Jump to content

How NASA Citizen Science Fuels Future Exoplanet Research


Recommended Posts

  • Publishers
Posted

5 min read

How NASA Citizen Science Fuels Future Exoplanet Research

K2-33b, shown in this illustration, is one of the youngest exoplanets detected to date using NASA's Kepler Space Telescope.
This artist’s concept shows the exoplanet K2-33b transiting its host star. Many citizen science projects at NASA invite the public to use transit data to make discoveries about exoplanets.
NASA/JPL-Caltech

NASA’s upcoming flagship astrophysics missions, the Nancy Grace Roman Space Telescope and the Habitable Worlds Observatory, will study planets outside our solar system, known as exoplanets. Over 5,000 exoplanets have been confirmed to date — and given that scientists estimate at least one exoplanet exists for every star in the sky, the hunt has just begun. Exoplanet discoveries from Roman and the Habitable Worlds Observatory may not be made only by professional researchers, but also by interested members of the public, known as citizen scientists.

Exoplanet research has a long involvement with citizen science. NASA’s TESS (Transiting Exoplanet Survey Satellite) mission and now-retired Kepler mission, which are responsible for the vast majority of exoplanet discoveries to date, both made observations freely available to the public immediately after processing. This open science policy paved the way for the public to get involved with NASA’s exoplanet science. 

NASA’s Planet Hunters TESS project invites the public to classify exoplanet light curves from TESS online. Another project, Exoplanet Watch, allows citizen scientists to gather data about known exoplanets, submit their observations to NASA’s public data archive, and receive credit if their observation is used in a scientific paper. Participants don’t even need their own telescope — Exoplanet Watch also curates data from robotic telescopes for users to process. 

Artist's concept of NASA's TESS (Transiting Exoplanet Survey Satellite).
Artist’s concept of NASA’s TESS (Transiting Exoplanet Survey Satellite). Data from TESS have been used in citizen science projects.
NASA’s Goddard Space Flight Center

“Anyone across the world who has access to a smartphone or a laptop can fully participate in a lot of these citizen science efforts to help us learn more about the cosmos,” said Rob Zellem, the project lead and project scientist for Exoplanet Watch and astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

NASA’s citizen science projects have discovered several new planets from Kepler and TESS data. They have also helped scientists refine the best time to observe important targets, saving hours of precious observation time on current flagship missions like NASA’s James Webb Space Telescope. 

Roman and the Habitable Worlds Observatory provide even more possibilities for citizen science. Expected to launch by May 2027, Roman will discover exoplanets through direct imaging, transits, and gravitational microlensing. Following that, the Habitable Worlds Observatory will take direct images of stars in our solar neighborhood to find potentially habitable planets and study their atmospheres. 

The general public can get Roman data as quickly as I can as a scientist working on the mission.

Rob Zellem

Rob Zellem

Exoplanet Watch Project Lead and Project Scientist; Nancy Grace Roman Space Telescope Deputy Project Scientist for Communications

Like Kepler and TESS before them, data from Roman and the Habitable Worlds Observatory will be available to both the scientific community and the public immediately after processing. With Roman’s surveys expected to deliver a terabyte of data to Earth every day — over 17 times as much as Webb — there is a huge opportunity for the public to help sift through the information. 

“The general public can get Roman data as quickly as I can as a scientist working on the mission,” said Zellem, who also serves as Roman’s deputy project scientist for communications at NASA Goddard. “It truly makes Roman a mission for everyone and anyone.” 

Although the Habitable Worlds Observatory’s full capabilities and instrumentation have yet to be finalized, the inclusion of citizen science is expected to continue. The team behind the mission is embracing a community-oriented planning approach by opening up working groups to volunteers who want to contribute. 

“It’s already setting the tone for open science with the Habitable Worlds Observatory,” said Megan Ansdell, the program scientist for the mission at NASA Headquarters in Washington. “The process is as open as possible, and these working groups are open to anybody in the world who wants to join.” There are already over 1,000 community working group members participating, some of whom are citizen scientists. 

In a clean room at NASA's Jet Propulsion Laboratory in Southern California in October 2023, scientist Vanessa Bailey stands behind the Roman Coronagraph, which has been undergoing testing at the lab. Designed to block starlight and allow scientists to see the faint light from planets outside our solar system, the Coronagraph is a technology demonstration that will be part of NASA's Nancy Grace Roman Space Telescope.
The Roman Coronagraph, photographed during testing at NASA’s Jet Propulsion Lab in Southern California, is a technology demonstration designed to block starlight and allow scientists to see the faint light from planets outside our solar system. It represents one of multiple ways that Roman will contribute to exoplanet research.
NASA/JPL-Caltech

Future citizen science initiatives may be combined with cutting-edge tools such as artificial intelligence (AI) for greater efficacy. “AI can be exceptionally powerful in terms of classification and identifying anomalous things,” said Joshua Pepper, the deputy program scientist for the Habitable Worlds Observatory at NASA Headquarters. “But the evaluation of what those anomalous things are often requires human insight, intervention, and review, and I think that could be a really fantastic area for citizen scientists to participate.” 

Before Roman and the Habitable Worlds Observatory launch, exoplanet citizen scientists still have plenty of data to analyze from the Kepler and TESS satellites, but the contributions of the community will become even more important when data begin pouring in from the new missions. As Zellem said, “We’re in a golden age of exoplanet science right now.” 

NASA’s citizen science projects are collaborations between scientists and interested members of the public and do not require U.S. citizenship. Through these collaborations, volunteers (known as citizen scientists) have helped make thousands of important scientific discoveries. To get involved with a project, visit NASA’s Citizen Science page.

By Lauren Leese 
Web Content Strategist for the Office of the Chief Science Data Officer 

Share

Details

Last Updated
Aug 08, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Seeing Earth as Only NASA Can
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers use a flat aerogel array antenna to communicate with a geostationary satellite above the Earth during tests at NASA’s Glenn Research Center in Cleveland.Credit: NASA/Jordan Cochran NASA engineers are using one of the world’s lightest solid materials to construct an antenna that could be embedded into the skin of an aircraft, creating a more aerodynamic and reliable communication solution for drones and other future air transportation options. 
      Developed by NASA, this ultra-lightweight aerogel antenna is designed to enable satellite communications where power and space are limited. The aerogel is made up of flexible, high-performance plastics known as polymers. The design features high air content (95%) and offers a combination of light weight and strength. Researchers can adjust its properties to achieve either the flexibility of plastic wrap or the rigidity of plexiglass.
      “By removing the liquid portion of a gel, you’re left with this incredibly porous structure,” said Stephanie Vivod, a chemical engineer at NASA’s Glenn Research Center in Cleveland. “If you’ve ever made Jell-O, you’ve performed chemistry that’s similar to the first step of making an aerogel.”
      NASA sandwiched a layer of aerogel between a small circuit board and an array of thin, circular copper cells, then topped the design off with a type of film known for its electrical insulation properties. This innovation is known at NASA and in the aviation community as an active phased array aerogel antenna. 
      A sample of aerogel is folded to demonstrate its flexibility during testing at NASA’s Glenn Research Center in Cleveland.Credit: NASA In addition to decreasing drag by conforming to the shape of aircraft, aerogel antennas save weight and space and come with the ability to adjust their individual array elements to reduce signal interference. They are also less visually intrusive compared to other types of antennas, such as spikes and blades. The finished product looks like a honeycomb but lays flat on an aircraft’s surface.
      In the summer of 2024, researchers tested a rigid version of the antenna on a Britten-Norman Defender aircraft during an in-flight demonstration with the U.S. Navy at Naval Air Station Patuxent River in Maryland.
      A Britten-Norman Defender aircraft outfitted with an advanced phased array antenna prototype for a flight test in summer 2024. The aircraft was used to verify data transmission quality and communications link resiliency with a low Earth orbit satellite.Credit: U.S. Navy Then, last October, researchers at NASA Glenn and the satellite communications firm Eutelsat America Corp., of Houston, began ground testing a version of the antenna mounted to a platform. The team successfully connected with a Eutelsat satellite in geostationary orbit, which bounced a signal back down to a satellite dish on a building at Glenn. Other demonstrations of the system at Glenn connected with a constellation of communications satellites operated in low Earth orbit by the data relay company Kepler. NASA researchers will design, build, and test a flexible version of the antenna later this year.
      “This is significant because we are able to use the same antenna to connect with two very different satellite systems,” said Glenn researcher Bryan Schoenholz. Low Earth orbit satellites are relatively close – at 1,200 miles from the surface – and move quickly around the planet. Geostationary satellites are much farther – more than 22,000 miles from the surface – but orbit at speeds matching the Earth’s rotation, so they appear to remain in a fixed position above the equator.
      NASA Glenn Research Center’s Sarah Dever and Mick Koch, electrical engineers, command an active phased array antenna to point toward a geostationary satellite. They used a flat version of an aerogel antenna during tests in October 2024.Credit: NASA/Jordan Cochran The satellite testing was crucial for analyzing the aerogel antenna concept’s potential real-world applications. When modern aircraft communicate with stations on the ground, those signals are often transmitted through satellite relays, which can come with delays and loss of communication. This NASA-developed technology will make sure these satellite links are not disrupted during flight as the aerogel antenna’s beam is a concentrated flow of radio waves that can be electronically steered with precision to maintain the connection.
      As new types of air transportation options are brought to the market and U.S airspace – from the small, piloted aircraft of today to the autonomous air taxis and delivery drones of tomorrow – these kinds of steady connections will become increasingly important. That’s why NASA’s Advanced Air Mobility mission and Transformative Aeronautics Concepts program are supporting research like the aerogel antennas that can boost industry efforts to safely expand the emerging marketplace for these transportation systems.
      “If an autonomous air taxi or drone flight loses its communications link, we have a very unsafe situation,” Schoenholz said. “We can’t afford a ‘dropped call’ up there because that connection is critical to the safety of the flight.”
      Schoenholz, Vivod, and others work on NASA’s Antenna Deployment and Optimization Technologies activity within the Transformational Tools and Technologies project. The activity aims to develop technologies that reduce the risk of radio frequency interference from air taxis, drones, commercial passenger jets, and other aircraft in increasingly crowded airspace.
      Explore More
      2 min read A Fond Farewell: NASA’s C-130 Begins New Mission in California
      Article 4 days ago 4 min read NASA Glenn to Test Air Quality Monitors Aboard Space Station
      Article 4 days ago 3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 5 days ago View the full article
    • By NASA
      4 min read
      NASA’s Lucy Spacecraft Images Asteroid Donaldjohanson
      In its second asteroid encounter, NASA’s Lucy spacecraft obtained a close look at a uniquely shaped fragment of an asteroid that formed about 150 million years ago. The spacecraft has begun returning images that were collected as it flew approximately 600 miles (960 km) from the asteroid Donaldjohanson on April 20, 2025.
      The asteroid Donaldjohanson as seen by the Lucy Long-Range Reconnaissance Imager (L’LORRI) on NASA’s Lucy spacecraft during its flyby. This timelapse shows images captured approximately every 2 seconds beginning at 1:50 p.m. EDT (17:50 UTC), April 20, 2025. The asteroid rotates very slowly; its apparent rotation here is due to the spacecraft’s motion as it flies by Donaldjohanson at a distance of 1,000 to 660 miles (1,600 to 1,100 km). The spacecraft’s closest approach distance was 600 miles (960 km), but the images shown were taken approximately 40 seconds beforehand, the nearest ones at a distance of 660 miles (1100 km). NASA/Goddard/SwRI/Johns Hopkins APL The asteroid was previously observed to have large brightness variations over a 10-day period, so some of Lucy team members’ expectations were confirmed when the first images showed what appeared to be an elongated contact binary (an object formed when two smaller bodies collide). However, the team was surprised by the odd shape of the narrow neck connecting the two lobes, which looks like two nested ice cream cones.
      “Asteroid Donaldjohanson has strikingly complicated geology,” says Hal Levison, principal investigator for Lucy at Southwest Research Institute, Boulder, Colorado. “As we study the complex structures in detail, they will reveal important information about the building blocks and collisional processes that formed the planets in our Solar System.”
      From a preliminary analysis of the first available images collected by the spacecraft’s L’LORRI imager, the asteroid appears to be larger than originally estimated, about 5 miles (8 km) long and 2 miles (3.5 km) wide at the widest point. In this first set of high-resolution images returned from the spacecraft, the full asteroid is not visible as the asteroid is larger than the imager’s field of view. It will take up to a week for the team to downlink the remainder of the encounter data from the spacecraft; this dataset will give a more complete picture of the asteroid’s overall shape.
      Like Lucy’s first asteroid flyby target, Dinkinesh, Donaldjohanson is not a primary science target of the Lucy mission. As planned, the Dinkinesh flyby was a system’s test for the mission, while this encounter was a full dress rehearsal, in which the team conducted a series of dense observations to maximize data collection. Data collected by Lucy’s other scientific instruments, the L’Ralph color imager and infrared spectrometer and the L’TES thermal infrared spectrometer, will be retrieved and analyzed over the next few weeks.
      The Lucy spacecraft will spend most of the remainder of 2025 travelling through the main asteroid belt. Lucy will encounter the mission’s first main target, the Jupiter Trojan asteroid Eurybates, in August 2027.
      “These early images of Donaldjohanson are again showing the tremendous capabilities of the Lucy spacecraft as an engine of discovery,” said Tom Statler, program scientist for the Lucy mission at NASA Headquarters in Washington. “The potential to really open a new window into the history of our solar system when Lucy gets to the Trojan asteroids is immense.”
      The asteroid Donaldjohanson as seen by the Lucy Long-Range Reconnaissance Imager (L’LORRI). This is one of the most detailed images returned by NASA’s Lucy spacecraft during its flyby. This image was taken at 1:51 p.m. EDT (17:51 UTC), April 20, 2025, near closest approach, from a range of approximately 660 miles (1,100 km). The spacecraft’s closest approach distance was 600 miles (960 km), but the image shown was taken approximately 40 seconds beforehand. The image has been sharpened and processed to enhance contrast. NASA/Goddard/SwRI/Johns Hopkins APL/NOIRLab NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and the safety and mission assurance for Lucy, as well as the designing and building the L’Ralph instrument. Hal Levison of the Boulder, Colorado, office of SwRI is the principal investigator. SwRI is headquartered in San Antonio and also leads the mission’s science team, science observation planning, and data processing. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for Lucy, as well as the L’Ralph instrument. Lockheed Martin Space in Littleton, Colorado, built the spacecraft, designed the orbital trajectory, and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the Lucy spacecraft. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, designed and built the L’LORRI (Lucy Long Range Reconnaissance Imager) instrument. Arizona State University designed and built the L’TES (Lucy Thermal Emission Spectrometer). Lucy is the thirteenth mission in NASA’s Discovery Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      By Katherine Kretke
      Southwest Research Institute
      Media Contact:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Apr 21, 2025 Editor Jamie Adkins Contact Molly Wasser molly.l.wasser@nasa.gov Related Terms
      Lucy Asteroids Goddard Space Flight Center View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Earth Day Poster for 2025 uses imagery from the Landsat mission — a joint mission with USGS — to celebrate our home planet. NASA/USGS/Landsat From the iconic image of Earthrise taken by Apollo 8 crew, to the famous Pale Blue Dot image of Earth snapped by Voyager I spacecraft, to state-of-the-art observations of our planet by new satellites such as PACE (Plankton, Aerosol, Cloud, ocean Ecosystem), NASA has given us novel ways to see our home. This Earth Day, NASA is sharing how — by building on decades of innovation—we use the unique vantage point of space to observe and understand our dynamic planet in ways that we cannot from the ground.

      NASA has been observing Earth from space for more than 60 years, with cutting-edge scientific technology that can revolutionize our understanding of our home planet and provide benefits to all humanity. NASA observations include land data that helps farmers improve crop production, research on the air we breathe, and studies of atmospheric layers high above us that protect every living thing on the planet.

      “NASA Science delivers every second of every day for the benefit all, and it begins with how we observe our home planet from the unique vantage point of space,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Our satellites, Mars rovers, astronauts and other NASA Science missions send back beautiful images of our planet, from the smallest of plankton to the pale blue dot, to help give us a comprehensive, detailed view of our home that we especially celebrate each Earth Day.”

      NASA data and tools are vital to federal, state, local, and international governments to monitor and manage land, air, and water resources. From mapping the ocean floor to finding critical mineral deposits to alerting land managers when fire risk is high, NASA’s data and information informs nearly every aspect of our economy and our lives.

      “Another way NASA celebrates Earth Day is by sharing information about how our science benefits the entire nation, such as by providing U.S. farmers and ranchers with ongoing measurements of water, crop health, wildfire predictions, and knowledge of what is being grown around the world,” said Karen St. Germain, director of NASA’s Earth Science Division at the agency’s headquarters in Washington. “This data informs field level farming and ranching decisions with impact felt as far as the commodity-trading floor and our grocery stores.”

      Next up for NASA’s work to help mitigate natural disasters is a mission called NISAR (NASA-ISRO Synthetic Aperture Radar) which is a partnership between NASA and ISRO (India Space Research Organization). NISAR, which is targeted to launch later this year, will measure land changes from earthquakes, landslides, and volcanos, producing more NASA science data to aid in disaster response. The mission’s radar will detect movements of the planet’s surface as small as 0.4 inches over areas about the size of half a tennis court. By tracking subtle changes in Earth’s surface, it will spot warning signs of imminent volcanic eruptions, help to monitor groundwater supplies, track the melt rate of ice sheets tied to sea level rise, and observe shifts in the distribution of vegetation around the world. 

      From our oceans to our skies, to our ice caps, to our mountains, and to our rivers and streams, NASA’s Earth observations enhance our understanding of the world around us and celebrate the incredible planet we call home.

      To download NASA’s 2025 Earth Day poster, visit:
      https://nasa.gov/earthdayposters
      Share
      Details
      Last Updated Apr 21, 2025 Related Terms
      Earth Day Earth General Landsat NISAR (NASA-ISRO Synthetic Aperture Radar) PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 4 days ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 5 days ago 7 min read NASA’s SpaceX 32nd Commercial Resupply Mission Overview
      NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21,…
      Article 5 days ago Keep Exploring Discover Related Topics
      Earth Science at Work
      NASA Earth Science helps Americans respond to challenges and societal needs — such as wildland fires, hurricanes, and water supplies…
      NASA Science, Cargo Launch on 32nd SpaceX Resupply Station Mission
      Science in the News
      Featured News Stories
      Earth Science to Action
      Within a decade, NASA will advance and integrate Earth science knowledge to empower humanity to create a more resilient world. 
      View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying a Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 4:15 a.m. EDT on April 21 2025, on the company’s 32nd commercial resupply services mission for the agency to the International Space Station.Credit: NASA Following the successful launch of NASA’s SpaceX 32nd Commercial Resupply Services mission, new scientific experiments and supplies are bound for the International Space Station.
      The SpaceX Dragon spacecraft, carrying approximately 6,700 pounds of cargo to the orbiting laboratory for NASA, lifted off at 4:15 a.m. EDT Monday, on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Live coverage of the spacecraft’s arrival will begin at 6:45 a.m., Tuesday, April 22, on NASA+. Learn how to watch NASA content through a variety of platforms.
      The spacecraft is scheduled to autonomously dock at approximately 8:20 a.m. to the zenith, or space-facing, port of the space station’s Harmony module.
      The resupply mission will support dozens of research experiments during Expedition 73. Along with food and essential equipment for the crew, Dragon is delivering a variety of science experiments, including a demonstration of refined maneuvers for free-floating robots. Dragon also carries an enhanced air quality monitoring system that could help protect crew members on exploration missions to the Moon and Mars, and two atomic clocks to examine fundamental physics concepts, such as relativity, and test global synchronization of precision timepieces.
      These are just a sample of the hundreds of investigations conducted aboard the orbiting laboratory each year in the areas of biology and biotechnology, physical sciences, and Earth and space science. Such research benefits humanity and helps lay the groundwork for future human exploration through the agency’s Artemis campaign, which will send astronauts to the Moon to prepare for future missions to Mars.
      The Dragon spacecraft is scheduled to remain at the orbiting laboratory until May, when it will depart and return to Earth with time-sensitive research and cargo, splashing down off the coast of California.
      Learn more about the commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-spacex-crs-32/
      -end-
      Julian Coltre / Josh Finch
      Headquarters, Washington
      202-358-1100
      julian.n.coltre@nasa.gov / joshua.a.finch@nasa.gov
      Stephanie Plucinsky / Steven Siceloff
      Kennedy Space Center, Florida
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 21, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Kennedy Space Center SpaceX Commercial Resupply View the full article
  • Check out these Videos

×
×
  • Create New...