Jump to content

How NASA Citizen Science Fuels Future Exoplanet Research


Recommended Posts

  • Publishers
Posted

5 min read

How NASA Citizen Science Fuels Future Exoplanet Research

K2-33b, shown in this illustration, is one of the youngest exoplanets detected to date using NASA's Kepler Space Telescope.
This artist’s concept shows the exoplanet K2-33b transiting its host star. Many citizen science projects at NASA invite the public to use transit data to make discoveries about exoplanets.
NASA/JPL-Caltech

NASA’s upcoming flagship astrophysics missions, the Nancy Grace Roman Space Telescope and the Habitable Worlds Observatory, will study planets outside our solar system, known as exoplanets. Over 5,000 exoplanets have been confirmed to date — and given that scientists estimate at least one exoplanet exists for every star in the sky, the hunt has just begun. Exoplanet discoveries from Roman and the Habitable Worlds Observatory may not be made only by professional researchers, but also by interested members of the public, known as citizen scientists.

Exoplanet research has a long involvement with citizen science. NASA’s TESS (Transiting Exoplanet Survey Satellite) mission and now-retired Kepler mission, which are responsible for the vast majority of exoplanet discoveries to date, both made observations freely available to the public immediately after processing. This open science policy paved the way for the public to get involved with NASA’s exoplanet science. 

NASA’s Planet Hunters TESS project invites the public to classify exoplanet light curves from TESS online. Another project, Exoplanet Watch, allows citizen scientists to gather data about known exoplanets, submit their observations to NASA’s public data archive, and receive credit if their observation is used in a scientific paper. Participants don’t even need their own telescope — Exoplanet Watch also curates data from robotic telescopes for users to process. 

Artist's concept of NASA's TESS (Transiting Exoplanet Survey Satellite).
Artist’s concept of NASA’s TESS (Transiting Exoplanet Survey Satellite). Data from TESS have been used in citizen science projects.
NASA’s Goddard Space Flight Center

“Anyone across the world who has access to a smartphone or a laptop can fully participate in a lot of these citizen science efforts to help us learn more about the cosmos,” said Rob Zellem, the project lead and project scientist for Exoplanet Watch and astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

NASA’s citizen science projects have discovered several new planets from Kepler and TESS data. They have also helped scientists refine the best time to observe important targets, saving hours of precious observation time on current flagship missions like NASA’s James Webb Space Telescope. 

Roman and the Habitable Worlds Observatory provide even more possibilities for citizen science. Expected to launch by May 2027, Roman will discover exoplanets through direct imaging, transits, and gravitational microlensing. Following that, the Habitable Worlds Observatory will take direct images of stars in our solar neighborhood to find potentially habitable planets and study their atmospheres. 

The general public can get Roman data as quickly as I can as a scientist working on the mission.

Rob Zellem

Rob Zellem

Exoplanet Watch Project Lead and Project Scientist; Nancy Grace Roman Space Telescope Deputy Project Scientist for Communications

Like Kepler and TESS before them, data from Roman and the Habitable Worlds Observatory will be available to both the scientific community and the public immediately after processing. With Roman’s surveys expected to deliver a terabyte of data to Earth every day — over 17 times as much as Webb — there is a huge opportunity for the public to help sift through the information. 

“The general public can get Roman data as quickly as I can as a scientist working on the mission,” said Zellem, who also serves as Roman’s deputy project scientist for communications at NASA Goddard. “It truly makes Roman a mission for everyone and anyone.” 

Although the Habitable Worlds Observatory’s full capabilities and instrumentation have yet to be finalized, the inclusion of citizen science is expected to continue. The team behind the mission is embracing a community-oriented planning approach by opening up working groups to volunteers who want to contribute. 

“It’s already setting the tone for open science with the Habitable Worlds Observatory,” said Megan Ansdell, the program scientist for the mission at NASA Headquarters in Washington. “The process is as open as possible, and these working groups are open to anybody in the world who wants to join.” There are already over 1,000 community working group members participating, some of whom are citizen scientists. 

In a clean room at NASA's Jet Propulsion Laboratory in Southern California in October 2023, scientist Vanessa Bailey stands behind the Roman Coronagraph, which has been undergoing testing at the lab. Designed to block starlight and allow scientists to see the faint light from planets outside our solar system, the Coronagraph is a technology demonstration that will be part of NASA's Nancy Grace Roman Space Telescope.
The Roman Coronagraph, photographed during testing at NASA’s Jet Propulsion Lab in Southern California, is a technology demonstration designed to block starlight and allow scientists to see the faint light from planets outside our solar system. It represents one of multiple ways that Roman will contribute to exoplanet research.
NASA/JPL-Caltech

Future citizen science initiatives may be combined with cutting-edge tools such as artificial intelligence (AI) for greater efficacy. “AI can be exceptionally powerful in terms of classification and identifying anomalous things,” said Joshua Pepper, the deputy program scientist for the Habitable Worlds Observatory at NASA Headquarters. “But the evaluation of what those anomalous things are often requires human insight, intervention, and review, and I think that could be a really fantastic area for citizen scientists to participate.” 

Before Roman and the Habitable Worlds Observatory launch, exoplanet citizen scientists still have plenty of data to analyze from the Kepler and TESS satellites, but the contributions of the community will become even more important when data begin pouring in from the new missions. As Zellem said, “We’re in a golden age of exoplanet science right now.” 

NASA’s citizen science projects are collaborations between scientists and interested members of the public and do not require U.S. citizenship. Through these collaborations, volunteers (known as citizen scientists) have helped make thousands of important scientific discoveries. To get involved with a project, visit NASA’s Citizen Science page.

By Lauren Leese 
Web Content Strategist for the Office of the Chief Science Data Officer 

Share

Details

Last Updated
Aug 08, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hydrocarbon lake and methane rain clouds on Titan Jenny McElligott/eMITS NASA research has shown that cell-like compartments called vesicles could form naturally in the lakes of Saturn’s moon Titan.
      Titan is the only world apart from Earth that is known to have liquid on its surface. However, Titan’s lakes and seas are not filled with water. Instead, they contain liquid hydrocarbons like ethane and methane. 
      On Earth, liquid water is thought to have been essential for the origin of life as we know it. Many astrobiologists have wondered whether Titan’s liquids could also provide an environment for the formation of the molecules required for life – either as we know it or perhaps as we don’t know it – to take hold there.
      New NASA research, published in the International Journal of Astrobiology, outlines a process by which stable vesicles might form on Titan, based on our current knowledge of the moon’s atmosphere and chemistry. The formation of such compartments is an important step in making the precursors of living cells (or protocells).
      The process involves molecules called amphiphiles, which can self-organize into vesicles under the right conditions. On Earth, these polar molecules have two parts, a hydrophobic (water-fearing) end and a hydrophilic (water-loving) end. When they are in water, groups of these molecules can bunch together and form ball-like spheres, like soap bubbles, where the hydrophilic part of the molecule faces outward to interact with the water, thereby ‘protecting’ the hydrophobic part on the inside of the sphere. Under the right conditions, two layers can form creating a cell-like ball with a bilayer membrane that encapsulates a pocket of water on the inside.
      When considering vesicle formation on Titan, however, the researchers had to take into account an environment vastly different from the early Earth.
      Uncovering Conditions on Titan
      Huygens captured this aerial view of Titan from an altitude of 33,000 feet. ESA/NASA/JPL/University of Arizona Titan is Saturn’s largest moon and the second largest in our solar system. Titan is also the only moon in our solar system with a substantial atmosphere.
      The hazy, golden atmosphere of Titan kept the moon shrouded in mystery for much of human history. However, when NASA’s Cassini spacecraft arrived at Saturn in 2004, our views of Titan changed forever.
      Thanks to Cassini, we now know Titan has a complex meteorological cycle that actively influences the surface today. Most of Titan’s atmosphere is nitrogen, but there is also a significant amount of methane (CH4). This methane forms clouds and rain, which falls to the surface to cause erosion and river channels, filling up the lakes and seas. This liquid then evaporates in sunlight to form clouds once again.
      This atmospheric activity also allows for complex chemistry to happen. Energy from the Sun breaks apart molecules like methane, and the pieces then reform into complex organic molecules. Many astrobiologists believe that this chemistry could teach us how the molecules necessary for the origin of life formed and evolved on the early Earth.
      Building Vesicles on Titan
      The new study considered how vesicles might form in the freezing conditions of Titan’s hydrocarbon lakes and seas by focusing on sea-spray droplets, thrown upwards by splashing raindrops. On Titan, both spray droplets and the sea surface could be coated in layers of amphiphiles. If a droplet then lands on the surface of a pond, the two layers of amphiphiles meet to form a double-layered (or bilayer) vesicle, enclosing the original droplet. Over time, many of these vesicles would be dispersed throughout the pond and would interact and compete in an evolutionary process that could lead to primitive protocells.
      If the proposed pathway is happening, it would increase our understanding of the conditions in which life might be able to form. 
      “The existence of any vesicles on Titan would demonstrate an increase in order and complexity, which are conditions necessary for the origin of life,” explains Conor Nixon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’re excited about these new ideas because they can open up new directions in Titan research and may change how we search for life on Titan in the future.”
      NASA’s first mission to Titan is the upcoming Dragonfly rotorcraft, which will explore the surface of the Saturnian moon. While Titan’s lakes and seas are not a destination for Dragonfly (and the mission won’t carry the light-scattering instrument required to detect such vesicles), the mission will fly from location to location to study the moon’s surface composition, make atmospheric and geophysical measurements, and characterize the habitability of Titan’s environment.
      News Media Contacts
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      View the full article
    • By NASA
      Explore This Section Science Goddard Space Flight Center Linking Satellite Data and… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science
      Seasonal snow plays a significant role in global water and energy cycles, and billions of people worldwide rely on snowmelt for water resources needs, including water supply, hydropower, agriculture, and more. Monitoring snow water equivalent (SWE) is critical for supporting these applications and for mitigating damages caused by snowmelt flooding, avalanches, and other snow-related disasters. However, our ability to measure SWE remains a challenge, particularly in northern latitudes where in situ SWE observations are sparse and satellite observations are impacted by the boreal forest and environmental conditions. Despite limited in situ SWE measurements, local residents in Arctic and sub-Arctic regions provide a vast and valuable body of place-based knowledge and observations that are essential for understanding snowpack behavior in northern regions.
      As part of a joint NASA SnowEx, NASA’s Minority University Research and Education Project (MUREP) for American Indian and Alaska Native STEM (Science, Technology, Engineering, & Mathematics) Engagement (MAIANSE), and Global Learning & Observations to Benefit the Environment (GLOBE) Program partnership, a team of scientists including NASA intern Julia White (NASA Goddard Space Flight Center, University of Alaska Fairbanks), Carrie Vuyovich (NASA Goddard Space Flight Center), Alicia Joseph (NASA Goddard Space Flight Center), and Christi Buffington (University of Alaska Fairbanks, GLOBE Implementation Office) is studying snow water equivalent (SWE) across Interior Alaska. This project combines satellite-based interferometric synthetic aperture radar (InSAR) data, primarily from the Sentinel-1 satellite, with ground-based observations from the Snow Telemetry (SNOTEL) network and GLOBE (Global Learning Observations to Benefit the Environment). Together, these data sources help the team investigate how SWE varies across the landscape and how it affects local ecosystems and communities. The team is also preparing for future integration of data from NASA’s upcoming NISAR (NASA ISRO Synthetic Aperture Radar) mission, which is expected to enhance SWE retrieval capabilities.
      After a collaborative visit to the classroom of Tammie Kovalenko in November 2024, Delta Junction junior and senior high school students in vocational agriculture (Vo Ag) classes, including members of Future Farmers of America (FFA), began collecting GLOBE data on a snowdrift located just outside their classroom. As the project progressed, students developed their own research questions. One student, Fianna Rooney, took the project even further — presenting research posters at both the GLOBE International Virtual Science Symposium (IVSS) and both the FFA Regional and National Conventions. Her work highlights the growing role of Alaskan youth in science, and how student-led inquiry can enrich both education and research outcomes. (This trip was funded by the NASA Science Activation Program’s Arctic and Earth SIGNs – STEM Integrating GLOBE & NASA – project at the University of Alaska Fairbanks.)
      In February 2025, the team collaborated with Delta Junction Junior High and High School students, along with the Delta Junction Trails Association, to conduct a GLOBE Intensive Observation Period (IOP), “Delta Junction Snowdrifts,” to collect Landcover photos, snow depth, and snow water equivalent data. Thanks to aligned interests and research goals at the Alaska Satellite Facility (ASF), the project was further expanded into Spring 2025. Collaborators from ASF and the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) collected high resolution airborne data over the snowdrift at the Delta Junction Junior and Senior High School. This complementary dataset helped strengthen connections between satellite observations and ground-based student measurements.
      This effort, led by a NASA intern, scientists, students, and Alaskan community members, highlights the power of collaboration in advancing science and education. Next steps will include collaboration with Native Alaskan communities near Delta Junction, including the Healy Lake Tribe, whose vast, generational knowledge will be of great value to deepening our understanding of Alaskan snow dynamics.
      Learn more about how NASA’s Science Activation program connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Julia White and Delta Junction student following GLOBE protocols for snow depth. Tori Brannan Share








      Details
      Last Updated Jul 14, 2025 Editor NASA Science Editorial Team Location Goddard Space Flight Center Related Terms
      Earth Science Goddard Space Flight Center MUREP Science Activation Explore More
      2 min read Hubble Snaps Galaxy Cluster’s Portrait


      Article


      3 days ago
      7 min read NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
      On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured…


      Article


      4 days ago
      8 min read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker This image, taken by NASA’s New Horizons spacecraft on July 14, 2015, is the most accurate natural color image of Pluto. This natural-color image results from refined calibration of data gathered by New Horizons’ color Multispectral Visible Imaging Camera (MVIC). The processing creates images that would approximate the colors that the human eye would perceive, bringing them closer to “true color” than the images released near the encounter. This single color MVIC scan includes no data from other New Horizons imagers or instruments added. The striking features on Pluto are clearly visible, including the bright expanse of Pluto’s icy, nitrogen-and-methane rich “heart,” Sputnik Planitia.
      Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker
      View the full article
    • By Amazing Space
      Massive Solar Prominence "The Beast" Threatens Eruption? Space Weather Update July 14 2025 NASA SDO
    • By NASA
      Teresa Sindelar always knew she wanted to be a part of human spaceflight, but she was unsure how to make that dream a reality until a chance encounter with former NASA astronaut Tom Stafford when she was 11 years old.

      The pair met in a local jewelry shop near Sindelar’s Nebraska home, where Gen. Stafford was signing autographs. In addition to his photo, Gen. Stafford gave Sindelar a valuable tip – she should check out the Kansas Cosmosphere, a space museum in Hutchinson, Kansas. “I proceeded to attend every camp the Cosmosphere offered as a student, interned during college, and worked there full time while earning my graduate degree,” Sindelar said.

      Official portrait of Teresa Sindelar.NASA She discovered a passion for teaching and mentoring young students through her work in the museum’s education department and a stint as a high school science teacher. When she began looking for opportunities at NASA, she sought a position that melded instruction with technical work. “I like pouring into others and watching them grow,” she said.

      Today, Sindelar is a chief training officer (CTO) within the Flight Operations Directorate at NASA’s Johnson Space Center in Houston. Along with her fellow CTOs, Sindelar oversees the correct and complete training of NASA astronauts, crew members representing international partners, and all flight controllers. “I put the pieces together,” she said. “It is my job to make sure instructors, schedulers, outside partners, facility managers, and others are all in sync.” She added that CTOs have a unique position because they see the big picture of a training flow and understand the long-term training goals and objectives.

      Teresa Sindelar received a 2025 Space Flight Awareness Program Honoree Award, presented by NASA astronaut Randy Bresnik.NASA “I get to do a lot of cool things and go to a lot of cool places,” she said, noting that the training facilities at Johnson and other NASA centers, as well as facilities managed by international partners, are top-notch. While she does enjoy watching astronauts work through problems and learn new systems, she has a special fondness for flight controller training and mentoring young professionals. “What fills my cup the most is seeing a brand-new employee right out of college blossom into a confident flight controller, do their job well, and make our missions better,” she said. “I like knowing that I had something to do with that.”

      Sindelar has been part of the Johnson team since 2010 and worked as an educator in what was then called the center’s Office of Education and as a crew training instructor in the Space Medicine Operations Directorate before becoming a CTO. In March 2025, Sindelar received a Space Flight Awareness Program Honoree Award for her outstanding leadership in the Private Astronaut Mission (PAM) program, which is an important component of NASA’s strategy for enabling a robust and competitive commercial economy in low Earth orbit. As the lead CTO for the third PAM, Axiom Mission 3, Sindelar managed training while identifying critical inefficiencies, enhancing mission safety and performance. She spearheaded a key stakeholder retreat to streamline operations, reorganized training resources for improved accessibility, and implemented efficiency improvements that optimized mission support. Sindelar’s work was recognized during an award ceremony at NASA’s Kennedy Space Center in Florida, and she got to attend the launch of NASA’s SpaceX Crew-10 mission as a special guest.

      In her 15 years with the agency, she has learned the importance of leading by example. “My team needs to see that I meet the bar I set,” she said. “Leading is about motivating your people so they are committed, not just compliant.”

      Teresa Sindelar (front row, third from left) and her Space Medicine Operations crew training team with the crew members of Expedition 48.NASA Keeping a team motivated and on track is particularly important to training success and safety. “We only get a matter of months to train astronauts to do the most hazardous activities that humans have done, or to train flight controllers who literally have the mission and the lives of astronauts in their hands,” Sindelar said, adding that they cannot afford to have an unfocused or indifferent team.

      Sindelar observed that Johnson’s training team is acutely aware of their responsibilities. “We live and work in the same communities as the crew members,” she said. “We see them at school functions, at the grocery store, at the park. We know their families are counting on us to bring their loved ones home safely.”

      She has also learned that her voice matters. “When I was a young professional, I just never felt I could be influential, but the only person holding me back was me,” she said. “I had to learn to trust in my own instincts. That was definitely outside of my comfort zone.” She credits her mentors with helping her build confidence and knowing when and how to speak up. “I have had many giants of the spaceflight community mold and shape me in my career, from my counselors at the Cosmosphere all the way to flight directors and astronauts,” she said. “It is my privilege to learn from them, and I am grateful to each of them.”

      Outside of work, Sindelar uses her voice in a different way – as part of her church choir. She also plays piano, stating that she is as passionate about music and volunteerism as she is about human spaceflight. She is a member of the Friendswood Volunteer Fire Department, as well, serving on its rehab team and as the department’s chaplain

      Teresa Sindelar (second from right) and her family with a Friendswood Volunteer Fire Department fire engine. Image courtesy of Teresa Sindelar As NASA prepares to return humans to the Moon and journey on to Mars, Sindelar hopes she has taught the next generation of explorers enough so they can show the world the wonders of the universe. “This next generation will see and do things my generation never even thought of,” she said, adding that it is time for them to start leading. “Use your voice. Take care of each other along the way. Reach out and help the next one in line.”

      Sindelar keeps a reminder of that important message on her desk: the picture Gen. Stafford signed all those years ago.
      Explore More
      3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts
      Article 5 days ago 3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room 
      Article 7 days ago 4 min read NASA Mission Monitoring Air Quality from Space Extended 
      Article 2 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...