.
The ten NASA payloads aboard Firefly’s Blue Ghost lander include:
Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will measure heat flow from the Moon’s interior by measuring the thermal gradient, or changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it. LISTER will take several measurements up to 10 feet deep using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Data from LISTER will help scientists retrace the Moon’s thermal history and understand how it formed and cooled. Lead organization: Texas Tech University
Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber (sieving) for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. The LPV payload is designed to help increase the science return from planetary missions by testing low-cost technologies for collecting regolith samples in-situ. Lead organization: Honeybee Robotics
Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon by reflecting very short laser pulses from Earth-based Lunar Laser Ranging Observatories. The laser pulse transit time to the Moon and back is used to determine the distance. Data from NGLR could improve the accuracy of our lunar coordinate system and contribute to our understanding of the inner structure of the Moon and fundamental physics questions. Lead organization: University of Maryland
Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. RAC will measure accumulation rates of lunar regolith on surfaces (for example, solar cells, optical systems, coatings, and sensors) through imaging to determine their ability to repel or shed lunar dust. The data captured will help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace
Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but this flight will provide the biggest trial yet by demonstrating the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University
Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. EDS is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center
Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact Earth. Lead organizations: Boston University, NASA’s Goddard Space Flight Center, and Johns Hopkins University
Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from GNSS (Global Navigation Satellite System) constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier spacecraft and hardware are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machines’ first CLPS delivery. Lead organization: NASA’s Langley Research Center
Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.
Learn more about CLPS and Artemis at: http://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
View the full article
-
By NASA
Technicians have successfully integrated NASA’s Nancy Grace Roman Space Telescope’s payload – the telescope, instrument carrier, and two instruments – to the spacecraft that will deliver the observatory to its place in space and enable it to function while there.
“With this incredible milestone, Roman remains on track for launch, and we’re a big step closer to unveiling the cosmos as never before,” said Mark Clampin, acting deputy associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “It’s been fantastic to watch the team’s progress throughout the integration phase. I look forward to Roman’s transformative observations.”
Technicians recently integrated the payload – telescope, instrument carrier, and two instruments – for NASA’s Nancy Grace Roman Space Telescope in the big clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md. NASA/Chris Gunn The newly joined space hardware will now undergo extensive testing. The first test will ensure each major element operates as designed when integrated with the rest of the observatory and establish the hardware’s combined performance. Then environmental tests will subject the payload to the electromagnetic, vibration, and thermal vacuum environments it will experience during launch and on-orbit operations. These tests will ensure the hardware and the launch vehicle will not interfere with each other when operating, verify the communications antennas won’t create electromagnetic interference with other observatory hardware, shake the assembly to make sure it will survive extreme vibration during launch, assess its performance across its expected range of operating temperatures, and make sure the instruments and mirrors are properly optically aligned.
Meanwhile, Roman’s deployable aperture cover will be integrated with the outer barrel assembly, and then the solar panels will be added before spring. Then the structure will be joined to the payload and spacecraft this fall.
The Roman mission remains on track for completion by fall 2026 and launch no later than May 2027.
Virtually tour an interactive version of the telescope By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940
Share
Details
Last Updated Jan 08, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Goddard Space Flight Center The Universe Explore More
4 min read NASA Successfully Integrates Roman Mission’s Telescope, Instruments
Article 4 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
Article 6 months ago 4 min read NASA’s Roman Space Telescope’s ‘Exoskeleton’ Whirls Through Major Test
Article 3 months ago N
View the full article
-
By NASA
More than 30,000 scientists gathered in Washington, D.C. during the second week of December – many to show off the work of NASA’s science volunteers! The American Geophysical Union held its annual meeting of professionals this month – the world’s largest gathering of Earth and Space Scientists. Here’s what they were talking about.
Eighteen NASA-sponsored project team members presented discoveries made with volunteers on topics from solar eclipses to global freshwater lake monitoring and exoplanet research. Overall, 175 posters and presentations featured the work of volunteers (up from 137 in 2023). Overall, 363 scientists and presenters at the conference described themselves as being involved in citizen science research (up from 201 in 2023). Two dozen scientists at the meeting gathered for lunch in the atrium of the National Portrait Gallery to talk about doing NASA science with volunteers. They discussed projects about asteroids, landslide hazard prediction, solar eclipse science, water quality, martian clouds, and more. Science done with volunteers is often called citizen science or participatory science – it does not require citizenship in any particular country. “Between the immense datasets being collected by NASA missions and the perennial need to open wide the doors to science so everyone can experience the joy and rewards of doing research together, citizen science is needed now more than ever!” said Sarah Kirn, the participatory science strategist at the Gulf of Maine Research Institute in Portland.” You can join one of NASA’s many participatory science projects right here!
Two dozen scientists gathered for lunch in the atrium of the National Portrait Gallery to talk about working with volunteers. They discussed projects about asteroids, landslide hazard prediction, solar eclipse science, water quality, martian clouds and more. Credit: Sarah Kirn Facebook logo @DoNASAScience @DoNASAScience Share
Details
Last Updated Dec 23, 2024 Related Terms
Citizen Science Earth Science Division Heliophysics Division Planetary Science Division Explore More
2 min read Jovian Vortex Hunters Spun Up Over New Paper
Article
6 days ago
5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…
Article
1 week ago
5 min read Scientists Share Early Results from NASA’s Solar Eclipse Experiments
Article
2 weeks ago
View the full article
-
By NASA
The telescope and instruments for NASA’s Nancy Grace Roman Space Telescope were recently integrated together on the observatory’s instrument carrier at the agency’s Goddard Space Flight Center in Greenbelt, Md. Next, the entire system will be joined to the Roman spacecraft. NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope team has successfully integrated the mission’s telescope and two instruments onto the instrument carrier, marking the completion of the Roman payload. Now the team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will begin joining the payload to the spacecraft.
“We’re in the middle of an exciting stage of mission preparation,” said Jody Dawson, a Roman systems engineer at NASA Goddard. “All the components are now here at Goddard, and they’re coming together in quick succession. We expect to integrate the telescope and instruments with the spacecraft before the year is up.”
Engineers first integrated the Coronagraph Instrument, a technology demonstration designed to image exoplanets — worlds outside our solar system — by using a complex suite of masks and active mirrors to obscure the glare of the planets’ host stars.
Then the team integrated the Optical Telescope Assembly, which includes a 7.9-foot (2.4-meter) primary mirror, nine additional mirrors, and their supporting structures and electronics. The telescope will focus cosmic light and send it to Roman’s instruments, revealing billions of objects strewn throughout space and time. Roman will be the most stable large telescope ever built, at least 10 times more so than NASA’s James Webb Space Telescope and 100 times more than the agency’s Hubble Space Telescope. This will allow scientists to make measurements at levels of precision that can answer important questions about dark energy, dark matter, and worlds beyond our solar system.
Technicians install the primary instrument for NASA’s Nancy Grace Roman Space Telescope, called the Wide Field Instrument (at left), in the biggest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md. This marked the final step to complete the Roman payload, which also includes a Coronagraph instrument and the Optical Telescope Assembly.NASA/Chris Gunn With those components in place, the team then added Roman’s primary instrument. Called the Wide Field Instrument, this 300-megapixel infrared camera will give Roman a deep, panoramic view of the universe. Through the Wide Field Instrument’s surveys, scientists will be able to explore distant exoplanets, stars, galaxies, black holes, dark energy, dark matter, and more. Thanks to this instrument and the observatory’s efficiency, Roman will be able to image large areas of the sky 1,000 times faster than Hubble with the same sharp, sensitive image quality.
“It would be quicker to list the astronomy topics Roman won’t be able to address than those it will,” said Julie McEnery, the Roman senior project scientist at NASA Goddard. “We’ve never had a tool like this before. Roman will revolutionize the way we do astronomy.”
The telescope and instruments were mounted to Roman’s instrument carrier and precisely aligned in the largest clean room at Goddard, where the observatory is being assembled. Now, the whole assembly is being attached to the Roman spacecraft, which will deliver the observatory to its orbit and enable it to function once there.
At the same time, the mission’s deployable aperture cover — a visor that will shield the telescope from unwanted light — is being joined to the outer barrel assembly, which serves as the telescope’s exoskeleton.
“We’ve had an incredible year, and we’re looking forward to another one!” said Bear Witherspoon, a Roman systems engineer at NASA Goddard. “While the payload and spacecraft undergo a smattering of testing together, the team will work toward integrating the solar panels onto the outer barrel assembly.”
That keeps the observatory on track for completion by fall 2026 and launch no later than May 2027.
To virtually tour an interactive version of the telescope, visit:
https://roman.gsfc.nasa.gov/interactive
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center
301-286-1940
Share
Details
Last Updated Dec 12, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Dark Energy Dark Matter Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Stars The Universe Explore More
6 min read Primary Instrument for Roman Space Telescope Arrives at NASA Goddard
Article 4 months ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
Article 1 month ago 5 min read Telescope for NASA’s Roman Mission Complete, Delivered to Goddard
Article 4 weeks ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.