Members Can Post Anonymously On This Site
Automated Technology Developed at Glenn Launches to Space
-
Similar Topics
-
By NASA
NASA’s Roman Coronagraph Instrument will greatly advance our ability to directly image exoplanets, or planets and disks around other stars.
The Roman Coronagraph Instrument, a technology demonstration designed and built by NASA’s Jet Propulsion Laboratory, will fly aboard NASA’s next flagship astrophysics observatory, the Nancy Grace Roman Space Telescope.
Coronagraphs work by blocking light from a bright object, like a star, so that the observer can more easily see a nearby faint object, like a planet. The Roman Coronagraph Instrument will use a unique suite of technologies including deformable mirrors, masks, high-precision cameras, and active wavefront sensing and control to detect planets 100 million times fainter than their stars, or 100 to 1,000 times better than existing space-based coronagraphs. The Roman Coronagraph will be capable of directly imaging reflected starlight from a planet akin to Jupiter in size, temperature, and distance from its parent star.
Artwork Key
1. The Nancy Grace Roman Space Telescope
2. Exoplanet Count : Total number of exoplanets discovered at the time of poster release. This number is increasing all of the time.
3. Nancy Grace Roman’s birth year : Nancy Grace Roman was born on May 16, 1925.
4. Color Filters : Filters block different wavelengths, or colors, of light.
5. Exoplanet Camera
6. Deformable Mirrors : Adjusts the wavefront of incoming light by changing the shape of a mirror with thousands of tiny pistons.
7. Focal Plane Mask : This is a mask that helps to block starlight and reveal exoplanets.
8. Lyot Stop Mask : This is a mask that helps to block starlight and reveal exoplanets.
9. Fast Steering Mirror : This element corrects for telescope pointing jitter.
10. Additional Coronagraph Masks : These masks block most of the glare from stars to reveal faint orbiting planets and dusty debris disks.
Downloads
Download the Digital Version of Poster
Jan 14, 2025
PDF ()
Download Press Version (highest quality for print)
Jan 14, 2025
PDF ()
Keep Exploring Discover More about Roman
Latest Roman Stories
Roman Observatory
About Roman
Coronagraph
View the full article
-
By NASA
The Wide-Field Instrument (WFI), the primary instrument aboard NASA’s Nancy Grace Roman Space Telescope, is a 300-megapixel visible and infrared camera that will allow scientists to perform revolutionary astrophysics surveys.
This specialized camera detects faint light across the cosmos and will be used to study a wide range of astrophysics topics including the expansion and acceleration of our universe, planets orbiting other stars in the Milky Way, and far off galaxies.
WFI will conduct surveys to detect and measure billions of stars and galaxies along with rare phenomena that would otherwise be difficult or impossible to find. To survey large areas of sky, WFI uses a suite of 18 detectors that convert incoming light into electrical signals that are translated into images.
While Roman will operate alongside other space telescopes like Hubble, WFI’s capabilities are pushing the boundaries of what is possible. Roman’s WFI has a similar sensitivity and resolution to Hubble, but WFI will capture images that cover about 100 times more sky in a single observation and will survey the sky up to 1,000 times faster.
Artwork Key
1. The Nancy Grace Roman Space Telescope
2. Light Path : The light entering the telescope will take this path, bouncing off of multiple focusing mirrors and passing through filters or dispersers in the element wheel to reach the detectors.
3. Important Years : 1990: NASA’s Hubble Space Telescope launched. 1960: Nancy Grace Roman became NASA’s Chief Astronomer.
4. Field of View : Roman’s field of view is about 100 times larger than that of the infrared camera onboard the Hubble Space Telescope. WFI’s large field of view is achieved using an array of 18 detectors which are represented by the squares in this graphic
5. Detectors : This dial has one tick mark for each of WFI’s 18 detectors.
6. Modes : WFI has imaging and spectroscopy modes.
7. Wavelengths : WFI will observe in both visible and infrared light and can select which wavelengths reach the detectors using filters in the element wheel.
8. “Dark Energy” Drink + “Dark Matter” Candy : Roman will enable new research into the mysteries of dark energy and dark matter.
9. Science Goals : The names of these games capture WFI’s role as a survey instrument and the types of surveys it will perform.
10. Joystick : This joystick features design elements found on the WFI’s element wheel assembly, a large, rotating metal disk with optics that filter or disperse light.
Downloads
Download the Digital Version of Poster
Jan 14, 2025
PDF ()
Download Press Version (highest quality for print)
Jan 14, 2025
PDF ()
Keep Exploring Discover More about Roman
Latest Roman Stories
Roman Observatory
About Roman
Wide Field Instrument
View the full article
-
By Space Force
SECAF Kendall offers his vision for the security challenges the Air Force and Space Force could face in 2050 and what is needed to properly respond.
View the full article
-
By NASA
NASA Deputy Administrator Pam Melroy gives keynote remarks during the 37th Space Symposium, Tuesday, April 5, 2022, in Colorado Springs, Colorado. Photo Credit: (NASA/Bill Ingalls) The Rotary National Award for Space Achievement Foundation has selected NASA Deputy Administrator Pam Melroy, a retired United States Air Force colonel and former NASA astronaut, to receive the 2025 National Space Trophy on April 25 in Houston.
“This honor is not just a reflection of my journey but a testament to the incredible teams and visionaries I’ve been privileged to work alongside,” said Melroy. “Exploring space is the ultimate act of human aspiration, proving time and again that when we dream together, we achieve the impossible. Being selected for the National Space Trophy is a humbling reminder of how far we’ve come — and how much further we can go.”
Vanessa Wyche, director of NASA’s Johnson Space Center in Houston, who nominated Melroy alongside former NASA Johnson director Michael Coats, said, “Pam has brilliantly paved the way for future generations pursuing careers in STEM fields through her exemplary leadership, dedication to mission excellence, and integral contributions to the advancement of space exploration. I am thrilled and immensely proud that Pam is receiving this well-deserved recognition.”
Sworn in as NASA’s deputy administrator on June 21, 2021, Melroy assists NASA Administrator Bill Nelson on key agency decisions, defines the agency’s strategic vision, and represents NASA to key government and international partners.
Melroy first joined NASA as an astronaut in 1994 and holds the distinction of being only one of two women to command a space shuttle. She spent more than 38 days in space across three space shuttle missions, all contributing to the assembly of the International Space Station. She served as pilot for STS-92 in 2000 and STS-112 in 2002, and she commanded STS-120 in 2007.
After serving more than two decades in the U.S. Air Force and as a NASA astronaut, Melroy transitioned to leadership roles at Lockheed Martin, the Federal Aviation Administration, the Defense Advanced Research Projects Agency, and Nova Systems Pty, Australia. Additionally, she was as an advisor to the Australian Space Agency and a member of the National Space Council’s Users Advisory Group.
The Rotary National Award for Space Achievement Foundation invites members of the public and the aerospace community to attend the Space Awards gala where Melroy will be recognized with the National Space Trophy. For more information on Melroy, visit:
https://www.nasa.gov/people/nasa-deputy-administrator-pam-melroy/
-end-
Amber Jacobson
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov
Share
Details
Last Updated Jan 14, 2025 LocationNASA Headquarters Related Terms
Pamela A. Melroy Astronauts View the full article
-
By NASA
A collage of artist concepts highlighting the novel approaches proposed by the 2025 NIAC awardees for possible future missions.Credit: NASA/Left to Right: Saurabh Vilekar, Marco Quadrelli, Selim Shahriar, Gyula Greschik, Martin Bermudez, Ryan Weed, Ben Hockman, Robert Hinshaw, Christine Gregg, Ryan Benson, Michael Hecht NASA selected 15 visionary ideas for its NIAC (NASA Innovative Advanced Concepts) program which develops concepts to transform future missions for the benefit of all. Chosen from companies and institutions across the United States, the 2025 Phase I awardees represent a wide range of aerospace concepts.
The NIAC program nurtures innovation by funding early-stage technology concept studies for future consideration and potential commercialization. The combined award for the 2025 concepts is a maximum of $2.625M in grants to evaluate technologies that could enable future aerospace missions.
“Our next steps and giant leaps rely on innovation, and the concepts born from NIAC can radically change how we explore deep space, work in low Earth orbit, and protect our home planet” said Clayton Turner, associate administrator for NASA’s Space Technology Mission Directorate in Washington. “From developing small robots that could swim through the oceans of other worlds to growing space habitats from fungi, this program continues to change the possible.”
The newly selected concepts include feasibility studies to explore the Sun’s influence on our solar system, build sustainable lunar habitats from glass, explore Saturn’s icy moon, and more. All NIAC studies are in the early stages of conceptual development and are not considered official NASA missions.
Ryan Weed, Helicity Space LLC in Pasadena, California, proposes a constellation of spacecraft powered by the Helicity Drive, a compact and scalable fusion propulsion system, that could enable rapid, multi-directional exploration of the heliosphere and beyond, providing unprecedented insights on how the Sun interacts with our solar system and interstellar space. Demonstrating the feasibility of fusion propulsion could also benefit deep space exploration including crewed missions to Mars.
Martin Bermudez, Skyeports LLC in Sacramento, California, presents the concept of constructing a large-scale, lunar glass habitat in a low-gravity environment. Nicknamed LUNGS (Lunar Glass Structure), this approach involves melting lunar glass compounds to create a large spherical shell structure. This idea offers a promising solution for establishing self-sustaining, large-scale habitats on the lunar surface.
Justin Yim, University of Illinois in Urbana, proposes a jumping robot appropriately named LEAP (Legged Exploration Across the Plume), as a novel robotic sampling concept to explore Enceladus, a small, icy moon of Saturn that’s covered in geysers, or jets. The LEAP robots could enable collection of pristine, ocean-derived material directly from Enceladus’s jets and measurement of particle properties across multiple jets by traveling from one to another.
“All advancements begin as an idea. The NIAC program allows NASA to invest in unique ideas enabling innovation and supporting the nation’s aerospace economy,” said John Nelson, program executive for NASA’s Innovative Advanced Concepts in Washington.
The NIAC researchers, known as fellows, will investigate the fundamental premise of their concepts, identify potential challenges, and look for opportunities to bring these concepts to life.
In addition to the projects mentioned above, the following selectees received 2025 NIAC Phase I grants:
Michael Hecht, Massachusetts Institute of Technology, Cambridge: EVE (Exploring Venus with Electrolysis) Selim Shahriar, Northwestern University, Evanston, Illinois: SUPREME-QG: Space-borne Ultra-Precise Measurement of the Equivalence Principle Signature of Quantum Gravity Phillip Ansell, University of Illinois, Urbana: Hy2PASS (Hydrogen Hybrid Power for Aviation Sustainable Systems) Ryan Benson, ThinkOrbital Inc., Boulder, Colorado: Construction Assembly Destination Gyula Greschik, Tentguild Engineering Co, Boulder, Colorado: The Ribbon: Structure Free Sail for Solar Polar Observation Marco Quadrelli, NASA’s Jet Propulsion Laboratory in California’s Silicon Valley: PULSAR: Planetary pULSe-tAkeRv Ben Hockman, NASA’s Jet Propulsion Laboratory in California’s Silicon Valley: TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling Kimberly Weaver, NASA’s Goddard Space Flight Center in Greenbelt, Maryland: Beholding Black Hole Power with the Accretion Explorer Interferometer John Mather NASA’s Goddard Space Flight Center in Greenbelt, Maryland: Inflatable Starshade for Earthlike Exoplanets Robert Hinshaw, NASA’s Ames Research Center in Moffett Field, California: MitoMars: Targeted Mitochondria Replacement Therapy to Boost Deep Space Endurance Christine Gregg, NASA’s Ames Research Center in Moffett Field, California: Dynamically Stable Large Space Structures via Architected Metamaterials Saurabh Vilekar, Precision Combustion, North Haven, Connecticut: Thermo-Photo-Catalysis of Water for Crewed Mars Transit Spacecraft Oxygen Supply NASA’s Space Technology Mission Directorate funds the NIAC program, as it is responsible for developing the agency’s new cross-cutting technologies and capabilities to achieve its current and future missions.
To learn more about NIAC, visit:
https://www.nasa.gov/niac
-end-
Jasmine Hopkins
Headquarters, Washington
321-431-4624
jasmine.s.hopkins@nasa.gov
Share
Details
Last Updated Jan 10, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
NASA Innovative Advanced Concepts (NIAC) Program Space Technology Mission Directorate View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.