Jump to content

Recommended Posts

  • Publishers
Posted
In this clip, engineers are testing the the Nancy Grace Roman Space Telescope’s Deployable Aperture Cover. This component is responsible for keeping light out of the telescope barrel. It will be deployed once in orbit using a soft material attached to support booms and remains in this position throughout the observatory’s lifetime. Credit: NASA’s Goddard Space Flight Center

The “visor” for NASA’s Nancy Grace Roman Space Telescope recently completed several environmental tests simulating the conditions it will experience during launch and in space. Called the Deployable Aperture Cover, this large sunshade is designed to keep unwanted light out of the telescope. This milestone marks the halfway point for the cover’s final sprint of testing, bringing it one step closer to integration with Roman’s other subsystems this fall.

Designed and built at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, the Deployable Aperture Cover consists of two layers of reinforced thermal blankets, distinguishing it from previous hard aperture covers, like those on NASA’s Hubble. The sunshade will remain folded during launch and deploy after Roman is in space via three booms that spring upward when triggered electronically. 

“With a soft deployable like the Deployable Aperture Cover, it’s very difficult to model and precisely predict what it’s going to do — you just have to test it,” said Matthew Neuman, a Deployable Aperture Cover mechanical engineer at Goddard. “Passing this testing now really proves that this system works.”

Roman's Deployable Aperture Cover
After a successful test deployment at NASA’s Goddard Space Flight Center in Greenbelt, Md., clean room technicians inspect the Deployable Aperture Cover for NASA’s Nancy Grace Roman Space Telescope.
NASA/Chris Gunn

During its first major environmental test, the sunshade endured conditions simulating what it will experience in space. It was sealed inside NASA Goddard’s Space Environment Simulator — a massive chamber that can achieve extremely low pressure and a wide range of temperatures. Technicians placed the DAC near six heaters — a Sun simulator — and thermal simulators representing Roman’s Outer Barrel Assembly and Solar Array Sun Shield. Since these two components will eventually form a subsystem with the Deployable Aperture Cover, replicating their temperatures allows engineers to understand how heat will actually flow when Roman is in space. 

When in space, the sunshade is expected to operate at minus 67 degrees Fahrenheit, or minus 55 degrees Celsius. However, recent testing cooled the cover to minus 94 degrees Fahrenheit, or minus 70 degrees Celsius — ensuring that it will work even in unexpectedly cold conditions. Once chilled, technicians triggered its deployment, carefully monitoring through cameras and sensors onboard. Over the span of about a minute, the sunshade successfully deployed, proving its resilience in extreme space conditions.

“This was probably the environmental test we were most nervous about,” said Brian Simpson, project design lead for the Deployable Aperture Cover at NASA Goddard. “If there’s any reason that the Deployable Aperture Cover would stall or not completely deploy, it would be because the material became frozen stiff or stuck to itself.”

brian-simpson.jpg?w=2048
Brian Simpson, product design lead at NASA’s Goddard Space Flight Center, adjusts sensors on the Deployable Aperture Cover for NASA’s Nancy Grace Roman Space Telescope. The sensors will collect data on the DAC’s response to testing.
NASA/Chris Gunn

If the sunshade were to stall or partially deploy, it would obscure Roman’s view, severely limiting the mission’s science capabilities.

After passing thermal vacuum testing, the sunshade underwent acoustic testing to simulate the launch’s intense noises, which can cause vibrations at higher frequencies than the shaking of the launch itself. During this test, the sunshade remained stowed, hanging inside one of Goddard’s acoustic chambers — a large room outfitted with two gigantic horns and hanging microphones to monitor sound levels. 

With the sunshade plastered in sensors, the acoustic test ramped up in noise level, eventually subjecting the cover to one full minute at 138 decibels — louder than a jet plane’s takeoff at close range! Technicians attentively monitored the sunshade’s response to the powerful acoustics and gathered valuable data, concluding that the test succeeded.

Roman's Deployable Aperture Cover
Technicians prepare for acoustic testing at NASA’s Goddard Space Flight Center in Greenbelt, Md. During testing, the Deployable Aperture Cover for NASA’s Nancy Grace Roman Space Telescope was suspended in the air and exposed to 138 decibels for one full minute to simulate launch’s intense noise.
NASA/Chris Gunn

“For the better part of a year, we’ve been building the flight assembly,” Simpson said. “We’re finally getting to the exciting part where we get to test it. We’re confident that we’ll get through with no problem, but after each test we can’t help but breathe a collective sigh of relief!”

Next, the Deployable Aperture Cover will undergo its two final phases of testing. These assessments will measure the sunshade’s natural frequency and response to the launch’s vibrations. Then, the Deployable Aperture Cover will integrate with the Outer Barrel Assembly and Solar Array Sun Shield this fall.

For more information about the Roman Space Telescope, visit NASA’s website. To virtually tour an interactive version of the telescope, visit:

https://roman.gsfc.nasa.gov/interactive

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.

Download high-resolution video and images from NASA’s Scientific Visualization Studio

By Laine Havens
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media contact:
Claire Andreoli
claire.andreoli@nasa.gov

NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

Share

Details

Last Updated
Aug 09, 2024
Editor
Ashley Balzer
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Jared Isaacman Senate Nomination Hearing for NASA Administrator
    • By Space Force
      These Firm Fixed-Price, Indefinite-Delivery Requirements contracts were awarded to SpaceX, United Launch Services, and Blue Origin to provide critical space support to meet national security objectives.

      View the full article
    • By NASA
      Credit: NASA NASA acting Administrator Janet Petro and acting Associate Administrator Vanessa Wyche will lead the agency’s delegation at the 40th Space Symposium, Monday, April 7 through Thursday, April 10, in Colorado Springs, Colorado.
      Petro will join Space Foundation Chief Executive Officer Heather Pringle for a fireside chat to discuss NASA’s current priorities and partnerships at 12:15 p.m. EDT on Tuesday, April 8.
      Additional NASA participation in the conference includes a one-on-one discussion with Nicola Fox, associate administrator, Science Mission Directorate, and a lunar science and exploration panel featuring Lori Glaze, acting associate administrator, Exploration Systems Development Mission Directorate.
      A full agenda for this year’s Space Symposium is available online.
      Conference attendees will have the opportunity to learn more about NASA’s missions and projects on a variety of topics during brief talks with subject matter experts in the agency’s exhibit space.
      NASA will provide photos and updates about its participation in the Space Symposium from its @NASAExhibit account on X.
      For more information about NASA, visit:
      https://www.nasa.gov
      -end-
      Amber Jacobson
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov
      Share
      Details
      Last Updated Apr 04, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Leadership Exploration Systems Development Mission Directorate Science Mission Directorate View the full article
    • By NASA
      NASA/Josh Valcarcel NASA astronaut Jonny Kim poses for a portrait while wearing a spacesuit on July 17, 2024. In his first mission, Kim will serve as a flight engineer during Expedition 72/73 on the International Space Station. He will launch aboard the Soyuz MS-27 spacecraft on Tuesday, April 8.
      Chosen by NASA in 2017, Kim is a decorated naval officer and medical doctor. He completed two years of training as an Astronaut Candidate; training included technical and operational instruction in International Space Station systems, Extravehicular Activities Operations, T-38 flight training, robotics, physiological training, expeditionary training, field geology, water and wilderness survival training, and Russian language proficiency training. In 2020, Kim began his support of International Space Station operations as a Capsule Communicator (CapCom) in Mission Control Center Houston and the Artemis program under the astronaut Exploration branch. He served as the International Space Station’s Increment Lead for Expedition 65 in 2021. He has continued to support mission and crew operations in various roles within the astronaut office including serving as the Operations Officer, T-38 Liaison to the Aircraft Operations Division and the interim ISS CapCom Chief Engineer.
      Image credit: NASA/Josh Valcarcel
      View the full article
    • By NASA
      NASA has selected 12 student teams to develop solutions for storing and transferring the super-cold liquid propellants needed for future long-term exploration beyond Earth orbit.
      The agency’s 2025 Human Lander Challenge is designed to inspire and engage the next generation of engineers and scientists as NASA and its partners prepare to send astronauts to the Moon through the Artemis campaign in preparation for future missions to Mars. The commercial human landing systems will serve as the primary mode of transportation that will safely take astronauts and, later, large cargo from lunar orbit to the surface of the Moon and back.
      For its second year, the competition invites university students and their faculty advisors to develop innovative, “cooler” solutions for in-space cryogenic, or super cold, liquid propellant storage and transfer systems. These cryogenic fluids, like liquid hydrogen or liquid oxygen, must stay extremely cold to remain in a liquid state, and the ability to effectively store and transfer them in space will be increasingly vital for future long-duration missions. Current technology allows cryogenic liquids to be stored for a relatively short amount of time, but future missions will require these systems to function effectively over several hours, weeks, and even months.
      The 12 selected finalists have been awarded a $9,250 development stipend to further develop their concepts in preparation for the next stage of the competition.
      The 2025 Human Lander Challenge finalist teams are:
      California State Polytechnic University, Pomona, “THERMOSPRING: Thermal Exchange Reduction Mechanism using Optimized SPRING” Colorado School of Mines, “MAST: Modular Adaptive Support Technology” Embry-Riddle Aeronautical University, “Electrical Capacitance to High-resolution Observation (ECHO)” Jacksonville University, “Cryogenic Complex: Cryogenic Tanks and Storage Systems – on the Moon and Cislunar Orbit” Jacksonville University, “Cryogenic Fuel Storage and Transfer: The Human Interface – Monitoring and Mitigating Risks” Massachusetts Institute of Technology, “THERMOS: Translunar Heat Rejection and Mixing for Orbital Sustainability” Old Dominion University, “Structural Tensegrity for Optimized Retention in Microgravity (STORM)” Texas A&M University, “Next-generation Cryogenic Transfer and Autonomous Refueling (NeCTAR)” The College of New Jersey, “Cryogenic Orbital Siphoning System (CROSS)” The Ohio State University, “Autonomous Magnetized Cryo-Couplers with Active Alignment Control for Propellant Transfer (AMCC-AAC) University of Illinois, Urbana-Champaign, “Efficient Cryogenic Low Invasive Propellant Supply Exchange (ECLIPSE)” Washington State University, “CRYPRESS Coupler for Liquid Hydrogen Transfer” Finalist teams will now work to submit a technical paper further detailing their concepts. They will present their work to a panel of NASA and industry judges at the 2025 Human Lander Competition Forum in Huntsville, Alabama, near NASA’s Marshall Space Flight Center, in June 2025. The top three placing teams will share a total prize purse of $18,000.
      “By engaging college students in solving critical challenges in cryogenic fluid technologies and systems-level solutions, NASA fosters a collaborative environment where academic research meets practical application,” said Tiffany Russell Lockett, office manager for the Human Landing System Mission Systems Management Office at NASA Marshall. “This partnership not only accelerates cryogenics technology development but also prepares the Artemis Generation – the next generation of engineers and scientists – to drive future breakthroughs in spaceflight.”
      NASA’s Human Lander Challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
      For more information on NASA’s 2025 Human Lander Challenge, including team progress, visit the challenge website.
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
  • Check out these Videos

×
×
  • Create New...