Members Can Post Anonymously On This Site
NASA Tests Deployment of Roman Space Telescope’s ‘Visor’
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Project F.I.R.E. team, part of Falcon Research Labs and current students at Cerritos Community College in California, is researching the use of drones to extinguish fires as part of a NASA research award called the University Student Research Challenge. From left, Logan Stahl, Juan Villa, Angel Ortega, Larisa Mayoral, Jenny Escobar, and Paola Mayoral-Jimenez.Falcon Research Labs Great ideas, and the talent and passion that bring them to life, can be found anywhere.
In that spirit, NASA’s University Student Research Challenge (USRC) in 2024 selected its first group of community college students to contribute original research to the agency’s transformative vision for 21st century aviation.
The student-led group, from Cerritos Community College in California, is researching a new method of safely extinguishing wildfires using eco-friendly pellets dropped from uncrewed drones they call Project F.I.R.E. (Fire Intervention Retardant Expeller).
“Wildfires are a major problem we’re facing today,” said Angel Ortega, project technical director and lead research engineer for Project F.I.R.E. at Cerritos Community College. “The goal of our research is to demonstrate that our prototype drone with biodegradable fire retardant can successfully put out a controlled fire.”
A Community College First
Until now, USRC has only selected participants from traditional four-year institutions, compared to a two-year community college. This award exemplifies the activity’s goal of giving all of tomorrow’s aeronautical innovators a shot at NASA support for their research ideas.
“The University Innovation (UI) project provides a number of different avenues for students to contribute to aeronautics,” said Steven Holz, who manages the USRC award process. “All of the opportunities are different and help build knowledge and skills that would be advantageous to those wanting to continue working on UI opportunities or within NASA.”
This award is one of two from NASA’s USRC selected in 2024. The team received the USRC award prior to the devastating Los Angeles fires of January 2025.
“Our thoughts are with everyone affected by this tragedy,” members of the team said in a statement. “As a team, we are deeply committed to advancing innovative solutions to enhance safety and resilience, working toward a future where communities are better protected against such disasters.”
Innovating a Solution
The six team members of Project F.I.R.E. are driven by an ethic of public service. As fires continue to affect communities in their native southern California, they are applying their skills to finding a way to help.
“We want to get the public inspired that there are possible solutions at hand,” Ortega said. “And the work we’re doing now can hopefully build towards that bigger goal of a widespread solution.”
The research they are pursuing involves dropping biodegradable pellets into fires from uncrewed, autonomous drones. The pellets, upon reaching the ground, combine chemical ingredients which create a foamlike solution of fire retardant that will not contaminate the environment after the fire is extinguished.
Project F.I.R.E.’s innovative idea for fire suppression involves releasing eco-friendly foam pellets from uncrewed drones.Falcon Research Labs The team is keen to support firefighters and wildland fire managers and keep them safe while managing these natural disasters. The group has met with firefighters, discussed the idea with them, and received useful feedback on how to make the technology work best in the field.
Though the group is only at the outset of the research, their idea has existed for longer.
Blue Skies Forever
Prior to applying for a USRC, Project F.I.R.E. also presented at NASA’s 2024 Gateway to Blue Skies competition, in which they won the “Future Game-Changer” award.
Through Gateway to Blue Skies, NASA challenges college students to research climate-friendly technologies and applications related to the future of aviation and present them at an annual forum.
Following Project F.I.R.E.’s participation in the forum, they applied for a USRC grant to begin turning their vision into reality.
“Our experience with NASA has been incredibly supportive and inspiring,” said Logan Stahl, the project’s operations director. “We thought competing against some of the other schools would be intimidating, but the experience we’ve had is the complete opposite. Everyone was very welcoming, and the NASA representatives communicated with us and asked questions.”
The USRC support will allow the team to build on their earlier foundations, they said.
“Because Gateway to Blue Skies is more conceptual, it let us bring our idea to the table. Now through USRC, we can start building hands-on and make our idea come to life,” said Larisa Mayoral, chemical engineer and laboratory operations manager.
The Project F.I.R.E. team receives their “Future Game-Changer” award during the 2024 Gateway to Blue Skies forum held at NASA’s Ames Research Center in California.NASA / Brandon Torres The team expressed gratitude, speaking as community college students, for their ability to participate in and contribute research at a level that competes with top-brass universities.
“We’re very appreciative of our college and NASA providing us this opportunity,” said Paola Mayoral Jimenez, laboratory coordinator and safety manager. “By doing this project, we hope to shine a light on community colleges, their students, and what they have to offer.”
Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
3 min read NASA Selects New Round of Student-Led Aviation Research Awards
Article 5 days ago 3 min read NASA’s X-59 Turns Up Power, Throttles Through Engine Tests
Article 2 weeks ago 3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Feb 23, 2025 EditorJim BankeContactAngela Surgenorangela.d.surgenor@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Flight Innovation Transformative Aeronautics Concepts Program University Innovation University Student Research Challenge View the full article
-
By NASA
Credit: NASA NASA has selected SpaceX of Starbase, Texas, to provide launch services for the Near-Earth Object (NEO) Surveyor mission, which will detect and observe asteroids and comets that could potentially pose an impact threat to Earth.
The firm fixed price launch service task order is being awarded under the indefinite delivery/indefinite quantity NASA Launch Services II contract. The total cost to NASA for the launch service is approximately $100 million, which includes the launch service and other mission related costs. The NEO Surveyor mission is targeted to launch no earlier than September 2027 on a SpaceX Falcon 9 rocket from Florida.
The NEO Surveyor mission consists of a single scientific instrument: an almost 20-inch (50-centimeter) diameter telescope that will operate in two heat-sensing infrared wavelengths. It will be capable of detecting both bright and dark asteroids, the latter being the most difficult type to find with existing assets. The space telescope is designed to help advance NASA’s planetary defense efforts to discover and characterize most of the potentially hazardous asteroids and comets that come within 30 million miles of Earth’s orbit. These are collectively known as near-Earth objects, or NEOs.
The mission will carry out a five-year baseline survey to find at least two-thirds of the unknown NEOs larger than 140 meters (460 feet). These are the objects large enough to cause major regional damage in the event of an Earth impact. By using two heat-sensitive infrared imaging channels, the telescope can also make more accurate measurements of the sizes of NEOs and gain information about their composition, shapes, rotational states, and orbits.
The mission is tasked by NASA’s Planetary Science Division within the agency’s Science Mission Directorate at NASA Headquarters in Washington. Program oversight is provided by NASA’s Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center in Huntsville, Alabama, provides program management for NEO Surveyor. The project is being developed by NASA’s Jet Propulsion Laboratory in Southern California.
Multiple aerospace and engineering companies are contracted to build the spacecraft and its instrumentation, including BAE Systems SMS (Space & Mission Systems), Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, will support operations, and the Infrared Processing and Analysis Center at the California Institute of Technology (Caltech) in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA. Mission team leadership includes the University of California, Los Angeles. NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is responsible for managing the launch service.
For more information about NEO Surveyor, visit:
https://science.nasa.gov/mission/neo-surveyor/
-end-
Tiernan Doyle / Joshua Finch
Headquarters, Washington
202-358-1600 / 202-358-1100
tiernan.doyle@nasa.gov / joshua.a.finch@nasa.gov
Patti Bielling
Kennedy Space Center, Florida
321-501-7575
patricia.a.bielling@nasa.gov
Share
Details
Last Updated Feb 21, 2025 LocationNASA Headquarters Related Terms
Kennedy Space Center Launch Services Office Launch Services Program NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Coordination Office Planetary Science Division Science Mission Directorate Space Operations Mission Directorate View the full article
-
By NASA
Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit. Thales Alenia Space Through the Artemis campaign, NASA will send astronauts on missions to and around the Moon. The agency and its international partners report progress continues on Gateway, the first space station that will permanently orbit the Moon, after visiting the Thales Alenia Space facility in Turin, Italy, where initial fabrication for one of two Gateway habitation modules is nearing completion.
Leaders from NASA, ESA (European Space Agency), and the Italian Space Agency, as well as industry representatives from Northrop Grumman and Thales Alenia Space, were in Turin to assess Gateway’s HALO (Habitation and Logistics Outpost) module before its primary structure is shipped from Italy to Northrop Grumman’s Gilbert, Arizona site in March. Following final outfitting and verification testing, the module will be integrated with the Power and Propulsion Element at NASA’s Kennedy Space Center in Florida.
“Building and testing hardware for Gateway is truly an international collaboration,” said Jon Olansen, manager, Gateway Program, at NASA’s Johnson Space Center in Houston. “We’re excited to celebrate this major flight hardware milestone, and this is just the beginning – there’s impressive and important progress taking shape with our partners around the globe, united by our shared desire to expand human exploration of our solar system while advancing scientific discovery.”
Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit.Thales Alenia Space To ensure all flight hardware is ready to support Artemis IV — the first crewed mission to Gateway – NASA is targeting the launch of HALO and the Power and Propulsion Element no later than December 2027. These integrated modules will launch aboard a SpaceX Falcon Heavy rocket and spend about a year traveling uncrewed to lunar orbit, while providing scientific data on solar and deep space radiation during transit.
Launching atop HALO will be ESA’s Lunar Link communication system, which will provide high-speed communication between the Moon and Gateway. The system is undergoing testing at another Thales Alenia Space facility in Cannes, France.
Once in lunar orbit, Gateway will continue scientific observations while awaiting the arrival of Artemis IV astronauts aboard an Orion spacecraft which will deliver and dock Gateway’s second pressurized habitable module, the ESA-led Lunar I-Hab. Thales Alenia Space, ESA’s primary contractor for the Lunar I-Hab and Lunar View refueling module, has begun production of the Lunar I-Hab, and design of Lunar View in Turin.
Teams from NASA and ESA (European Space Agency), including NASA astronaut Stan Love (far right) and ESA astronaut Luca Parmitano (far left) help conduct human factors testing inside a mockup of Gateway’s Lunar I-Hab module.Thales Alenia Space Northrop Grumman and its subcontractor, Thales Alenia Space, completed welding of HALO in 2024, and the module successfully progressed through pressure and stress tests to ensure its suitability for the harsh environment of deep space.
Maxar Space Systems is assembling the Power and Propulsion Element, which will make Gateway the most powerful solar electric propulsion spacecraft ever flown. Major progress in 2024 included installation of Xenon and chemical propulsion fuel tanks, and qualification of the largest roll-out solar arrays ever built. NASA and its partners will complete propulsion element assembly, and acceptance and verification testing of next-generation electric propulsion thrusters this year.
The main bus of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems SpaceX will provide both the Starship human landing system that will land astronauts on the lunar surface during NASA’s Artemis III mission and ferry astronauts from Gateway to the lunar South Pole region during Artemis IV, as well as provide logistics spacecraft to support crewed missions.
NASA also has selected Blue Origin to develop Blue Moon, the human landing system for Artemis V, as well as logistics spacecraft for future Artemis missions. Having two distinct lunar landing designs provides flexibility and supports a regular cadence of Moon landings in preparation for future missions to Mars.
CSA (Canadian Space Agency) is developing Canadarm3, an advanced robotics system, and JAXA (Japan Aerospace Exploration Agency) is designing and testing Lunar I-Hab’s vital life support systems, batteries, and a resupply and logistics vehicle called HTV-XG.
NASA’s newest Gateway partner, the Mohammad Bin Rashid Space Centre (MBRSC) of the United Arab Emirates, kicked off early design for the Gateway Crew and Science Airlock that will be delivered on Artemis VI. The selection of Thales Alenia Space as its airlock prime contractor was announced by MBRSC on Feb. 4.
Development continues to advance on three radiation-focused initial science investigations aboard Gateway. These payloads will help scientists better understand unpredictable space weather from the Sun and galactic cosmic rays that will affect astronauts and equipment during Artemis missions to the Moon and beyond.
The Gateway lunar space station is a multi-purpose platform that offers capabilities for long-term exploration in deep space in support of NASA’s Artemis campaign and Moon to Mars objectives. Gateway will feature docking ports for a variety of visiting spacecraft, as well as space for crew to live, work, and prepare for lunar surface missions. As a testbed for future journeys to Mars, continuous investigations aboard Gateway will occur with and without crew to better understand the long-term effects of deep space radiation on vehicle systems and the human body as well as test and operate next generation spacecraft systems that will be necessary to send humans to Mars.
Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
Details
Last Updated Feb 21, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station Humans in Space Johnson Space Center Explore More
2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
A key element of the Gateway lunar space station has entered the cleanroom for final…
Article 1 week ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
Article 1 month ago 2 min read Gateway Tops Off
Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
Article 3 months ago Keep Exploring Discover More Topics From NASA
Humans In Space
Orion Spacecraft
Human Landing System
Extravehicular Activity and Human Surface Mobility
View the full article
-
By NASA
6 Min Read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind
Earth is immersed in material streaming from the Sun. This stream, called the solar wind, is washing over our planet, causing breathtaking auroras, impacting satellites and astronauts in space, and even affecting ground-based infrastructure.
NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will be the first to image the Sun’s corona, or outer atmosphere, and solar wind together to better understand the Sun, solar wind, and Earth as a single connected system.
Launching no earlier than Feb. 28, 2025, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, PUNCH will provide scientists with new information about how potentially disruptive solar events form and evolve. This could lead to more accurate predictions about the arrival of space weather events at Earth and impact on humanity’s robotic explorers in space.
“What we hope PUNCH will bring to humanity is the ability to really see, for the first time, where we live inside the solar wind itself,” said Craig DeForest, principal investigator for PUNCH at Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado.
This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14773.
Video credit: NASA’s Goddard Space Flight Center Seeing Solar Wind in 3D
The PUNCH mission’s four suitcase-sized satellites have overlapping fields of view that combine to cover a larger swath of sky than any previous mission focused on the corona and solar wind. The satellites will spread out in low Earth orbit to construct a global view of the solar corona and its transition to the solar wind. They will also track solar storms like coronal mass ejections (CMEs). Their Sun-synchronous orbit will enable them to see the Sun 24/7, with their view only occasionally blocked by Earth.
Typical camera images are two dimensional, compressing the 3D subject into a flat plane and losing information. But PUNCH takes advantage of a property of light called polarization to reconstruct its images in 3D. As the Sun’s light bounces off material in the corona and solar wind, it becomes polarized — meaning the light waves oscillate in a particular way that can be filtered, much like how polarized sunglasses filter out glare off of water or metal. Each PUNCH spacecraft is equipped with a polarimeter that uses three distinct polarizing filters to capture information about the direction that material is moving that would be lost in typical images.
“This new perspective will allow scientists to discern the exact trajectory and speed of coronal mass ejections as they move through the inner solar system,” said DeForest. “This improves on current instruments in two ways: with three-dimensional imaging that lets us locate and track CMEs which are coming directly toward us; and with a broad field of view, which lets us track those CMEs all the way from the Sun to Earth.”
All four spacecraft are synchronized to serve as a single “virtual instrument” that spans the whole PUNCH constellation.
Crews conduct additional solar array deployment testing for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located on Vandenberg Space Force Base in California on Wednesday, Jan. 22, 2025. USSF 30th Space Wing/Alex Valdez The PUNCH satellites include one Narrow Field Imager and three Wide Field Imagers. The Narrow Field Imager (NFI) is a coronagraph, which blocks out the bright light from the Sun to better see details in the Sun’s corona, recreating what viewers on Earth see during a total solar eclipse when the Moon blocks the face of the Sun — a narrower view that sees the solar wind closer to the Sun. The Wide Field Imagers (WFI) are heliospheric imagers that view the very faint, outermost portion of the solar corona and the solar wind itself — giving a wide view of the solar wind as it spreads out into the solar system.
“I’m most excited to see the ‘inbetweeny’ activity in the solar wind,” said Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This means not just the biggest structures, like CMEs, or the smallest interactions, but all the different types of solar wind structures that fill that in between area.”
When these solar wind structures from the Sun reach Earth’s magnetic field, they can drive dynamics that affect Earth’s radiation belts. To launch spacecraft through these belts, including ones that will carry astronauts to the Moon and beyond, scientists need to understand the solar wind structure and changes in this region.
Building Off Other Missions
“The PUNCH mission is built on the shoulders of giants,” said Madhulika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington. “For decades, heliophysics missions have provided us with glimpses of the Sun’s corona and the solar wind, each offering critical yet partial views of our dynamic star’s influence on the solar system.”
When scientists combine data from PUNCH and NASA’s Parker Solar Probe, which flies through the Sun’s corona, they will see both the big picture and the up-close details. Working together, Parker Solar Probe and PUNCH span a field of view from a little more than half a mile (1 kilometer) to over 160 million miles (about 260 million kilometers).
Additionally, the PUNCH team will combine their data with diverse observations from other missions, like NASA’s CODEX (Coronal Diagnostic Experiment) technology demonstration, which views the corona even closer to the surface of the Sun from its vantage point on the International Space Station. PUNCH’s data also complements observations from NASA’s EZIE (Electrojet Zeeman Imaging Explorer) — targeted for launch in March 2025 — which investigates the magnetic field perturbations associated with Earth’s high-altitude auroras that PUNCH will also spot in its wide-field view.
A conceptual animation showing the heliosphere, the vast bubble that is generated by the Sun’s magnetic field and envelops all the planets.
NASA’s Goddard Space Flight Center Conceptual Image Lab As the solar wind that PUNCH will observe travels away from the Sun and Earth, it will then be studied by the IMAP (Interstellar Mapping and Acceleration Probe) mission, which is targeting a launch in 2025.
“The PUNCH mission will bridge these perspectives, providing an unprecedented continuous view that connects the birthplace of the solar wind in the corona to its evolution across interplanetary space,” said Guhathakurta.
The PUNCH mission is scheduled to conduct science for at least two years, following a 90-day commissioning period after launch. The mission is launching as a rideshare with the agency’s next astrophysics observatory, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer).
“PUNCH is the latest heliophysics addition to the NASA fleet that delivers groundbreaking science every second of every day,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “Launching this mission as a rideshare bolsters its value to the nation by optimizing every pound of launch capacity to maximize the scientific return for the cost of a single launch.”
The PUNCH mission is led by Southwest Research Institute’s offices in San Antonio, Texas, and Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA Goddard for NASA’s Science Mission Directorate in Washington.
By Abbey Interrante
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Header Image:
An artist’s concept showing the four PUNCH satellites orbiting Earth.
Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab
Share
Details
Last Updated Feb 21, 2025 Related Terms
Heliophysics Coronal Mass Ejections Goddard Space Flight Center Heliophysics Division Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate Solar Wind Space Weather The Sun Explore More
2 min read Hubble Spies a Spiral That May Be Hiding an Imposter
Article
3 hours ago
3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
Article
3 days ago
2 min read NASA Science: Being Responsive to Executive Orders
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 Min Read NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response
Pilot in command Brayden Chamberlain performs pre-flight checks on the NASA Alta X quadcopter during the FireSense uncrewed aerial system (UAS) technology demonstration in Missoula.<p class="MsoNormal" style="margin: 0in;font-size: 12pt;font-family: Aptos, sans-serif"><span style="font-size: 10pt;font-family: Arial, sans-serif"><span class="msoIns" style="color: teal"><ins cite="mailto:Tabor,%20Abby%20(ARC-DO)" datetime="2025-02-11T16:38"></ins></span></span></p> Credits: NASA/Milan Loiacono In Aug. 2024, a team of NASA researchers and partners gathered in Missoula, to test new drone-based technology for localized forecasting, or micrometeorology. Researchers attached wind sensors to a drone, NASA’s Alta X quadcopter, aiming to provide precise and sustainable meteorological data to help predict fire behavior.
Wildfires are increasing in number and severity around the world, including the United States, and wind is a major factor. It leads to unexpected and unpredictable fire growth, public threats, and fire fatalities, making micrometeorology a very effective tool to combat fire.
This composite image shows the NASA Alta X quadcopter taking off during one of eight flights it performed for the 2024 FireSense UAS technology demonstration in Missoula. Mounted on top of the drone is a unique infrastructure designed at NASA’s Langley Research Center in Hampton,Virginia, to carry sensors that measure wind speed and direction into the sky. On the ground, UAS pilot in command Brayden Chamberlain performs final pre-flight checks. NASA/Milan Loiacono The campaign was run by NASA’s FireSense project, focused on addressing challenges in wildland fire management by putting NASA science and technology in the hands of operational agencies.
“Ensuring that the new technology will be easily adoptable by operational agencies such as the U.S. Forest Service and the National Weather Service was another primary goal of the campaign,” said Jacqueline Shuman, FireSense project scientist at NASA’s Ames Research Center in California’s Silicon Valley.
The FireSense team chose the Alta X drone because the U.S. Forest Service already has a fleet of the quadcopters and trained drone pilots, which could make integrating the needed sensors – and the accompanying infrastructure – much easier and more cost-effective for the agency.
The UAS pilot in command, Brayden Chamberlain, flashes a “good to go” signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff. Behind Chamberlain, the custom structure attached to the quadcopter holds a radiosonde (small white box) and an anemometer (hidden from view), which will collect data on wind speed and direction, humidity, temperature, and pressure.NASA/Milan Loiacono The choice of the two sensors for the drone’s payload was also driven by their adoptability.
The first, called a radiosonde, measures wind direction and speed, humidity, temperature, and pressure, and is used daily by the National Weather Service. The other sensor, an anemometer, measures wind speed and direction, and is used at weather stations and airports around the world.
The two sensors mounted on the NASA Alta X quadcopter are a radiosonde (left) and an anemometer (right), which measure wind speed and direction. The FireSense teams hopes that by giving them wings, researchers can enable micrometeorology to better predict fire and smoke behavior. NASA/Milan Loiacono
“Anemometers are everywhere, but are usually stationary,” said Robert McSwain, the FireSense uncrewed aerial system (UAS) lead, based at NASA’s Langley Research Center in Hampton, Virginia. “We are taking a sensor type that is already used all over the world, and giving it wings.”
Anemometers are everywhere, but are usually stationary. We are taking a sensor type that is already used all over the world, and giving it wings.
Robert Mcswain
FireSense Uncrewed Aerial System (UAS) Lead
Both sensors create datasets that are already familiar to meteorologists worldwide, which opens up the potential applications of the platform.
Current Forecasting Methods: Weather Balloons
Traditionally, global weather forecasting data is gathered by attaching a radiosonde to a weather balloon and releasing it into the air. This system works well for regional weather forecasts. But the rapidly changing environment of wildland fire requires more recurrent, pinpointed forecasts to accurately predict fire behavior. It’s the perfect niche for a drone.
Left: Steven Stratham (right) attaches a radiosonde to the string of a weather balloon as teammates Travis Christopher (left) and Danny Johnson (center) prepare the balloon for launch. This team of three from Salish Kootenai College is one of many college teams across the nation trained to prepare and launch weather balloons.
Right: One of these weather balloons lifts into the sky, with the radiosonde visible at the end of the string. NASA/Milan Loiacono “These drones are not meant to replace the weather balloons,” said Jennifer Fowler, FireSense’s project manager at Langley. “The goal is to create a drop-in solution to get more frequent, localized data for wildfires – not to replace all weather forecasting.”
The goal is to create a drop-in solution to get more frequent, localized data for wildfires – not to replace all weather forecasting.
Jennifer Fowler
FireSense Project Manager
Drones Provide Control, Repeat Testing, Sustainability
Drones can be piloted to keep making measurements over a precise location – an on-site forecaster could fly one every couple of hours as conditions change – and gather timely data to help determine how weather will impact the direction and speed of a fire.
Fire crews on the ground may need this information to make quick decisions about where to deploy firefighters and resources, draw fire lines, and protect nearby communities.
A reusable platform, like a drone, also reduces the financial and environmental impact of forecasting flights.
“A weather balloon is going to be a one-off, and the attached sensor won’t be recovered,” Fowler said. “The instrumented drone, on the other hand, can be flown repeatedly.”
The NASA Alta X quadcopter sits in a field in Missoula, outfitted with a special structure to carry a radiosonde (sensor on the left) and an anemometer (sensor on the right) into the air. This structure was engineered at NASA’s Langley Research Center to ensure the sensors are far enough from the rotors to avoid interfering with the data collected, but without compromising the stability of the drone.NASA/Milan Loiacono
The Missoula Campaign
Before such technology can be sent out to a fire, it needs to be tested. That’s what the FireSense team did this summer.
Smoke from the nearby Miller Peak Fire drifts by the air control tower at Missoula Airport on August 29, 2024. Miller Peak was one of several fires burning in and around Missoula that month, creating a smokey environment which, combined with the mountainous terrain, made the area an ideal location to test FireSense’s new micrometeorology technology.NASA/Milan Loiacono McSwain described the conditions in Missoula as an “alignment of stars” for the research: the complex mountain terrain produces erratic, historically unpredictable winds, and the sparsity of monitoring instruments on the ground makes weather forecasting very difficult. During the three-day campaign, several fires burned nearby, which allowed researchers to test how the drones performed in smokey conditions.
A drone team out of NASA Langley conducted eight data-collection flights in Missoula. Before each drone flight, student teams from the University of Idaho in Moscow, Idaho, and Salish Kootenai College in Pablo, Montana, launched a weather balloon carrying the same type of radiometer.
Left: Weather balloon teams from University of Idaho and Salish Kootenai College prepare a weather balloon for launch on the second day of the FireSense campaign in Missoula.
Right: NASA Langley drone crew members Todd Ferrante (left) and Brayden Chamberlain (right) calibrate the internal sensors of the NASA Alta X quadcopter before its first test flight on Aug. 27, 2024. Once those data sets were created, they needed to be transformed into a usable format. Meteorologists are used to the numbers, but incident commanders on an active fire need to see the data in a form that allows them to quickly understand which conditions are changing, and how. That’s where data visualization partners come in. For the Missoula campaign, teams from MITRE, NVIDIA, and Esri joined NASA in the field.
An early data visualization from the Esri team shows the flight paths of weather balloons launched on the first day of the FireSense UAS technology demonstration in Missoula. The paths are color-coded by wind speed, from purple (low wind) to bright yellow (high wind).NASA/Milan Loiacono Measurements from both the balloon and the drone platforms were immediately sent to the on-site data teams. The MITRE team, together with NVIDIA, tested high-resolution artificial intelligence meteorological models, while the Esri team created comprehensive visualizations of flight paths, temperatures, and wind speed and direction. These visual representations of the data make conclusions more immediately apparent to non-meteorologists.
What’s Next?
Development of drone capabilities for fire monitoring didn’t begin in Missoula, and it won’t end there.
“This campaign leveraged almost a decade of research, development, engineering, and testing,” said McSwain. “We have built up a UAS flight capability that can now be used across NASA.”
This campaign leveraged almost a decade of research, development, engineering, and testing. We have built up a UAS flight capability that can now be used across NASA.
Robert Mcswain
FireSense Uncrewed Aerial System (UAS) Lead
The NASA Alta X and its sensor payload will head to Alabama and Florida in spring 2025, incorporating improvements identified in Montana. There, the team will perform another technology demonstration with wildland fire managers from a different region.
To view more photos from the FireSense campaign visit: https://nasa.gov/firesense
The FireSense project is led by NASA Headquarters in Washington and sits within the Wildland Fires program, with the project office based at NASA Ames. The goal of FireSense is to transition Earth science and technological capabilities to operational wildland fire management agencies, to address challenges in U.S. wildland fire management before, during, and after a fire.
About the Author
Milan Loiacono
Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
Share
Details
Last Updated Feb 13, 2025 Related Terms
Ames Research Center's Science Directorate Ames Research Center Earth Science Earth Science Division General Wildfires Wildland Fire Management Explore More
3 min read Tribal Library Co-Design STEM Space Workshop
Christine Shupla and Claire Ratcliffe Adams, from the NASA Science Activation program’s NASA@ My Library…
Article 4 hours ago 4 min read In the Starlight: Tristan McKnight Brings NASA’s Historic Moments to Life
Article 6 hours ago 2 min read Why Does the Moon Look Larger at the Horizon? We Asked a NASA Scientist: Episode 50
Why does the Moon look larger on the horizon? The short answer is, we don't…
Article 1 day ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.