Jump to content

Sedimentary and Planetary Geologist Dr. Michael Thorpe


NASA

Recommended Posts

  • Publishers
A man wearing a tan beanie and a blue winter jacket with a hiking backpack strapped around him. He's walking across a rocky surface with mountains in the background.

“I didn’t always grow up knowing that I was going to be working for NASA. It was just the way my life unfolded, and I couldn’t be more grateful and lucky to have this opportunity to be here. I think hiking is what really got me into my passion for wanting to have this outdoors kind of career. I’ve always pursued environmental science and geology, and still at that point in time, I had no idea that I could apply that kind of science to outer space and work for NASA one day.

“It wasn’t until I had these amazing mentors in front of me who were showing me, ‘Hey, what you’re doing, you can apply this to, for instance, Mars.’ And that’s what sparked my inspiration — [realizing] Mars had these ancient lakes and [wondering], ‘How can I use what I’m doing here on Earth to understand what was going on with those ancient lakes on Mars?’

“I’m kind of lucky. It’s less of a job and more of this exciting career opportunity where I get to go out into the field and even hike for a good portion of [my workday]. For instance, I just got back from Iceland where I was for 10 days. On these field trips, I’m in my comfort zone wearing a flannel and winter hat, backpacking with my rock hammer and shovel, hiking for a few hours to pick up samples, and then come back home to analyze them in the lab. I couldn’t have written a better story for me to continue doing the stuff that I enjoyed as a child and now to be doing it now for NASA is something I couldn’t have even dreamed of.

“Hiking and being in the field is the fun part. But then I get to come back to the lab and compare it to what Martian rovers are doing. They’re our hikers, our pioneers, our explorers, our geologists who are collecting samples for us on other planets.  It’s remarkable, often mind-blowing, to be able to work directly with our planetary geologists as well as the amazing people on the rover teams from around the globe to understand the surface of Mars and then eventually, compare it to what I see in the field here on Earth.

“So, I’m still that young boy at heart with my backpack and flannel on and headed out into the field.”

– Dr. Michael Thrope, Sedimentary and Planetary Geologist, NASA’s Goddard Space Flight Center

Image Credit: Iceland Space Agency/Daniel Leeb
Interviewer: NASA/Tahira Allen

Check out some of our other Faces of NASA. 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA Optical Navigation Tech Could Streamline Planetary Exploration
      Optical navigation technology could help astronauts and robots find their ways using data from cameras and other sensors. Credits: NASA As astronauts and rovers explore uncharted worlds, finding new ways of navigating these bodies is essential in the absence of traditional navigation systems like GPS. Optical navigation relying on data from cameras and other sensors can help spacecraft — and in some cases, astronauts themselves — find their way in areas that would be difficult to navigate with the naked eye. Three NASA researchers are pushing optical navigation tech further, by making cutting edge advancements in 3D environment modeling, navigation using photography, and deep learning image analysis. In a dim, barren landscape like the surface of the Moon, it can be easy to get lost. With few discernable landmarks to navigate with the naked eye, astronauts and rovers must rely on other means to plot a course.
      As NASA pursues its Moon to Mars missions, encompassing exploration of the lunar surface and the first steps on the Red Planet, finding novel and efficient ways of navigating these new terrains will be essential. That’s where optical navigation comes in — a technology that helps map out new areas using sensor data.
      NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is a leading developer of optical navigation technology. For example, GIANT (the Goddard Image Analysis and Navigation Tool) helped guide the OSIRIS-REx mission to a safe sample collection at asteroid Bennu by generating 3D maps of the surface and calculating precise distances to targets.
      Now, three research teams at Goddard are pushing optical navigation technology even further.
      Virtual World Development
      Chris Gnam, an intern at NASA Goddard, leads development on a modeling engine called Vira that already renders large, 3D environments about 100 times faster than GIANT. These digital environments can be used to evaluate potential landing areas, simulate solar radiation, and more.
      While consumer-grade graphics engines, like those used for video game development, quickly render large environments, most cannot provide the detail necessary for scientific analysis. For scientists planning a planetary landing, every detail is critical.
      Vira can quickly and efficiently render an environment in great detail.NASA “Vira combines the speed and efficiency of consumer graphics modelers with the scientific accuracy of GIANT,” Gnam said. “This tool will allow scientists to quickly model complex environments like planetary surfaces.”
      The Vira modeling engine is being used to assist with the development of LuNaMaps (Lunar Navigation Maps). This project seeks to improve the quality of maps of the lunar South Pole region which are a key exploration target of NASA’s Artemis missions.
      Vira also uses ray tracing to model how light will behave in a simulated environment. While ray tracing is often used in video game development, Vira utilizes it to model solar radiation pressure, which refers to changes in momentum to a spacecraft caused by sunlight.
      Vira can accurately render indirect lighting, which is when an area is still lit up even though it is not directly facing a light source.NASA Find Your Way with a Photo
      Another team at Goddard is developing a tool to enable navigation based on images of the horizon. Andrew Liounis, an optical navigation product design lead, leads the team, working alongside NASA Interns Andrew Tennenbaum and Will Driessen, as well as Alvin Yew, the gas processing lead for NASA’s DAVINCI mission.
      An astronaut or rover using this algorithm could take one picture of the horizon, which the program would compare to a map of the explored area. The algorithm would then output the estimated location of where the photo was taken.
      Using one photo, the algorithm can output with accuracy around hundreds of feet. Current work is attempting to prove that using two or more pictures, the algorithm can pinpoint the location with accuracy around tens of feet.
      “We take the data points from the image and compare them to the data points on a map of the area,” Liounis explained. “It’s almost like how GPS uses triangulation, but instead  of having multiple observers to triangulate one object, you have multiple observations from a single observer, so we’re figuring out where the lines of sight intersect.”
      This type of technology could be useful for lunar exploration, where it is difficult to rely on GPS signals for location determination.
      A Visual Perception Algorithm to Detect Craters
      To automate optical navigation and visual perception processes, Goddard intern Timothy Chase is developing a programming tool called GAVIN (Goddard AI Verification and Integration) Tool Suit.
      This tool helps build deep learning models, a type of machine learning algorithm that is trained to process inputs like a human brain. In addition to developing the tool itself, Chase and his team are building a deep learning algorithm using GAVIN that will identify craters in poorly lit areas, such as the Moon.
      “As we’re developing GAVIN, we want to test it out,” Chase explained. “This model that will identify craters in low-light bodies will not only help us learn how to improve GAVIN, but it will also prove useful for missions like Artemis, which will see astronauts exploring the Moon’s south pole region — a dark area with large craters — for the first time.”
      As NASA continues to explore previously uncharted areas of our solar system, technologies like these could help make planetary exploration at least a little bit simpler. Whether by developing detailed 3D maps of new worlds, navigating with photos, or building deep learning algorithms, the work of these teams could bring the ease of Earth navigation to new worlds.
      By Matthew Kaufman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Aug 07, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Technology Artificial Intelligence (AI) Goddard Space Flight Center Technology Explore More
      4 min read NASA Improves GIANT Optical Navigation Technology for Future Missions
      Goddard's GIANT optical navigation software helped guide the OSIRIS-REx mission to the Asteroid Bennu. Today…
      Article 10 months ago 4 min read Space Station Research Contributes to Navigation Systems for Moon Voyages
      Article 2 years ago 5 min read NASA, Industry Improve Lidars for Exploration, Science
      NASA engineers will test a suite of new laser technologies from an aircraft this summer…
      Article 5 months ago View the full article
    • By NASA
      6 min read
      Quantum Scale Sensors used to Measure Planetary Scale Magnetic Fields
      Magnetic fields are everywhere in our solar system. They originate from the Sun, planets, and moons, and are carried throughout interplanetary space by solar wind. This is precisely why magnetometers—devices used to measure magnetic fields—are flown on almost all missions in space to benefit the Earth, Planetary, and Heliophysics science communities, and ultimately enrich knowledge for all humankind. These instruments can remotely probe the interior of a planetary body to provide insight into its internal composition, structure, dynamics, and even evolution based on the magnetic history frozen into the body’s crustal rock layers. Magnetometers can even discover hidden oceans within our solar system and help determine their salinity, thereby providing insight into the potential habitability of these icy worlds.
      Left: The magnetic field of Jupiter provides insight into its interior composition, structure, dynamics, and even its evolutionary history. Right: Image of the first prototype 4H-SiC solid-state magnetometer sensor die (2mm by 2mm) developed by NASA-GRC. Each gold rectangle or square on the surface represents an individual sensor, the smallest being 10 microns by 10 microns. Fluxgates are the most widely used magnetometers for missions in space due to their proven performance and simplicity. However, the conventional size, weight, and power (SWaP) of fluxgate instruments can restrict them from being used on small platforms like CubeSats and sometimes limit the number of sensors that can be used on a spacecraft for inter-sensor calibration, redundancy, and spacecraft magnetic field removal. Traditionally, a long boom is used to distance the fluxgate magnetometers from the contaminate magnetic field generated by the spacecraft, itself, and at least two sensors are used to characterize the falloff of this field contribution so it can be removed from the measurements. Fluxgates also do not provide an absolute measurement, meaning that they need to be routinely calibrated in space through spacecraft rolls, which can be time and resource intensive.
      An SMD-funded team at NASA’s Jet Propulsion Laboratory in Southern California has partnered with NASA’s Glenn Research Center in Cleveland, Ohio to prototype a new magnetometer called the silicon carbide (SiC) magnetometer, or SiCMag, that could change the way magnetic fields are measured in space. SiCMag uses a solid-state sensor made of a silicon carbide (SiC) semiconductor. Inside the SiC sensor are quantum centers—intentionally introduced defects or irregularities at an atomic scale—that give rise to a magnetoresistance signal that can be detected by monitoring changes in the sensor’s electrical current, which indicate changes in the strength and direction of the external magnetic field. This new technology has the potential to be incredibly sensitive, and due to its large bandgap (i.e., the energy required to free an electron from its bound state so it can participate in electrical conduction), is capable of operating in the wide range of temperature extremes and harsh radiation environments commonly encountered in space.
      Team member David Spry of NASA Glenn indicates, “Not only is the SiC material great for magnetic field sensing, but here at NASA Glenn we’re further developing robust SiC electronics that operate in hot environments far beyond the upper temperature limitations of silicon electronics. These SiC-based technologies will someday enable long-duration robotic scientific exploration of the 460 °C Venus surface.”
      SiCMag is also very small— the sensor area is only 0.1 x 0.1 mm and the compensation coils are smaller than a penny. Consequently, dozens of SiCMag sensors can easily be incorporated on a spacecraft to better remove the complex contaminate magnetic field generated by the spacecraft, reducing the need for a long boom to distance the sensors from the spacecraft, like implemented on most spacecraft, including Psyche (see figure below).
      The magnetic field lines associated with the Psyche spacecraft, modeled from over 200 individual magnetic sources. Removing this magnetic field contribution from the measurements conventionally requires the use of two fluxgate sensors on a long boom. Incorporating 4 or more SiCMag sensors in such a scenario would significantly reduce the size of the boom required, or even remove the need for a boom completely. Image Credit: This image was adopted from https://science.nasa.gov/resource/magnetic-field-of-the-psyche-spacecraft/ SiCMag has several advantages when compared to fluxgates and other types of heritage magnetometers including those based on optically pumped atomic vapor. SiCMag is a simple instrument that doesn’t rely on optics or high-frequency components, which are sensitive to temperature variations. SiCMag’s low SWaP also allows for accommodation on small platforms such as CubeSats, enabling simultaneous spatial and temporal magnetic field measurements not possible with single large-scale spacecraft. This capability will enable planetary magnetic field mapping and space weather monitoring by constellations of CubeSats. Multiplatform measurements would also be very valuable on the surface of the Moon and Mars for crustal magnetic field mapping, composition identification, and magnetic history investigation of these bodies.
      SiCMag has a true zero-field magnetic sensing ability (i.e., SiCMag can measure extremely weak magnetic fields), which is unattainable with most conventional atomic vapor magnetometers due to the requisite minimum magnetic field needed for the sensor to operate. And because the spin-carrying electrons in SiCMag are tied up in the quantum centers, they won’t escape the sensor, meaning they are well-suited for decades-long journeys to the ice-giants or to the edges of the heliosphere. This capability is also an advantage of SiCMag’s optical equivalent sibling, OPuS-MAGNM, an optically pumped solid state quantum magnetometer developed by Hannes Kraus and matured by Andreas Gottscholl of the JPL solid-state magnetometry group. SiCMag has the advantage of being extremely simple, while OPuS-MAGNM promises to have lower noise characteristics, but uses complex optical components.
      According to Dr. Andreas Gottscholl, “SiCMag and OPuS-MAGNM are very similar, actually. Progress in one sensor system translates directly into benefits for the other. Therefore, enhancements in design and electronics advance both projects, effectively doubling the impact of our efforts while we are still flexible for different applications.”
      SiCMag has the ability to self-calibrate due to its absolute sensing capability, which is a significant advantage in the remote space environment. SiCMag uses a spectroscopic calibration technique that atomic vapor magnetometers also leverage called magnetic resonance (in the case of SiCMag, the magnetic resonance is electrically detected) to measure the precession frequency of electrons associated with the quantum centers, which is directly related to the magnetic field in which the sensor is immersed. This relationship is a fundamental physical constant in nature that doesn’t change as a function of time or temperature, making the response ideal for calibration of the sensor’s measurements. “If we are successful in achieving the sought-out sensitivity improvement we anticipate using isotopically purer materials, SiC could change the way magnetometry is typically performed in space due to the instrument’s attractive SWaP, robustness, and self-calibration ability,” says JPL’s Dr. Corey Cochrane, principal investigator of the SiCMag technology.
      The 3-axis 3D printed electromagnet – no larger than the size of a US penny – is used to modulate and maintain a region of zero magnetic field around our 0.1 mm x 0.1 mm 4H-SiC solid-state sensor. NASA has been funding this team’s solid-state quantum magnetometer sensor research through its PICASSO (Planetary Instrument Concepts for the Advancement of Solar System Observations) program since 2016. A variety of domestic partners from industry and academia also support this research, including NASA’s Glenn Research Center in Cleveland, Penn State University, University of Iowa, QuantCAD LLC, as well as international partners such as Japan’s Quantum Materials and Applications Research Center (QUARC) and Infineon Technologies.
      The SiC magnetometer team leads from JPL and GRC (left: Dr. Hannes Kraus, middle: Dr. Phillip Neudeck, right: Dr. Corey Cochrane) at the last International Conference on Silicon Carbide and Related Materials (ICSCRM) where their research is presented annually. Acknowledgment: The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004) and the NASA Glenn Research Center.
      Project Lead(s):
      Dr. Corey Cochrane, Dr. Hannes Kraus, Jet Propulsion Laboratory/California Institute of Technology
      Dr. Phil Neudeck, David Spry, NASA Glenn Research Center
      Sponsoring Organization(s):
      Science Mission Directorate PICASSO, JPL R&D fund
      Share








      Details
      Last Updated Aug 06, 2024 Related Terms
      Glenn Research Center Jet Propulsion Laboratory Planetary Science Science-enabling Technology Technology Highlights Explore More
      4 min read AstroViz: Iconic Pillars of Creation Star in NASA’s New 3D Visualization


      Article


      20 hours ago
      4 min read NASA Sends More Science to Space, More Strides for Future Exploration
      Biological and physical investigations aboard the Northrop Grumman Commercial Resupply mission NG-21 included experiments studying…


      Article


      1 day ago
      5 min read NASA Scientists on Why We Might Not Spot Solar Panel Technosignatures


      Article


      4 days ago
      View the full article
    • By NASA
      The Goldstone Solar System Radar, part of NASA’s Deep Space Network, made these observations of the recently discovered 500-foot-wide (150-meter-wide) asteroid 2024 MK, which made its closest approach — within about 184,000 miles (295,000 kilometers) of Earth — on June 29.NASA/JPL-Caltech The Deep Space Network’s Goldstone planetary radar had a busy few days observing asteroids 2024 MK and 2011 UL21 as they safely passed Earth.
      Scientists at NASA’s Jet Propulsion Laboratory in Southern California recently tracked two asteroids as they flew by our planet. One turned out to have a little moon orbiting it, while the other had been discovered only 13 days before its closest approach to Earth. There was no risk of either near-Earth object impacting our planet, but the radar observations taken during these two close approaches will provide valuable practice for planetary defense, as well as information about their sizes, orbits, rotation, surface details, and clues as to their composition and formation.
      Passing Earth on June 27 at a distance of 4.1 million miles (6.6 million kilometers), or about 17 times the distance between the Moon and Earth, the asteroid 2011 UL21 was discovered in 2011 by the NASA-funded Catalina Sky Survey, in Tucson, Arizona. But this is the first time it has come close enough to Earth to be imaged by radar. While the nearly mile-wide (1.5-kilometer-wide) object is classified as being potentially hazardous, calculations of its future orbits show that it won’t pose a threat to our planet for the foreseeable future.
      Because close approaches by asteroids the size of 2024 MK are relatively rare, JPL’s planetary radar team gathered as much information about the near-Earth object as possible. This mosaic shows the spinning asteroid in one-minute increments about 16 hours after its closest approach with Earth.NASA/JPL-Caltech Using the Deep Space Network’s 230-foot-wide (70-meter) Goldstone Solar System Radar, called Deep Space Station 14 (DSS-14), near Barstow, California, JPL scientists transmitted radio waves to the asteroid and received the reflected signals by the same antenna. In addition to determining the asteroid is roughly spherical, they discovered that it’s a binary system: A smaller asteroid, or moonlet, orbits it from a distance of about 1.9 miles (3 kilometers).
      “It is thought that about two-thirds of asteroids of this size are binary systems, and their discovery is particularly important because we can use measurements of their relative positions to estimate their mutual orbits, masses, and densities, which provide key information about how they may have formed,” said Lance Benner, principal scientist at JPL who helped lead the observations.
      These seven radar observations by the Deep Space Network’s Goldstone Solar System Radar shows the mile-wide asteroid 2011 UL21 during its June 27 close approach with Earth from about 4 million miles away. The asteroid and its small moon (a bright dot at the bottom of the image) are circled in white.NASA/JPL-Caltech Second Close Approach
      Two days later, on June 29, the same team observed the asteroid 2024 MK pass our planet from a distance of only 184,000 miles (295,000 kilometers), or slightly more than three-quarters of the distance between the Moon and Earth. About 500 feet (150 meters) wide, this asteroid appears to be elongated and angular, with prominent flat and rounded regions. For these observations, the scientists also used DSS-14 to transmit radio waves to the object, but they used Goldstone’s 114-foot (34-meter) DSS-13 antenna to receive the signal that bounced off the asteroid and came back to Earth. The result of this “bistatic” radar observation is a detailed image of the asteroid’s surface, revealing concavities, ridges, and boulders about 30 feet (10 meters) wide.
      Close approaches of near-Earth objects the size of 2024 MK are relatively rare, occurring about every couple of decades, on average, so the JPL team sought to gather as much data about the object as possible. “This was an extraordinary opportunity to investigate the physical properties and obtain detailed images of a near-Earth asteroid,” said Benner.
      This sunset photo shows NASA’s Deep Space Station 14 (DSS-14), the 230-foot-wide (70-meter) antenna at the Goldstone Deep Space Communications Complex near Barstow, California.NASA/JPL-Caltech The asteroid 2024 MK was first reported on June 16 by the NASA-funded Asteroid Terrestrial-impact Last Alert System (ATLAS) at Sutherland Observing Station in South Africa. Its orbit was changed by Earth’s gravity as it passed by, reducing its 3.3-year orbital period around the Sun by about 24 days. Although it is classified as a potentially hazardous asteroid, calculations of its future motion show that it does not pose a threat to our planet for the foreseeable future.
      The Goldstone Solar System Radar Group is supported by NASA’s Near-Earth Object Observations Program within the Planetary Defense Coordination Office at the agency’s headquarters in Washington. Managed by JPL, the Deep Space Network receives programmatic oversight from Space Communications and Navigation program office within the Space Operations Mission Directorate, also at NASA Headquarters.
      More information about planetary radar and near-Earth objects can be found at:
      https://www.jpl.nasa.gov/asteroid-watch
      News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2024-097
      Share
      Details
      Last Updated Jul 03, 2024 Related Terms
      Near-Earth Asteroid (NEA) Asteroids Deep Space Network Jet Propulsion Laboratory Planetary Defense Planetary Defense Coordination Office Potentially Hazardous Asteroid (PHA) Space Communications & Navigation Program Explore More
      3 min read NASA’s ECOSTRESS Maps Burn Risk Across Phoenix Streets
      Article 19 hours ago 5 min read NASA Asteroid Experts Create Hypothetical Impact Scenario for Exercise
      Article 23 hours ago 5 min read NASA’s NEOWISE Infrared Heritage Will Live On
      Article 2 days ago View the full article
    • By NASA
      Michael Chandler has provided configuration and data management support at Houston’s Johnson Space Center for the last 13 years. After roughly seven years supporting the Exploration Systems Development Division, Chandler transitioned to the Moon to Mars Program Office in 2019. He and his team work to ensure that the baseline for Moon to Mars products, like agreements and documents, is appropriately controlled and that configuration and data management processes are integrated across the office’s six programs – Orion, Gateway, EHP, Space Launch System, Human Landing system, and Exploration Ground Systems.

      “The most rewarding part of my job is not only the magnitude of what I have the privilege of working on every day, returning humans to the surface of the Moon, but also the experience I get in working with such a diverse group of members of the aerospace community,” said Chandler, a contractor with The Aerospace Corporation. “It’s also so rewarding to work as a team on a common goal and to look forward to the work I do every day!”

      Portrait of Michael Chandler onsite at Johnson Space Center. NASA/Noah Moran Chandler has been an active member of the Out & Allied Employee Resource Group (OAERG) since 2018 and says his involvement with the group led to some groundbreaking life events. “I was very shy and reticent about revealing who I was until I got involved with Out & Allied,” he said. “I now believe that being ‘out’ is a way to support and encourage others to be themselves.”

      Chandler learned about OAERG while attending a training about how to be an ally for the LGBTQ+ community. In his first year with the group, he helped organize a panel discussion on allyship and creating safe workplaces. He then became co-chair of OAERG’s Pride Committee, working with ERG colleagues and others to plan the group’s LGBTQ+ Pride Month events and participation in Houston’s annual Pride Parade. “I had a wonderful experience managing events and bringing everyone together for Pride,” he said – efforts that earned him a Trailblazer Award.

      Chandler said he has grown personally and professionally through his involvement with OAERG. “I was very shy and kind of uptight at the first meeting that I went to, but everyone was so kind and accepting, and I slowly started taking on responsibilities and planning events,” he said. “These activities helped me grow as a communicator and a leader in my regular work and personal life.”

      Michael Chandler (left) stands with fellow Out & Allied Employee Resource Group members, waiting for the Houston Pride Parade to begin. Image courtesy of Michael Chandler Chandler belongs to other employee resource groups (ERGs) at Johnson to support different communities and find opportunities to collaboratively promote diversity, equity, and inclusion (DEI) at the center, and he encourages others to do the same. “Even if you only participate when you have time, it can lead to knowledge and ways to support other communities that have the same challenges in this world,” he said.

      Chandler has been impressed with agency and center leadership’s involvement in DEI efforts and support for ERGs to date. He suggested that increased communication around DEI initiatives may help to quell anxieties about the political landscape and developments outside of NASA by reassuring team members that their employer supports them for who they are. He believes that every person at Johnson can help create an inclusive environment by being respectful, listening with an open heart, and joining the fight to ensure that everyone can be themselves.

      “The most important thing is that everyone needs to be their true self,” he said. “It’s so rewarding and makes life so much more fun!”
      View the full article
    • By European Space Agency
      Image: Drone test of planetary landing radar View the full article
  • Check out these Videos

×
×
  • Create New...