Members Can Post Anonymously On This Site
Interior of Vacuum Tank at the Electric Propulsion Laboratory
-
Similar Topics
-
By NASA
Imagine designing technology that can survive on the Moon for up to a decade, providing a continuous energy supply. NASA selected three companies to develop such systems, aimed at providing a power source at the Moon’s South Pole for Artemis missions.
Three companies were awarded contracts in 2022 with plans to test their self-sustaining solar arrays at the Johnson Space Center’s Space Environment Simulation Laboratory (SESL) in Houston, specifically in Chamber A in building 32. The prototypes tested to date have undergone rigorous evaluations to ensure the technology can withstand the harsh lunar environment and deploy the solar array effectively on the lunar surface.
The Honeybee Robotics prototype during lunar VSAT (Vertical Solar Array Technology) testing inside Chamber A at NASA’s Johnson Space Center in Houston.NASA/David DeHoyos The Astrobotic Technology prototype during lunar VSAT testing inside Chamber A at Johnson Space Center. NASA/James Blair In the summer of 2024, both Honeybee Robotics, a Blue Origin company from Altadena, California and Astrobotic Technology from Pittsburgh, Pennsylvania put their solar array concepts to the test in Chamber A.
Each company has engineered a unique solution to design the arrays to withstand the harsh lunar environment and extreme temperature swings. The data collected in the SESL will support refinement of requirements and the designs for future technological advancements with the goal to deploy at least one of the systems near the Moon’s South Pole.
The contracts for this initiative are part of NASA’s VSAT (Vertical Solar Array Technology) project, aiming to support the agency’s long-term lunar surface operations. VSAT is under the Space Technology Mission Directorate Game Changing Development program and led by the Langley Research Center in Hampton, Virginia, in collaboration with Glenn Research Center in Cleveland.
“We foresee the Moon as a hub for manufacturing satellites and hardware, leveraging the energy required to launch from the lunar surface,” said Jim Burgess, VSAT lead systems engineer. “This vision could revolutionize space exploration and industry.”
Built in 1965, the SESL initially supported the Gemini and Apollo programs but was adapted to conduct testing for other missions like the Space Shuttle Program and Mars rovers, as well as validate the design of the James Webb Space Telescope. Today, it continues to evolve to support future Artemis exploration.
Johnson’s Front Door initiative aims to solve the challenges of space exploration by opening opportunities to the public and bringing together bold and innovative ideas to explore new destinations.
“The SESL is just one of the hundreds of unique capabilities that we have here at Johnson,” said Molly Bannon, Johnson’s Innovation and Strategy specialist. “The Front Door provides a clear understanding of all our capabilities and services, the ways in which our partners can access them, and how to contact us. We know that we can go further together with all our partners across the entire space ecosystem if we bring everyone together as the hub of human spaceflight.”
Chamber A remains as one of the largest thermal vacuum chambers of its kind, with the unique capability to provide extreme deep space temperature conditions down to as low as 20 Kelvin. This allows engineers to gather essential data on how technologies react to the Moon’s severe conditions, particularly during the frigid lunar night where the systems may need to survive for 96 hours in darkness.
“Testing these prototypes will help ensure more safe and reliable space mission technologies,” said Chuck Taylor, VSAT project manager. “The goal is to create a self-sustaining system that can support lunar exploration and beyond, making our presence on the Moon not just feasible but sustainable.”
The power generation systems must be self-aware to manage outages and ensure survival on the lunar surface. These systems will need to communicate with habitats and rovers and provide continuous power and recharging as needed. They must also deploy on a curved surface, extend 32 feet high to reach sunlight, and retract for possible relocation.
“Generating power on the Moon involves numerous lessons and constant learning,” said Taylor. “While this might seem like a technical challenge, it’s an exciting frontier that combines known technologies with innovative solutions to navigate lunar conditions and build a dynamic and robust energy network on the Moon.”
Watch the video below to explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A facility.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
Crews at NASA’s Stennis Space Center work Jan. 21-22, 2020, to install the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand for a Green Run test series. Operations required crews to lift the massive core stage from a horizontal position into a vertical orientation, a procedure known as “break over.” Once the stage was oriented in a horizontal position on the night of Jan. 21, crews tied it in place to await favorable wind conditions. The following morning, crews began the process of raising, positioning, and securing the stage on the stand. NASA/Stennis The future is now at NASA’s Stennis Space Center near Bay St. Louis, Mississippi – at least when it comes to helping power the next great era of human space exploration.
NASA Stennis is contributing directly to the agency’s effort to land the first woman, the first person of color, and its first international partner astronaut on the Moon – for the benefit of all humanity. Work at the nation’s largest – and premier – propulsion test site will help power SLS (Space Launch System) rockets on future Artemis missions to enable long-term lunar exploration and prepare for the next giant leap of sending the first astronauts to Mars.
“We play a critical role to ensure the safety of astronauts on future Artemis missions,” NASA Stennis Space Center Director John Bailey said. “Our dedicated workforce is excited and proud to be part of NASA’s return to the Moon.”
NASA Stennis achieved an RS-25 testing milestone in April at the Fred Haise Test Stand. Completion of the successful RS-25 certification series provided critical data for L3Harris (formerly known as Aerojet Rocketdyne) to produce new RS-25 engines, using modern processes and manufacturing techniques. The engines will help power SLS rockets beginning with Artemis V.
The first four Artemis missions are using modified space shuttle main engines also tested at NASA Stennis. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS rocket to produce more than 8.8 million pounds of total combined thrust at liftoff.
NASA’s powerful SLS rocket is the only rocket that can send the Orion spacecraft, astronauts, and cargo to the Moon on a single mission.
Following key test infrastructure upgrades near the Fred Haise Test Stand, NASA Stennis will be ready for more RS-25 engine testing. NASA has awarded L3Harris contracts to provide 24 new engines, supporting SLS launches for Artemis V through Artemis IX.
“Every RS-25 engine that launches Artemis to space will be tested at NASA Stennis,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “We take pride in helping to power this nation’s human space exploration program. We also take great care in testing these engines because they are launching astronauts to space. We always have safety in mind.”
NASA’s Stennis Space Center conducts a successful hot fire of the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand on March 18, 2021. NASA employees, as well as NASA astronauts Jessica Meir and Zena Cardman, watched the milestone moment. The hot fire of more than eight minutes marked the culmination of a Green Run series of tests on the stage and its integrated systems. NASA/Stennis In addition to RS-25 testing, preparations are ongoing at the Thad Cochran Test Stand (B-2) for future testing of the agency’s new exploration upper stage. The more powerful SLS second stage, which will send astronauts and cargo to deep space aboard the Orion spacecraft, is being built at NASA’s Michoud Assembly Facility in New Orleans.
Before its first flight, the NASA Stennis test team will conduct a series of Green Run tests on the new stage’s integrated systems to demonstrate it is ready to fly. Crews completed installation of a key component for testing the upper stage in October. The lift and installation of the 103-ton interstage simulator component, measuring 31 feet in diameter and 33 feet tall, provided crews best practices for moving and handling the actual flight hardware when it arrives to NASA Stennis.
The exploration upper stage Green Run test series will culminate with a hot fire of the stage’s four RL10 engines, made by L3Harris, the lead SLS engines contractor.
“All of Mississippi shares in our return to the Moon with the next great era of human space exploration going through NASA Stennis,” Bailey said. “Together, we can be proud of the state’s contributions to NASA’s great mission.”
For information about NASA’s Stennis Space Center, visit:
Stennis Space Center – NASA
Share
Details
Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
5 min read NASA Stennis – An Ideal Place for Commercial Companies
Article 13 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
Article 14 mins ago Keep Exploring Discover Related Stennis Topics
Propulsion Test Engineering
NASA Stennis Front Door
Multi-User Test Complex
Doing Business with NASA Stennis
View the full article
-
By Space Force
A prototype F-16 Fight Falcon cockpit collapsible ladder for agile combat employment and contingency operations emerged as the 2024 Spark Tank winner at the Pentagon.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The controlled descent of the Mars Curiosity rover included the use of propulsion rockets pointing to the surface to allow a gentle landing. The engine, shown firing in this illustration of Perseverance and the sky crane landing system relied on a pyrovalve that released the rocket fuel.Credit: NASA /JPL-Caltech The Curiosity and Perseverance Mars rovers continue to provide a wealth of information about the Red Planet. This was made possible in part by the sky crane landing systems that safely lowered them to the planet’s surface. Their successful descent, managed by eight powerful engines, depended on one small part – a valve.
The engines produced about 750 pounds of thrust each, so they required more fuel than a conventional valve could deliver, said Carl Guernsey, propulsion subsystem chief engineer for the Mars Sample Laboratory Mission.
“With the engines pointing down, we throttle up and increase the thrust, so we slow down,” said Guernsey. “At a certain altitude above the surface, you hold at a constant velocity to collect more sensor data, and then proceed with the rest of the descent.”
With only seconds for sensor data to identify the landing area and direct any last-minute diversion maneuvers, landing requires fuel available at the right time. To build the valve to help accomplish this task, NASA turned to a company that has provided the space program with reliable gas regulators since the 1950s. Through a series of mergers, by 2021, the original company, called Conax Florida, became part of Eaton based in Orchard Park, New York.
Working under contract with NASA’s Jet Propulsion Laboratory in Southern California, the company developed a new one-time-use pyrovalve to sit between the hydrazine fuel tank and engines. The zero-leak valve was the largest ever made of its type at the time, at three-fourths of an inch.
This one-time-use pyrovalve sat between the hydrazine fuel tank and the controlled-descent engines on the sky crane for the Curiosity and Perseverance Mars rovers. The zero-leak valve developed by Eaton also ensured no fuel was lost on the long flight to Mars.Credit: Eaton Corp. The Y-shaped pipe with a pair of leak-proof solid metal barriers prevented propellant from flowing. The valve contains a pyrotechnic charge that activates a piston called a flying ram, which shears off the barriers, allowing fuel to flow. But a problem arose during flight qualification testing. Sometimes the ram didn’t stay wedged in place at the bottom, posing a blockage risk.
The solution the team came up with had never been tried before – magnets at the bottom of the valve. But the successful Perseverance landing in 2021 proved it works. The same valve is included in the Perseverance rover and now enables commercial rocket-stage separation in space.
Read More Share
Details
Last Updated Oct 11, 2024 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
2 min read Tech Today: Spraying for Food Safety
Article 4 days ago 2 min read The Science of the Perfect Cup for Coffee
Material research is behind the design of a temperature-regulating mug
Article 2 weeks ago 3 min read Measuring Moon Dust to Fight Air Pollution
Article 3 weeks ago Keep Exploring Discover Related Topics
Missions
Mars Perseverance Rover
The Mars Perseverance rover is the first leg the Mars Sample Return Campaign’s interplanetary relay team. Its job is to…
How We Land on Mars
How does NASA get its Mars rovers and landers safely to the surface of the Red Planet? Parachutes, airbags, a…
Technology Transfer & Spinoffs
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This artist concept shows a NASA-developed small-core jet engine installed in General Electric Aerospace’s CFM RISE jet engine design. The more fuel-efficient small core powers a large open turbofan, which also helps increase efficiency. The effort is part of NASA’s Sustainable Flight National Partnership to help inform the next generation of ultra-efficient airliners.GE Aerospace Hybrid-electric cars have been a staple of the road for many years now.
Soon that same idea of a part-electric-, part-gas-powered engine may find its way into the skies propelling a future jet airliner.
NASA is working in tandem with industry partner GE Aerospace on designing and building just such an engine, one that burns much less fuel by including new components to help electrically power the engine.
In this hybrid jet engine, a fuel-burning core powers the engine and is assisted by electric motors. The motors produce electric power, which is fed back into the engine itself—therefore reducing how much fuel is needed to power the engine in the first place.
It really opens the door for more sustainable aviation even beyond the 2030s.
Anthony nerone
NASA Project Manager
High Tech Hybrid-Electric
The work is happening as part of NASA’s Hybrid Thermally Efficient Core (HyTEC) project. This work intends to demonstrate this engine concept by the end of 2028 to enable its use on airliners as soon as the 2030s.
It represents a major step forward in jet engine technology.
This jet engine would be the first ever mild hybrid-electric jet engine. A “mild hybrid” engine can be powered partially by electrical machines operating both as motors and generators.
“This will be the first mild hybrid-electric engine and could lead to the first production engine for narrow-body airliners that’s hybrid electric,” said Anthony Nerone, who leads the HyTEC project from NASA’s Glenn Research Center in Cleveland. “It really opens the door for more sustainable aviation even beyond the 2030s.”
The hybrid-electric technology envisioned by NASA and GE Aerospace also could be powered by a new small jet engine core.
A major HyTEC project goal is to design and demonstrate a jet engine that has a smaller core but produces about the same amount of thrust as engines being flown today on single-aisle aircraft.
At the same time, the smaller core technology aims to reduce fuel burn and emissions by an estimated 5 to 10%.
Michael Presby, a research materials engineer at NASA’s Glenn Research Center in Cleveland, adjusts an infrared thermal imaging camera used to monitor the temperature profile of a NASA-developed, high-temperature environmental barrier coating deposited on a ceramic matrix composite in support of the agency’s HyTEC project. The composite’s environmental barrier coating surface temperature is 3,000 degrees Fahrenheit.NASA / Bridget Caswell How Does It Work?
A GE Aerospace Passport engine is being modified with hybrid electric components for testing.
“Today’s jet engines are not really hybrid electric,” Nerone said. “They have generators powering things like lights, radios, TV screens, and that kind of stuff. But not anything that can power the engines.”
The challenge is figuring out the best times to use the electric motors.
“Later this year, we are doing some testing with GE Aerospace to research which phases of flight we can get the most fuel savings,” Nerone said.
Embedded electric motor-generators will optimize engine performance by creating a system that can work with or without energy storage like batteries. This could help accelerate the introduction of hybrid-electric technologies for commercial aviation prior to energy storage solutions being fully matured.
“Together with NASA, GE Aerospace is doing critical research and development that could help make hybrid-electric commercial flight possible,” said Arjan Hegeman, general manager of future of flight technologies at GE Aerospace.
The technologies related to HyTEC are among those GE Aerospace is working to mature and advance under CFM International’s Revolutionary Innovation for Sustainable Engines (RISE) program. CFM is a joint venture between GE Aerospace and Safran Aircraft Engines. CFM RISE, which debuted in 2021, encompasses a suite of technologies including advanced engine architectures and hybrid electric systems aimed at being compatible with 100% Sustainable Aviation Fuel.
HyTEC, part of NASA’s Advanced Air Vehicles Program, is a key area of NASA’s Sustainable Flight National Partnership, which is collaborating with government, industry, and academic partners to address the U.S. goal of net-zero greenhouse gas emissions in aviation by the year 2050.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
5 min read Air Traffic Management – eXploration (ATM-X) Description
Article 6 days ago 1 min read Gateway Space Station in 3D
Article 6 days ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Sep 16, 2024 EditorJim BankeContactBrian Newbacherbrian.t.newbacher@nasa.gov Related Terms
Aeronautics Advanced Air Vehicles Program Aeronautics Research Mission Directorate Glenn Research Center Green Aviation Tech Hybrid Thermally Efficient Core View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.