Members Can Post Anonymously On This Site
Xiaoyi Li Engineers Instruments and the Teams that Get Them Done
-
Similar Topics
-
By NASA
The telescope and instruments for NASA’s Nancy Grace Roman Space Telescope were recently integrated together on the observatory’s instrument carrier at the agency’s Goddard Space Flight Center in Greenbelt, Md. Next, the entire system will be joined to the Roman spacecraft. NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope team has successfully integrated the mission’s telescope and two instruments onto the instrument carrier, marking the completion of the Roman payload. Now the team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will begin joining the payload to the spacecraft.
“We’re in the middle of an exciting stage of mission preparation,” said Jody Dawson, a Roman systems engineer at NASA Goddard. “All the components are now here at Goddard, and they’re coming together in quick succession. We expect to integrate the telescope and instruments with the spacecraft before the year is up.”
Engineers first integrated the Coronagraph Instrument, a technology demonstration designed to image exoplanets — worlds outside our solar system — by using a complex suite of masks and active mirrors to obscure the glare of the planets’ host stars.
Then the team integrated the Optical Telescope Assembly, which includes a 7.9-foot (2.4-meter) primary mirror, nine additional mirrors, and their supporting structures and electronics. The telescope will focus cosmic light and send it to Roman’s instruments, revealing billions of objects strewn throughout space and time. Roman will be the most stable large telescope ever built, at least 10 times more so than NASA’s James Webb Space Telescope and 100 times more than the agency’s Hubble Space Telescope. This will allow scientists to make measurements at levels of precision that can answer important questions about dark energy, dark matter, and worlds beyond our solar system.
Technicians install the primary instrument for NASA’s Nancy Grace Roman Space Telescope, called the Wide Field Instrument (at left), in the biggest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md. This marked the final step to complete the Roman payload, which also includes a Coronagraph instrument and the Optical Telescope Assembly.NASA/Chris Gunn With those components in place, the team then added Roman’s primary instrument. Called the Wide Field Instrument, this 300-megapixel infrared camera will give Roman a deep, panoramic view of the universe. Through the Wide Field Instrument’s surveys, scientists will be able to explore distant exoplanets, stars, galaxies, black holes, dark energy, dark matter, and more. Thanks to this instrument and the observatory’s efficiency, Roman will be able to image large areas of the sky 1,000 times faster than Hubble with the same sharp, sensitive image quality.
“It would be quicker to list the astronomy topics Roman won’t be able to address than those it will,” said Julie McEnery, the Roman senior project scientist at NASA Goddard. “We’ve never had a tool like this before. Roman will revolutionize the way we do astronomy.”
The telescope and instruments were mounted to Roman’s instrument carrier and precisely aligned in the largest clean room at Goddard, where the observatory is being assembled. Now, the whole assembly is being attached to the Roman spacecraft, which will deliver the observatory to its orbit and enable it to function once there.
At the same time, the mission’s deployable aperture cover — a visor that will shield the telescope from unwanted light — is being joined to the outer barrel assembly, which serves as the telescope’s exoskeleton.
“We’ve had an incredible year, and we’re looking forward to another one!” said Bear Witherspoon, a Roman systems engineer at NASA Goddard. “While the payload and spacecraft undergo a smattering of testing together, the team will work toward integrating the solar panels onto the outer barrel assembly.”
That keeps the observatory on track for completion by fall 2026 and launch no later than May 2027.
To virtually tour an interactive version of the telescope, visit:
https://roman.gsfc.nasa.gov/interactive
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center
301-286-1940
Share
Details
Last Updated Dec 12, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Dark Energy Dark Matter Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Stars The Universe Explore More
6 min read Primary Instrument for Roman Space Telescope Arrives at NASA Goddard
Article 4 months ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
Article 1 month ago 5 min read Telescope for NASA’s Roman Mission Complete, Delivered to Goddard
Article 4 weeks ago View the full article
-
By NASA
Michelle Dominguez proudly displays her award at the Women of Color STEM Conference in Detroit, Michigan, October 2024.NASA Dorcas Kaweesa holding her award at the Women of Color STEM Conference in Detroit, Michigan, October 2024. NASA In October 2024, Michelle Dominguez and Dorcas Kaweesa from the Ames Aeromechanics Office were each awarded as a “Technology Rising Star” at the Women of Color STEM Conference in Detroit, Michigan. Rising Star awards are for “young women, with 21 years or less in the workforce, who are helping to shape technology for the future.” Ms. Dominguez is a Mechanical Systems Engineer working on rotorcraft design for vertical-lift vehicles such as air taxis and Mars helicopters. Dr. Kaweesa is a Structural Analysis Engineer and Deputy Manager for planetary rotorcraft initiatives including Mars Exploration Program and Mars Sample Return. More information on this award is at https://intouch.ccgmag.com/mpage/woc-stem-conference-awardees .
View the full article
-
By NASA
Congratulations to the selected teams and their schools who will participate in the Lunar Autonomy Challenge! 31 teams were selected for the qualifying round, engaging 229 students from colleges and universities in 15 states. Teams will now move on to a Qualifying Round where they will virtually explore and map the lunar surface using a digital twin of NASA’s lunar mobility robot, the ISRU Pilot Excavator (IPEx). Teams will develop software that can perform set actions without human intervention, navigating the digital IPEx in the harsh, low-light conditions of the Moon. The Qualifying Round will extend to February 28, when the top-scoring teams will proceed to the Final Round, with the winners announced in May 2025.
The Lunar Autonomy Challenge is a collaboration between NASA, The Johns Hopkins University (JHU) Applied Physics Laboratory (APL), Caterpillar Inc., and Embodied AI.
Learn more: https://lunar-autonomy-challenge.jhuapl.edu/
SchoolCityStateAmerican Public University SystemCharles TownWest VirginiaArizona State UniversityTempeArizonaCalifornia Polytechnic Institute, Pomona (1)PomonaCaliforniaCalifornia Polytechnic Institute, Pomona (2)PomonaCaliforniaCarnegie Mellon UniversityPittsburghPennsylvaniaEmbry Riddle Aeronautical UniversityDaytona BeachFloridaEssex County CollegeNewarkNew JerseyGeorgia Institute of Technology & Arizona State UniversityAtlanta & TempeGeorgia & ArizonaHarvard UniversityAllstonMassachusettsJohns Hopkins University Whiting School of EngineeringBaltimoreMarylandMassachusetts Institute of TechnologyCambridgeMassachusettsNew York University Tandon School of EngineeringBrooklynNew YorkNorth Carolina State UniversityRaleighNorth CarolinaPenn State (1)University ParkPennsylvaniaPenn State (2)University ParkPennsylvaniaPurdue UniversityWest LafayetteIndianaRochester Institute of TechnologyRochester New YorkRose Hulman Institue of TechnologyTerre HauteIndianaStanford UniversityStanfordCalifornia Texas A&M UniversityCollege StationTexasUniversity of AlabamaTuscaloosaAlabamaUniversity of Buffalo, State University of New YorkBuffaloNew YorkUniversity of California, StanislausTurlockCaliforniaUniversity of Illinois Urbana Champaign (1)UrbanaIllinoisUniversity of Illinois Urbana Champaign (2)UrbanaIllinoisUniversity of MarylandCollege ParkMarylandUniversity of Pennsylvania (1)Philadelphia PennsylvaniaUniversity of Pennsylvania (2)Philadelphia PennsylvaniaUniversity of Southern California & Stanford UniversityLos Angeles & StanfordCaliforniaWest Virginia UniversityMorgantownWest VirginiaWorcester Polytechnic InstituteWorcesterMassachusetts Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
NASA’s Lunar Surface Innovation Initiative
ISRU Pilot Excavator
Education & Opportunities
We are committed to providing educational opportunities for students interested in pursuing professional experiences in the life science disciplines. Our…
View the full article
-
By European Space Agency
A mesmerising audiovisual experience from trip-hop collective Massive Attack that blends an original score with stunning satellite images of Earth was enjoyed by thousands of climate enthusiasts in Liverpool.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
An artist’s concept of NASA’s Europa Clipper shows the spacecraft in silhouette against Europa’s surface, with the magnetometer boom fully deployed at top and the antennas for the radar instrument extending out from the solar arrays.NASA/JPL-Caltech Headed to Jupiter’s moon Europa, the spacecraft is operating without a hitch and will reach Mars in just three months for a gravity assist.
NASA’s Europa Clipper, which launched Oct. 14 on a journey to Jupiter’s moon Europa, is already 13 million miles (20 million kilometers) from Earth. Two science instruments have deployed hardware that will remain at attention, extending out from the spacecraft, for the next decade — through the cruise to Jupiter and the entire prime mission.
A SpaceX Falcon Heavy rocket launched it away from Earth’s gravity, and now the spacecraft is zooming along at 22 miles per second (35 kilometers per second) relative to the Sun.
Europa Clipper is the largest spacecraft NASA has ever developed for a planetary mission. It will travel 1.8 billion miles (2.9 billion kilometers) to arrive at Jupiter in 2030 and in 2031 will begin a series of 49 flybys, using a suite of instruments to gather data that will tell scientists if the icy moon and its internal ocean have the conditions needed to harbor life.
For now, the information mission teams are receiving from the spacecraft is strictly engineering data (the science will come later), telling them how the hardware is operating. Things are looking good. The team has a checklist of actions the spacecraft needs to take as it travels deeper into space. Here’s a peek:
Boom Times
Shortly after launch, the spacecraft deployed its massive solar arrays, which extend the length of a basketball court. Next on the list was the magnetometer’s boom, which uncoiled from a canister mounted on the spacecraft body, extending a full 28 feet (8.5 meters).
To confirm that all went well with the boom deployment, the team relied on data from the magnetometer’s three sensors. Once the spacecraft is at Jupiter, these sensors will measure the magnetic field around Europa, both confirming the presence of the ocean thought to be under the moon’s icy crust and telling scientists about its depth and salinity.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This animation shows how the boom of Europa Clipper’s magnetometer deployed — while the spacecraft was in flight — to its full length of 28 feet (8.5 meters). NASA/JPL-Caltech On the Radar
After the magnetometer, the spacecraft deployed several antennas for the radar instrument. Now extending crosswise from the solar arrays, the four high-frequency antennas form what look like two long poles, each measuring 57.7 feet (17.6 meters) long. Eight rectangular very-high-frequency antennas, each 9 feet (2.76 meters) long, were also deployed — two on the two solar arrays.
“It’s an exciting time on the spacecraft, getting these key deployments done,” said Europa Clipper project manager Jordan Evans of NASA’s Jet Propulsion Laboratory in Southern California. “Most of what the team is focusing on now is understanding the small, interesting things in the data that help them understand the behavior of the spacecraft on a deeper level. That’s really good to see.”
Instrument Checkout
The remaining seven instruments will be powered on and off through December and January so that engineers can check their health. Several instruments, including the visible imager and the gas and dust mass spectrometers, will keep their protective covers closed for the next three or so years to guard against potential damage from the Sun during Europa Clipper’s time in the inner solar system.
Mars-Bound
Once all the instruments and engineering subsystems have been checked out, mission teams will shift their focus to Mars. On March 1, 2025, Europa Clipper will reach Mars’ orbit and begin to loop around the Red Planet, using the planet’s gravity to gain speed. (This effect is similar to how a ball thrown at a moving train will bounce off the train in another direction at a higher speed.) Mission navigators already have completed one trajectory correction maneuver, as planned, to get the spacecraft on the precise course.
At Mars, scientists plan to turn on the spacecraft’s thermal imager to capture multicolored images of Mars as a test operation. They also plan to collect data with the radar instrument so engineers can be sure it’s operating as expected.
The spacecraft will perform another gravity assist in December 2026, swooping by Earth before making the remainder of the long journey to the Jupiter system. At that time, the magnetometer will measure Earth’s magnetic field, calibrating the instrument.
More About Europa Clipper
Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, managed the launch service for the Europa Clipper spacecraft.
Find more information about Europa Clipper here:
https://science.nasa.gov/mission/europa-clipper
8 Things to Know About Europa Clipper Europa Clipper Teachable Moment NASA’s Europa Clipper Gets Its Giant Solar Arrays Kids Can Explore Europa With NASA’s Space Place News Media Contacts
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-287-4115
gretchen.p.mccartney@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-163
Share
Details
Last Updated Nov 25, 2024 Related Terms
Europa Clipper Europa Jet Propulsion Laboratory Explore More
5 min read NASA Ocean World Explorers Have to Swim Before They Can Fly
Article 5 days ago 5 min read NASA’s Curiosity Mars Rover Takes a Last Look at Mysterious Sulfur
Article 7 days ago 4 min read Precision Pointing Goes the Distance on NASA Experiment
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.