Jump to content

New TEMPO Cosmic Data Story Makes Air Quality Data Publicly Available


Recommended Posts

  • Publishers
Posted

3 min read

New TEMPO Cosmic Data Story Makes Air Quality Data Publicly Available

On May 30th, 2024, NASA and the Center for Astrophysics | Harvard & Smithsonian announced the public release of “high-quality, near real-time air quality data” from NASA’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission. The NASA Science Activation program’s Cosmic Data Stories team, led by Harvard University in Cambridge, MA, has since released a new “Data Story” – an interactive, digital showcase of new science imagery, including ideas for exploration and scientific highlights shared in a brief video and narrative text – that provides a quick and easy way for the public to visualize this important, large data set from TEMPO.

TEMPO allows unprecedented monitoring of air quality down to neighborhood scales, with its hourly daytime scans over North America. Air pollutants like NO2, produced, for example, by the burning of fossil fuels, can trigger significant health issues, especially among people with pre-existing illnesses such as asthma. The interactive views in the TEMPO Data Story provide public access to the same authentic data that scientists use and invite the public to explore patterns in their local air quality. For example, how do NO2 emissions vary in our area throughout the day and week? What are possible sources of NO2 in our community? How does our air quality compare with that of other communities with similar population densities, or with nearby urban or rural communities? TEMPO’s hyper-localized data will allow communities to make informed decisions and take action to improve their air quality.

The Cosmic Data Story team is grateful to TEMPO scientists, Xiong Liu and Caroline Nowlan, for providing the team with early access to the data and guidance on NO2 phenomena that learners can explore in the data. The TEMPO Data Story, featured on TEMPO’s webpage for the public, adds Earth science data to the portfolio of Cosmic Data Stories that is already making astrophysics data accessible to the public.

TEMPO Team Atmospheric Physicist from the Harvard-Smithsonian Center for Astrophysics, Caroline Nowlan, had this to say: “TEMPO produces data that are really useful for scientists, but are also important for the general public and policy makers. We are thrilled that the Cosmic Data Stories team has made a tool that allows everyone to explore TEMPO data and learn about pollution across North America and in their own communities.”

The Cosmic Data Stories project is supported by NASA under cooperative agreement award number 80NSSC21M0002 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

A map of North America with a colorful overlay that represents the amount of NO2 detected in a particular location on the map. The Data Story interface includes radio buttons that allow the user to select any available date, or one of 3 Featured Dates. A time slider allows the user to scrub through available times for a selected date.
A view from the TEMPO Data Story, shows TEMPO’s NO2 data overlaid on a map of North America. A large plume of NO2, caused by large wildfires, arcs from Northern California all the way to Idaho. Other “hot spots” of NO2 are seen over cities across the US, Canada, and Mexico. Users can view any available date, as well as explore some featured dates and locations that describe phenomena of interest that are visible in the data.

Share

Details

Last Updated
Aug 13, 2024
Editor
NASA Science Editorial Team

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Project F.I.R.E. team, part of Falcon Research Labs and current students at Cerritos Community College in California, is researching the use of drones to extinguish fires as part of a NASA research award called the University Student Research Challenge. From left, Logan Stahl, Juan Villa, Angel Ortega, Larisa Mayoral, Jenny Escobar, and Paola Mayoral-Jimenez.Falcon Research Labs Great ideas, and the talent and passion that bring them to life, can be found anywhere.
      In that spirit, NASA’s University Student Research Challenge (USRC) in 2024 selected its first group of community college students to contribute original research to the agency’s transformative vision for 21st century aviation.
      The student-led group, from Cerritos Community College in California, is researching a new method of safely extinguishing wildfires using eco-friendly pellets dropped from uncrewed drones they call Project F.I.R.E. (Fire Intervention Retardant Expeller).
      “Wildfires are a major problem we’re facing today,” said Angel Ortega, project technical director and lead research engineer for Project F.I.R.E. at Cerritos Community College. “The goal of our research is to demonstrate that our prototype drone with biodegradable fire retardant can successfully put out a controlled fire.”
      A Community College First
      Until now, USRC has only selected participants from traditional four-year institutions, compared to a two-year community college. This award exemplifies the activity’s goal of giving all of tomorrow’s aeronautical innovators a shot at NASA support for their research ideas.
      “The University Innovation (UI) project provides a number of different avenues for students to contribute to aeronautics,” said Steven Holz, who manages the USRC award process. “All of the opportunities are different and help build knowledge and skills that would be advantageous to those wanting to continue working on UI opportunities or within NASA.”
      This award is one of two from NASA’s USRC selected in 2024. The team received the USRC award prior to the devastating Los Angeles fires of January 2025.
      “Our thoughts are with everyone affected by this tragedy,” members of the team said in a statement. “As a team, we are deeply committed to advancing innovative solutions to enhance safety and resilience, working toward a future where communities are better protected against such disasters.”
      Innovating a Solution
      The six team members of Project F.I.R.E. are driven by an ethic of public service. As fires continue to affect communities in their native southern California, they are applying their skills to finding a way to help.
      “We want to get the public inspired that there are possible solutions at hand,” Ortega said. “And the work we’re doing now can hopefully build towards that bigger goal of a widespread solution.”
      The research they are pursuing involves dropping biodegradable pellets into fires from uncrewed, autonomous drones. The pellets, upon reaching the ground, combine chemical ingredients which create a foamlike solution of fire retardant that will not contaminate the environment after the fire is extinguished.
      Project F.I.R.E.’s innovative idea for fire suppression involves releasing eco-friendly foam pellets from uncrewed drones.Falcon Research Labs The team is keen to support firefighters and wildland fire managers and keep them safe while managing these natural disasters. The group has met with firefighters, discussed the idea with them, and received useful feedback on how to make the technology work best in the field.
      Though the group is only at the outset of the research, their idea has existed for longer.
      Blue Skies Forever
      Prior to applying for a USRC, Project F.I.R.E. also presented at NASA’s 2024 Gateway to Blue Skies competition, in which they won the “Future Game-Changer” award.
      Through Gateway to Blue Skies, NASA challenges college students to research climate-friendly technologies and applications related to the future of aviation and present them at an annual forum.
      Following Project F.I.R.E.’s participation in the forum, they applied for a USRC grant to begin turning their vision into reality.
      “Our experience with NASA has been incredibly supportive and inspiring,” said Logan Stahl, the project’s operations director. “We thought competing against some of the other schools would be intimidating, but the experience we’ve had is the complete opposite. Everyone was very welcoming, and the NASA representatives communicated with us and asked questions.”
      The USRC support will allow the team to build on their earlier foundations, they said.
      “Because Gateway to Blue Skies is more conceptual, it let us bring our idea to the table. Now through USRC, we can start building hands-on and make our idea come to life,” said Larisa Mayoral, chemical engineer and laboratory operations manager.
      The Project F.I.R.E. team receives their “Future Game-Changer” award during the 2024 Gateway to Blue Skies forum held at NASA’s Ames Research Center in California.NASA / Brandon Torres The team expressed gratitude, speaking as community college students, for their ability to participate in and contribute research at a level that competes with top-brass universities.
      “We’re very appreciative of our college and NASA providing us this opportunity,” said Paola Mayoral Jimenez, laboratory coordinator and safety manager. “By doing this project, we hope to shine a light on community colleges, their students, and what they have to offer.”
      Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page.
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      3 min read NASA Selects New Round of Student-Led Aviation Research Awards
      Article 5 days ago 3 min read NASA’s X-59 Turns Up Power, Throttles Through Engine Tests
      Article 2 weeks ago 3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Feb 23, 2025 EditorJim BankeContactAngela Surgenorangela.d.surgenor@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Flight Innovation Transformative Aeronautics Concepts Program University Innovation University Student Research Challenge View the full article
    • By NASA
      This NASA/ESA Hubble Space Telescope reveals clouds of gas and dust near the Tarantula Nebula, located in the Large Magellanic Cloud about 160,000 light-years away.ESA/Hubble & NASA, C. Murray The universe is a dusty place, as this NASA/ESA Hubble Space Telescope image featuring swirling clouds of gas and dust near the Tarantula Nebula reveals. Located in the Large Magellanic Cloud about 160,000 light-years away in the constellations Dorado and Mensa, the Tarantula Nebula is the most productive star-forming region in the nearby universe, home to the most massive stars known.
      The nebula’s colorful gas clouds hold wispy tendrils and dark clumps of dust. This dust is different from ordinary household dust, which may include bits of soil, skin cells, hair, and even plastic. Cosmic dust is often comprised of carbon or of molecules called silicates, which contain silicon and oxygen. The data in this image was part of an observing program that aims to characterize the properties of cosmic dust in the Large Magellanic Cloud and other nearby galaxies.
      Dust plays several important roles in the universe. Even though individual dust grains are incredibly tiny, far smaller than the width of a single human hair, dust grains in disks around young stars clump together to form larger grains and eventually planets. Dust also helps cool clouds of gas so that they can condense into new stars. Dust even plays a role in making new molecules in interstellar space, providing a venue for individual atoms to find each other and bond together in the vastness of space.
      View the full article
    • By Space Force
      The DARC partnership is completing construction at the first of three sites that will host a global network of advanced ground-based sensors.

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA marked a key milestone Feb. 18 with installation of RS-25 engine No. E20001, the first new production engine to help power the SLS (Space Launch System) rocket on future Artemis missions to the Moon.
      The engine, built by lead SLS engines contractor L3Harris (formerly Aerojet Rocketdyne), was installed on the Fred Haise Test Stand in preparation for acceptance testing next month. It represents the first of 24 new flight engines being built for missions, beginning with Artemis V.
      Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin The NASA Stennis test team will conduct a full-duration, 500-second hot fire, providing critical performance data to certify the engine for use on a future mission. During missions to the Moon, RS-25 engines fire for about 500 seconds and up to the 111% power level to help launch SLS, with the Orion spacecraft, into orbit.
      The engine arrived at the test stand from the L3Harris Engine Assembly Facility on the engine transport trailer before being lifted onto the vertical engine installer (VEI) on the west side deck. After rolling the engine into the stand, the team used the VEI to raise and secure it in place.
      The upcoming acceptance test follows two certification test series that helped verify the new engine production process and components meet all performance requirements. Four RS-25 engines help launch SLS, producing up to 2 million pounds of combined thrust.
      All RS-25 engines for Artemis missions are tested and proven flightworthy at NASA Stennis prior to use. RS-25 tests are conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
      Explore More NASA Stennis Images View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA / Getty Images NASA has selected two new university student teams to participate in real-world aviation research challenges meant to transform the skies above our communities.
      The research awards were made through NASA’s University Student Research Challenge (USRC), which provides students with opportunities to contribute to NASA’s flight research goals.
      This round is notable for including USRC’s first-ever award to a community college: Cerritos Community College.
      We’re trying to tap into the community college talent pool to bring new students to the table for aeronautics.
      steven holz
      NASA Project Manager
      “We’re trying to tap into the community college talent pool to bring new students to the table for aeronautics,” said Steven Holz, who manages the USRC award process. “Innovation comes from everywhere, and people with different viewpoints, educational backgrounds, and experiences like those in our community colleges are also interested in aeronautics and looking to make a difference.”
      Real World Research Awards
      Through USRC, students interact with real-world aspects of the research ecosystem both in and out of the laboratory. They will manage their own research projects, utilize state-of-the-art technology, and work alongside accomplished aeronautical researchers. Students are expected to make unique contributions to NASA’s research priorities.
      USRC provides more than just experience in technical research.
      Each team of students selected receives a USRC grant from NASA – and is tasked with the additional challenge of raising funds from the public through student-led crowdfunding. The process helps students develop skills in entrepreneurship and public communication.
      The new university teams and research topics are:
      Cerritos Community College
      “Project F.I.R.E. (Fire Intervention Retardant Expeller)” will explore how to mitigate wildfires by using environmentally friendly fire-retardant pellets dropped from drones. Cerritos Community College’s team includes lead Angel Ortega Barrera as well as Larisa Mayoral, Paola Mayoral Jimenez, Jenny Rodriguez, Logan Stahl, and Juan Villa, with faculty mentor Janet McLarty-Schroeder. This team also successfully participated with the same research topic in in NASA’s Gateway to Blue Skies competition, which aims to expand engagement between the NASA’s University Innovation project and universities, industry, and government partners.
      Colorado School of Mines
      The project “Design and Prototyping of a 9-phase Dual-Rotor Motor for Supersonic Electric Turbofan” will work on a scaled-down prototype for an electric turbofan for supersonic aircraft. The Colorado School of Mines team includes lead Mahzad Gholamian as well as Garret Reader, Mykola Mazur, and Mirali Seyedrezaei, with faculty mentor Omid Beik.
      Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page.
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      3 min read NASA’s X-59 Turns Up Power, Throttles Through Engine Tests
      Article 1 week ago 3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
      Article 1 week ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Feb 18, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Flight Innovation Transformative Aeronautics Concepts Program University Innovation University Student Research Challenge View the full article
  • Check out these Videos

×
×
  • Create New...