Jump to content

The Marshall Star for August 7, 2024


NASA

Recommended Posts

  • Publishers
23 Min Read

The Marshall Star for August 7, 2024

A man and women look at a piece of hardware

NASA Additive Manufacturing Project Shapes Future for Agency, Industry Rocket Makers

The widespread commercial adoption of additive manufacturing technologies, commonly known as 3D printing, is no surprise to design engineers at NASA’s Marshall Space Flight Center whose research created stronger, lighter weight materials and new manufacturing processes to make rocket parts.

NASA’s RAMPT (Rapid Analysis and Manufacturing Propulsion Technology) project is on the cutting edge of additive manufacturing – helping the agency and industry produce new alloys and additively manufactured parts, commonly referred to as 3D printing, according to Paul Gradl, the project’s co-principal investigator at Marshall.

“Across NASA’s storied legacy of vehicle and hardware design, testing, and integration, our underlying strength is in our application of extremely durable and severe environment materials and innovative manufacturing for component design,” said Gradl. “We strive to fully understand the microstructure and properties of every material and how they will ultimately be used in components before we make them available to industry for flight applications.”

The same principle applies to additive manufacturing, the meticulous process of building components and hardware one layer of material at a time.

An info graphic shows the different sections of a testing article
The graphic captures additive manufacturing technology milestones led by the RAMPT project. Using 3D-printed, liquid oxygen/hydrogen thrust chamber hardware at chamber pressures of up to 1,400 pounds per square inch, Marshall engineers have completed 12 hot-fire tests totaling a combined 330 seconds. The project also has delivered composite materials demonstrating a 40% weight savings over conventional bimetallic combustion chambers. NASA and its industry partners are working to make this cutting-edge technology accessible for a host of future NASA and commercial space missions.
NASA/Pablo Garcia

“The RAMPT project’s goal is to support commercial, technical readiness, enabling our industry partners to meet the challenges inherent in building new generations of safer, more cost-effective deep space exploration propulsion systems,” said John Fikes, RAMPT project manager.

Since its inception, RAMPT has conducted 500 test-firings of 3D-printed injectors, nozzles, and chamber hardware totaling more than 16,000 seconds, using newly developed extreme-environment alloys, large-scale additive manufacturing processes, and advanced composite technology. The project has also started developing a full-scale version for the workhorse RS-25 engine – which experts say could reduce its costs by up to 70% and cut manufacturing time in half.

As printed structures are getting bigger and more complex, a major area of interest is the additive manufacturing print scale. A decade ago, most 3D-printed parts were no bigger than a shoebox. Today, additive manufacturing researchers are helping the industry produce lighter, more robust, intricately designed rocket engine components 10-feet tall and eight-feet in diameter.

“NASA, through public-private partnerships, is making these breakthroughs accessible to the commercial space industry to help them rapidly advance new flight technologies of their own,” Gradl said. “We’re solving technical challenges, creating new supply chains for parts and materials, and increasing the industry’s capacity to rapidly deliver reliable hardware that draws a busy commercial space infrastructure ever closer.”

The RAMPT project does not just develop the end technology but the means to fully understand that technology, whatever the application. That means advancing cutting-edge simulation tools that can identify the viability of new alloys and composites at the microstructural level – assessing how they handle the fiery rigors of liftoff, the punishing cold of space, and the dynamic stresses associated with liftoffs, landings, and the long transits between.

NASA’s strategy to encourage commercial and academic buy-in is to offer public-private partnership opportunities, wherein industry and academia contribute as much as 25% of project development costs, allowing them to reap the benefits.

For example, NASA successfully delivered a refined version of an alloy, known as GRCop42, created at NASA’s Glenn Research Center nearly 40 years ago which helped commercial launch provider, Relativity Space, launch the first fully 3D-printed rocket in March 2023.

“Our primary goal with these higher-performance alloys is to prove them in a rocket engine test-fire environment and then hand them off to enable commercial providers to build hardware, fly launch vehicles, and foster a thriving space infrastructure with real scientific, social, and economic rewards,” Gradl said.

A key benefit of additive manufacturing hardware development is radically reducing the “design-fail-fix” cycle – when engineers develop new hardware, ground-test it to failure to determine the hardware’s design limits under all possible conditions and then tweak accordingly. That capability is increasingly important with the creation of new alloys and designs, new processing techniques, and the introduction of composite overwraps and other innovations.

A hot fire test shows an orange flame coming out of a 3D printed chamber.
Shown during a hot-fire test at Marshall, this 2,000-pound-force coupled thrust chamber assembly features a NASA HR-1 alloy nozzle. Manufacturing the hardware requires the directed energy deposition process with composite-overwrap for structural support, reducing weight by 40%. Industry, academic, and government partners are working with RAMPT engineers at Marshall and other NASA field centers to advance this revolutionary technology.
NASA

The RAMPT project did just that, successfully advancing new additive manufacturing alloys and processes, integrating them with carbon-fiber composites to reduce weight by up to 40%, developing and validating new simulation tools – and making all this data available to industry through public-private partnerships.

“We’re able to deliver prototypes in weeks instead of years, conduct dozens of scaled ground tests in a period that would feasibly permit just one or two such tests of conventionally manufactured hardware, and most importantly, deliver technology solutions that are safer, lighter, and less costly than traditional components,” Gradl said.

Fikes added, “Ten years from now, we may be building rocket engines – or rockets themselves – out of entirely new materials, employing all-new processing and fabrication techniques. NASA is central to all of that.”

The RAMPT project continues to progress and receive recognition from NASA and industry partners. On July 31, the RAMPT team was awarded NASA’s 2024 Invention of The Year award for its excellence and contributions to NASA and the commercial industry’s deep space exploration goals.

Marshall leads RAMPT, with key support among engineers and technologists at NASA’s Glenn Research Center; Ames Research Center; Langley Research Center; and Auburn University in Auburn, Alabama, plus contributions from other academic partners and industry contractors. RAMPT is funded by NASA’s Game Changing Development Program within the agency’s Space Technology Mission Directorate.

› Back to Top

Artemis Mission Manager Mike Sarafin Speaker for Aug. 8 Mission Success Forum

By Wayne Smith

Mike Sarafin, Artemis mission manager and Mission Management Team chair, will be the guest speaker for the Mission Success is in Our Hands Shared Experiences Forum on Aug. 8 at NASA’s Marshall Space Flight Center.

etv-min.jpg?w=1920
The forum will take place in Activities Building 4316 and on Teams.

The 11:30 a.m. event will be in Activities Building 4316 and Marshall team members are encouraged to attend. The forum is available to NASA employees and the public virtually via Teams.

Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs Engineering. The initiative’s goal to help team members make meaningful connections between their jobs and the safety and success of NASA and Marshall missions.

The theme of the forum is “Artemis I Mission Challenges.” Sarafin will provide a frontline perspective on the role of the Mission Management Team and how it is governed. He will summarize key challenges encountered, suggest best practices for managing large diverse teams, discuss useful risk informed decision-making tools, and highlight lessons learned for consideration in future human lunar exploration missions.

“As we continue to prepare for the next Artemis mission, this forum is a valuable opportunity to learn about challenges NASA faced to ensure mission success for Artemis I,” said Bill Hill, director of the Safety and Mission Assurance Directorate at Marshall. “I encourage Marshall team members to attend the forum in person to gain Mike’s insight on safety and mission success.”

Sarafin is the Artemis mission manager for the Moon to Mars Program Office at NASA Headquarters. In this role, he leads the Mission Management Team for Artemis, providing oversight and responsibility for critical decisions across all flight phases (launch, in-space, and recovery), with support from team members and advisors with technical expertise in various areas. Prior to flight, he acted as a senior technical leader integrating mission requirements, planning, operations, and flight readiness leading to mission execution.

With more than 30 years of human spaceflight experience, Sarafin began his career as a guidance, navigation, and mission controller working on the space shuttle. He became a NASA flight director supporting the space shuttle and the International Space Station. He also was the lead flight director for Orion’s first flight test in 2014.

As part of the forum, Mission Success is in Our Hands will present the Golden Eagle Award to a Marshall team member. The award promotes awareness and appreciation for flight safety, as demonstrated through the connections between employees’ everyday work, the success of NASA and Marshall’s missions, and the safety of NASA astronauts. The award recognizes individuals who have made significant contributions to flight safety and mission assurance above and beyond their normal work requirements. Management or peers can nominate any team member for the award. Honorees are typically recognized at quarterly Shared Experiences forums.

The next Shared Experiences Forum is scheduled for Sept. 5, featuring Dave Dykhoff, former vice president and general manager of the Jacobs Missile Defense Group and the NORAD Operations Group.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Denise Smithers Named Marshall’s Center Executive Officer

Denise Smithers has been named to the position of center executive officer as part of a six-month detail supporting the Office of the Center Director at NASA’s Marshall Space Flight Center, effective Aug. 9. As center executive officer, Smithers will lead the overall office management and operations within the director’s office, integrate and coordinate center-wide actions, and serve as Marshall’s chief of staff.

denisesmithers.jpg?w=2048
Denise Smithers has been named to the position of center executive officer as part of a six-month detail supporting the Office of the Center Director at NASA’s Marshall Space Flight Center.
NASA

Smithers has been with Marshall for more than 30 years, holding various budget, strategic, and leadership positions. Since July 2020, Smithers has served as a supervisory budget analyst for the Mission Support Office, overseeing a team of analysts in managing budgets for institutional support offices. While working in the Budget, Integration, and Analysis Team in the Office of the Chief Financial Officer (OCFO), she developed strategic guidance, managed processes, and provided in-depth analyses for the annual Planning, Programming, Budget, and Execution process. She was also responsible for reporting on financial performances, assessing trends, addressing cost-cutting issues, identifying risks, and providing strategic budgetary decisions.

Before joining OCFO, Smither’s previous roles included deputy director of the Office of Diversity and Equal Opportunity (ODEO) from 2019-2020, where she promoted education, awareness, and communication of diversity initiatives to Marshall’s workforce; lead budget analyst supporting the Chief Information Office from 2014-2019; external relations specialist from 2013-2014; technical assistant supporting the Office of the Center Director from 2011-2013; budget analyst from 2000-2013; and contract specialist from 1996-2000.

Smithers started her tenure at Marshall at 18 as a summer intern. In addition to her job duties, she is active in many community civic organizations and Employee Resource Groups (ERGs) at Marshall. She leads the OCFO Enterprise Diversity Equity Inclusion and Accessibility (DEIA) Culture, Branding, and Vision Team, and represents management on their focus team. She was appointed to the Marshall Culture Advisory Committee where she develops, implements, and accesses DEIA strategies and initiatives in collaboration with ODEO. Smithers also leads the Women’s ERG at Marshall and serves as the Blueprint to Reinforce Inclusivity and Diversity to Gain Equity (BRIDGE) Champion representative for OCFO.

A native of Athens, Alabama, Smithers earned a Master of Business Administration from Alabama A&M University and a Bachelor of Science degree from the University of Alabama in Huntsville. She was awarded a Silver Snoopy in 2011, a Director’s Commendation in 2019, and the Agency DEIA Medal in 2023.

› Back to Top

Shooting Stars: Annual Perseid Meteor Shower to Peak Aug. 11-12

By Wayne Smith

They may not attract as much attention as last month’s daylight fireball over New York City, but stargazers can still anticipate seeing some shooting stars with the upcoming Perseid meteor shower. Caused by Earth passing through trails of debris left behind by Comet Swift-Tuttle, the shower has become famous over the centuries because of its consistent display of celestial fireworks.

A bright meteor leaves a trail of light amongst a sky full of stars. Silhouettes of trees frame the bottom of the image.
In this 30 second exposure, a meteor streaks across the sky during the annual Perseid meteor shower, Wednesday, Aug. 11, 2021, in Spruce Knob, West Virginia.
NASA/Bill Ingalls

“The Perseids is the best annual meteor shower for the casual stargazer,” said Bill Cooke, who leads NASA’s Meteoroid Environment Office at the agency’s Marshall Space Flight Center. “Not only is the shower rich in bright meteors and fireballs – No. 1 in fact – it also peaks in mid-August when the weather is still warm and comfortable. This year, the Perseid maximum will occur on the night of Aug. 11 and pre-dawn hours of Aug. 12. You’ll start seeing meteors from the shower around 11 p.m. local time and the rates will increase until dawn. If you miss the night of the 11th, you will also be able to see quite a few on the night of the 12th between those times.”

The best way to see the Perseids is to find the darkest possible sky and visit between midnight and dawn on the morning of Aug. 12. Allow about 45 minutes for your eyes to adjust to the dark. Lie on your back and look straight up. Avoid looking at cell phones or tablets because their bright screens ruin night vision and take your eyes off the sky.

Perseid meteors travel at the blistering speed of 132,000 mph – or 500 times faster than the fastest car in the world. At that speed, even a smidgen of dust makes a vivid streak of light when it collides with Earth’s atmosphere. Peak temperatures can exceed 3,000 degrees Fahrenheit as they speed across the sky. The Perseids pose no danger to people on the ground as practically all burn up 60 miles above our planet.

The first Perseid captured by NASA’s All Sky Meteor Camera Network was recorded at 9:48 p.m. EDT on July 23. The meteor – about as bright as the planet Jupiter, so not quite bright enough to be considered a fireball – was caused by a piece of Comet Swift-Tuttle about 5 millimeters in diameter entering the atmosphere over the Atlantic and burning up 66 miles above St. Cloud, Florida, just south of Orlando.

A bright streak is shown going across the sky.
NASA’s All Sky Meteor Camera Network captured its first Perseid at 8:48 p.m. CDT on July 23.
NASA

Rare Fireball in New York, New York Not Perseids

It wasn’t part of the Perseids, but a rare daylight fireball streaked across the sky over New York City at 11:15 a.m. EDT on  July 16. The event gained national attention and was reported in media outlets across the U.S.

The fireball, defined as a meteor brighter than the planet Venus, is estimated to have soared over New York City before traversing a short path southwest and disintegrating about 31 miles above Mountainside, New Jersey. Cooke said the meteor was likely about 1 foot in diameter, which would have made the rock bright enough to see during the day. Seeing a meteor of this size is rarer than catching sight of the smaller particles a few millimeters in size typically seen in the night sky.

“To see one in the daytime over a populated area like New York is fairly rare,” Cooke said during an interview with ABC 7 in New York.

The Meteoroid Environments Office studies meteoroids in space so that NASA can protect our nation’s satellites, spacecraft and even astronauts aboard the International Space Station from these bits of tiny space debris.

For more skywatching highlights in April, check out Jet Propulsion Lab’s What’s Up series.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

NASA Invites Public to Attend Deep Space Food Challenge Finale

NASA invites the public to explore the nexus of space and food innovation at the agency’s Deep Space Food Challenge symposium and winners’ announcement at the Nationwide and Ohio Farm Bureau 4-H Center in Columbus, Ohio, on Aug. 16. 

In 2019, NASA and the CSA (Canadian Space Agency) started the Deep Space Food Challenge, a multi-year international effort to develop sustainable food systems for long-duration habitation in space including the Moon and Mars. Since Phase 1 of the challenge opened in 2021, more than 300 teams from 32 countries have developed innovative food system designs. On Aug. 16, NASA will announce the final Phase 3 winners and recognize the shared global effort.

An artists’ rendering of the Moon and Mars, both halfway lit, above the Earth’s horizon against open space, sprinkled with small stars.
NASA’s Deep Space Food Challenge directly supports the agency’s Moon to Mars initiatives.
Credit: NASA

NASA will award up to $1.5 million during the awards ceremony, totaling the prize purse for this three-year competition at $3 million. International teams also will be recognized for their achievements.

“Advanced food systems also benefit life on Earth,” said Kim Krome-Sieja, acting program manager of NASA Centennial Challenges at NASA’s Marshall Space Flight Center. “Solutions from this challenge could enable new avenues for food production around the world, especially in extreme environments, resource-scarce regions, and in locations where disasters disrupt critical infrastructure.”

The Methuselah Foundation, NASA’s partner in the Deep Space Food Challenge, is hosting the event in coordination with the Ohio State University College of Food, Agricultural, and Environmental Sciences and NASA Centennial Challenges.

“Our Phase 2 winners’ event in Brooklyn, New York, was an incredible display of innovation, partnership, and collaboration across NASA, industry, and academia,” said Angela Herblet, challenge manager of the Deep Space Food Challenge and program analyst of NASA Centennial Challenges at Marshall. “I’m looking forward to celebrating these brilliant Phase 3 finalists and underscoring the giant leaps they’ve made toward creating sustainable, regenerative food production systems.” 

The event will feature a meet and greet with the Phase 3 finalists, symposium panels, and live demonstrations of the finalists’ food production technologies. Attendees also will have the opportunity to meet the crew of Ohio State students called “Simunauts,” who managed operations of the technologies during the eight-week demonstration and testing period.

“The Prizes, Challenges, and Crowdsourcing team is excited to welcome media, stakeholders, and the public to our event in Columbus,” said Amy Kaminski, program executive for NASA’s Prizes, Challenges, and Crowdsourcing at NASA Headquarters. “These finalists have worked diligently for three years to develop their diverse, innovative food systems, and I’m excited to see how their technologies may impact NASA’s future deep space missions.”

The awards ceremony also will livestream on Marshall Space Flight Center’s YouTube channel and NASA Prize’s Facebook page.

As a NASA Centennial Challenge, the Deep Space Food Challenge is a coordinated effort between NASA and CSA for the benefit of all. Subject matter experts at NASA’s Johnson Space Center and NASA’s Kennedy Space Center support the competition. NASA’s Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program within NASA’s Space Technology Mission Directorate and managed at Marshall. The Methuselah Foundation, in partnership with NASA, oversees the competitors.

For more information about the symposium, see the symposium website. Learn more about the Deep Space Food Challenge.

› Back to Top

Artemis Emergency Egress System Emphasizes Crew Safety 

Since NASA began sending astronauts to space, the agency has relied on emergency systems for personnel to safely leave the launch pad and escape the hazard in the unlikely event of an emergency during the launch countdown. 

Image shows egress baskets that will transport astronauts and personnel from the crew access arm to the launch pad in case of an emergency
Teams with NASA’s Exploration Ground Systems Program, in preparation for the agency’s Artemis II crewed mission to the Moon, conduct testing of four emergency egress baskets on the mobile launcher at Launch Complex 39B at the agency’s Kennedy Space Center in Florida in July 2024. The baskets are used in the case of a pad abort emergency to allow astronauts and other pad personnel to escape quickly from the mobile launcher to the base of the pad to be driven to safety by emergency transport vehicles.
NASA/Amanda Arrieta

During the Mercury and Gemini programs, NASA used launch escape systems on spacecraft for the crew to safely evacuate if needed. Though these systems are still in use for spacecraft today, the emergency routes on the ground were updated starting with the Apollo missions to account for not only the crew, but all remaining personnel at the launch pad. 

During Apollo, personnel relied on a ground-based emergency egress system – or emergency exit route – to allow for a quick and safe departure. Though the system has varied over time and different launch pads use different escape systems, the overall goal has stayed the same – quickly leave the launch pad and head to safety.  

Beginning with Artemis II, the Exploration Ground Systems (EGS) Program at Kennedy Space Center, will use a track cable which connects the mobile launcher to the perimeter area of the launch pad where four baskets, similar to gondolas at ski lifts, can ride down. Once down at the ground level, armored emergency response vehicles are stationed to take personnel safely away from the launch pad to one of the triage site locations at Kennedy. 

“We have four baskets that sit on the side of the mobile launcher tower at the same level as the crew access arm, the location where the crew enters the spacecraft,” said Amanda Arrieta, mobile launcher 1 senior element engineer for NASA’s EGS Program. “The intention is to provide another means of egress for the crew and the closeout crew in the event of an emergency. Each of these baskets will go down a wire. It’s a wire rope system that connects to the pad terminus, an area near the pad perimeter where the baskets will land after leaving the mobile launcher tower.” 

The Artemis system works like this: personnel will exit the Orion spacecraft or the white room (depending where teams are at the time of the emergency) inside the crew access arm of the mobile launcher. Located on the 274-foot-level, teams are approximately 375 feet above the ground. From there, they will head down the 1,335-foot-long cables inside the emergency egress baskets to the launch pad perimeter, or the pad terminus area. Each basket, which is similar in size to a small SUV, is designed to carry up to five people or a maximum weight of 1,500 pounds.

artemis-emergency-egress-system-infograp
Infographic shows the route astronauts and personnel would take during an emergency abort situation. Credit: NASA

Once teams have left the terminus area and arrive at the triage site location, emergency response crews are there to evaluate and take care of any personnel. 

“When we send our crews to the pad during launch, their safety is always at the forefront of our minds. While it is very unlikely that we will need the emergency egress and pad abort systems, they are built and tested to ensure that if we do need them then they are ready to go,” said Charlie Blackwell-Thompson, Artemis launch director. “Our upcoming integrated ground systems training is about demonstrating the capability of the entire emergency egress response from the time an emergency condition is declared until we have the crews, both flight and ground, safely accounted for outside the hazardous area.”  

For the agency’s Commercial Crew Program, SpaceX uses a slidewire cable with baskets that ride down the cable at the Launch Complex 39A pad. At Space Launch Complex 40, meanwhile, the team uses a deployable chute for its emergency egress system. Boeing and United Launch Alliance also use a slidewire, but instead of baskets, the team deploys seats that ride down the slide wires, similar to riding down a zip line, at Space Launch Complex 41 at Cape Canaveral Space Force Station.  

Artemis II will be NASA’s first mission with crew aboard the SLS (Space Launch System) rocket and Orion spacecraft and will also introduce several new ground systems for the first time – including the emergency egress system. Though no NASA mission to date has needed to use its ground-based emergency egress system during launch countdown, those safety measures are still in place and maintained as a top priority for the agency. 

› Back to Top

NASA Sends More Science to Space, More Strides for Future Exploration

New experiments aboard NASA’s Northrop Grumman 21st cargo resupply mission aim to pioneer scientific discoveries in microgravity on the International Space Station.

Northrop Grumman’s Cygnus spacecraft, filled with nearly 8,500 pounds of supplies, launched Aug. 4 atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station. Biological and physical investigations aboard the spacecraft included experiments studying the impacts of microgravity on plants (grass), how packed bed reactors could improve water purification both in space and on Earth, and observations on new rounds of samples that will allow scientists to learn more about the characteristics of different materials as they change phases on the tiniest scales.

A split screen containing two square boxes, filtered by a cool magenta light. Each box is divided into nine smaller boxes containing plants at various stages of growth.
Seedlings germinating for the APEX-09 C4 Space investigation.
NASA

Grass Growth & Bio-Regenerative Support

The cultivation of plants is crucial for developing bio-regenerative life support systems in space. However, growing them in microgravity affects photosynthesis, the process by which plants generate oxygen and convert carbon dioxide into food for astronauts. The C4 Photosynthesis in Space Advanced Plant Experiment-09 investigation will study how two grasses (Brachypodium distachyon and Setaria viridis), with different approaches to photosynthesis, respond to microgravity and high carbon dioxide levels during the spaceflight. The insights gained from this research will pave the way for more effective integration of plants on Earth and in future space habitats. This experiment was originally scheduled to be aboard NASA’s SpaceX 30th cargo resupply mission but was moved to the NG-21 launch.

Water Purification & Gravity

The Packed Bed Reactor Experiment – Water Recovery Series aboard NG-21 will be operated on the space station and will study the hydrodynamics (pressure drop, flow regimes, and flow instability) of two-phase flow (nitrogen gas-water mixture) in microgravity in various types of filters and openings. These samples are important for fluid systems used in life support and water purification and recovery processes. Outcomes of this research will be used to develop design tools and correlations for pressure drop prediction across the various prototypes used in lunar and Martian missions and beyond. 

A complex scientific instrument sits atop a table lined with blue paper. The instrument is comprised of a metal framework with a grayish tube running its length. The torso of a scientist is in the background, his blue-gloved hand inspecting the instrument.
PBRE test Module hardware will be modified to accept the eight PBRE-WR Series test section inserts.
NASA

Removing Impurities in Melted Materials

The Electrostatic Levitation Furnace–4 experiment led by JAXA (Japan Aerospace Exploration Agency), one of NASA’s space station international partners, includes 20 new test samples. Its goal is to continue establishing guidelines for measuring different thermophysical properties of various samples at temperatures greater than 2,000 degrees Celsius.

Transforming raw materials from a liquid to solid form requires the use of a container, known as a crucible, which is used to both heat and hold the substance as it cools down and hardens. During this process, a chemical reaction occurs between the substance and the crucible, and impurities are released and absorbed in the plasma. The Electrostatic Levitation Furnace is the hardware that allows scientists to remove this contaminating part of the process by creating space between the liquid and container – levitating the sample while heated.

A Japanese astronaut smiles at the camera as he installs equipment against a wall of wires and hardware.
Expedition 65 Commander Akihiko Hoshide of the Japan Aerospace Exploration Agency (JAXA) changes out a sample holder in the Electrostatic Levitation Furnace (ELF) located inside JAXA’s Kibo laboratory module. The ELF can heat samples above 2000 degrees Celsius, using a semiconductor laser from four different directions, and can also measure the thermophysical properties (density, surface tension, and viscosity) of high temperature materials, which are very difficult to measure on the Earth.
NASA

More Materials Science: Getting to the Core

The Electromagnetic Levitator, an ESA (European Space Agency) levitation facility, which is celebrating a decade aboard the International Space Station, enables scientists to conduct materials research on at least two elements, known as alloys, in a microgravity environment. By studying the core of the physics taking place, researchers can perform experiments to better understand the steps leading up to solidifying and changing phases. This knowledge could contribute to advancements in the manufacturing industry by providing scientists with more information to develop the latest and more reliable materials for activities like 3D printing.

An astronaut wearing a short-sleeved black polo shirt with his back to the camera appears to be working on a piece of metal equipment, The equipment is shaped rectangular-shaped and juts out from a wall of exposed wires and other metal parts.
European Space Agency astronaut Alexander Gerst, Expedition 41 flight engineer, works with Electromagnetic Levitation hardware in the Columbus laboratory of the International Space Station.
NASA

NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.

The Huntsville Operations Support Center (HOSC) at NASA’s Marshall Space Flight Center provides engineering and mission operations support for the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.

› Back to Top

Share

Details

Last Updated
Aug 07, 2024
Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Dr. Misty Davies receives the prestigious AIAA Fellowship in May 2024 for her contributions to aerospace safety and autonomous systems, recognized at a ceremony in Washington, DC.NASA In May 2024, Dr. Misty Davies joined the American Institute of Aeronautics and Astronautics (AIAA) Class of 2024 Fellows at a ceremony in Washington, DC.  The AIAA website states that, “AIAA confers Fellow upon individuals in recognition of their notable and valuable contributions to the arts, sciences or technology of aeronautics and astronautics.”  The first AIAA Fellows were elected in 1934; since then only 2064 people have been selected for the honor.  Dr. Davies has focused her career at NASA Ames Research Center on developing tools and techniques that enable the safety assurance of increasingly autonomous systems.  She currently serves as the Associate Chief for Aeronautics Systems in the Intelligent Systems Division at NASA Ames and is the Aerospace Operations and Safety Program (AOSP) Technical Advisor for Assurance and Safety. More information on AIAA Fellows is at https://www.aiaa.org/news/news/2024/02/08/aiaa-announces-class-of-2024-honorary-fellows-and-fellows
      Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 52 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 52 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 52 mins ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      8 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Tom Bell, Woods Hole Oceanographic Institution
      Dr. Kelsey Bisson, NASA Headquarters Science Mission Directorate
      Graduate Mentor:
      Kelby Kramer, Massachusetts Institute of Technology

      Kelby Kramer, Graduate Mentor
      Kelby Kramer, graduate mentor for the 2024 SARP Ocean Remote Sensing group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Lucas DiSilvestro
      Shallow Water Benthic Cover Type Classification using Hyperspectral Imagery in Kaneohe Bay, Oahu, Hawaii
      Lucas DiSilvestro
      Quantifying the changing structure and extent of benthic coral communities is essential for informing restoration efforts and identifying stressed regions of coral. Accurate classification of shallow-water benthic coral communities requires high spectral and spatial resolution, currently not available on spaceborne sensors, to observe the seafloor through an optically complex seawater column. Here we create a shallow water benthic cover type map of Kaneohe Bay, Oahu, Hawaii using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) without requiring in-situ data as inputs. We first run the AVIRIS data through a semi-analytical inversion model to derive color dissolved organic matter, chlorophyll concentration, bottom albedo, suspended sediment, and depth parameters for each pixel, which are then matched to a Hydrolight simulated water column. Pure reflectance for coral, algae, and sand are then projected through each water column to create spectral endmembers for each pixel. Multiple Endmember Spectral Mixture Analysis (MESMA) provides fractional cover of each benthic class on a per-pixel basis. We demonstrate the efficacy of using simulated water columns to create surface reflectance spectral endmembers as Hydrolight-derived in-situ endmember spectra strongly match AVIRIS surface reflectance for corresponding locations (average R = 0.96). This study highlights the capabilities of using medium-fine resolution hyperspectral imagery to identify fractional cover type of localized coral communities and lays the groundwork for future spaceborne hyperspectral monitoring of global coral communities.

      Atticus Cummings
      Quantifying Uncertainty In Kelp Canopy Remote Sensing Using the Harmonized Landsat Sentinel-2 Dataset
      Atticus Cummings
      California’s giant kelp forests serve as a major foundation for the region’s rich marine biodiversity and provide recreational and economic value to the State of California. With the rising frequency of marine heatwaves and extreme weather onset by climate change, it has become increasingly important to study these vital ecosystems. Kelp forests are highly dynamic, changing across several timescales; seasonally due to nutrient concentrations, waves, and predator populations, weekly with typical growth and decay, and hourly with the tides and currents. Previous remote sensing of kelp canopies has relied on Landsat imagery taken with a eight-day interval, limiting the ability to quantify more rapid changes. This project aims to address uncertainty in kelp canopy detection using the Harmonized Landsat and Sentinel-2 (HLS) dataset’s zero to five-day revisit period. A random forest classifier was used to identify pixels that contain kelp, on which Multiple Endmember Spectral Mixture Analysis (MESMA) was then run to quantify intrapixel kelp density. Processed multispectral satellite images taken within 3 days of one another were paired for comparison. The relationship between fluctuations in kelp canopy density with tides and currents was assessed using in situ data from an acoustic doppler current profiler (ADCP) at the Santa Barbara Long Term Ecological Research site (LTER) and a NOAA tidal buoy. Preliminary results show that current and tidal trends cannot be accurately correlated with canopy detection due to other sources of error. We found that under cloud-free conditions, canopy detection between paired images varied on average by 42%. Standardized image processing suggests that this uncertainty is not created within the image processing step, but likely arises due to exterior factors such as sensor signal noise, atmospheric conditions, and sea state. Ultimately, these errors could lead to misinterpretation of remotely sensed kelp ecosystems, highlighting the need for further research to identify and account for uncertainties in remote sensing of kelp canopies.

      Jasmine Sirvent
      Kelp Us!: A Methods Analysis for Predicting Kelp Pigment Concentrations from Hyperspectral Reflectance
      Jasmine Sirvent
      Ocean color remote sensing enables researchers to assess the quantity and physiology of life in the ocean, which is imperative to understanding ecosystem health and formulating accurate predictions. However, without proper methods to analyze hyperspectral data, correlations between spectral reflectance and physiological traits cannot be accurately derived. In this study, I explored different methods—single variable regression, partial least squares regressions (PLSR), and derivatives—in analyzing in situ Macrocystis pyrifera (giant kelp) off the coast of Santa Barbara, California in order to predict pigment concentrations from AVIRIS hyperspectral reflectance. With derivatives as a spectral diagnostic tool, there is evidence suggesting high versus low pigment concentrations could be diagnosed; however, the fluctuations were within 10 nm of resolution, thus AVIRIS would be unable to reliably detect them. Exploring a different method, I plotted in situ pigment measurements — chlorophyll a, fucoxanthin, and the ratio of fucoxanthin to chlorophyll a—against hyperspectral reflectance that was resampled to AVIRIS bands. PLSR proved to be a more successful model because of its hyperdimensional analysis capabilities in accounting for multiple wavelength bands, reaching R2 values of 0.67. Using this information, I constructed a model that predicts kelp pigments from simulated AVIRIS reflectance using a spatial time series of laboratory spectral measurements and photosynthetic pigment concentrations. These results have implications, not only for kelp, but many other photosynthetic organisms detectable by hyperspectral airborne or satellite sensors. With these findings, airborne optical data could possibly predict a plethora of other biogeochemical traits. Potentially, this research would permit scientists to acquire data analogous to in situ measurements about floating matters that cannot financially and pragmatically be accessed by anything other than a remote sensor.

      Isabelle Cobb
      Correlations Between SSHa and Chl-a Concentrations in the Northern South China Sea
      Isabelle Cobb
      Sea surface height anomalies (SSHa)–variations in sea surface height from climatological averages–occur on seasonal timescales due to coastal upwelling and El Niño-Southern Oscillation (ENSO) cycles. These anomalies are heightened when upwelling plumes bring cold, nutrient-rich water to the surface, and are particularly strong along continental shelves in the Northern South China Sea (NSCS). This linkage between SSHa and nutrient availability has interesting implications for changing chlorophyll-a (chl-a) concentrations, a prominent indicator of phytoplankton biomass that is essential to the health of marine ecosystems. Here, we evaluate the long-term (15 years) relationship between SSHa and chl-a, in both satellite remote sensing data and in situ measurements. Level 3 SSHa data from Jason 1/2/3 satellites and chl-a data from MODIS Aqua were acquired and binned to monthly resolution. We found a significant inverse correlation between SSHa and chl-a during upwelling months in both the remote sensing (Spearman’s R=-0.57) and in situ data, with higher resolution in situ data from ORAS4 (an assimilation of buoy observations from 2003-2017) showing stronger correlations (Spearman’s R=-0.75). In addition, the data reveal that the magnitude of SSH increases with time during instances of high correlation, possibly indicating a trend of increased SSH associated with reduced seasonal chl-a concentrations. Thus, this relationship may inform future work predicting nutrient availability and threats to marine ecosystems as climate change continues to affect coastal sea surface heights.

      Alyssa Tou
      Exploring Coastal Sea Surface Temperature Anomalies and their effect on Coastal Fog through analyzing Plant Phenology
      Alyssa Tou
      Marine heat waves (MHW) have been increasing in frequency, duration and intensity, giving them substantial potential to influence ecosystems. Do these MHWs sufficiently enhance coastal precipitation such that plant growth is impacted? Recently, the Northeast Pacific experienced a long, intense MHW in 2014/2015, and another short, less intense MHW in 2019/2020. Here we investigate how the intensity and duration of MHWs influence the intensity and seasonal cycle of three different land cover types (‘grass’, ‘trees’, and a combination of both ‘combined’’) to analyze plant phenology trends in Big Sur, California. We hypothesize that longer intense MHWs decrease the ocean’s evaporative capacity, decreasing fog, thus lowering plant productivity, as measured by Normalized Difference Vegetation Index (NDVI). Sea surface temperature (SST) and NDVI data were collected from the NOAA Coral Reef Watch, and NASA MODIS/Terra Vegetation Indices 16-Day L3 Global 250m products respectively. Preliminary results show no correlation (R2=0.02) between SSTa and combined NDVI values and no correlation (R2=0.01) between SST and NDVI. This suggests that years with anomalously high SST do not significantly impact plant phenology. During the intense and long 2014/2015 MHW, peak NDVI values for ‘grass’ and ‘combined’ pixels were 2.0 and 1.7 standard deviations above the climatological average, while the shorter 2019/2020 MHW saw higher peaks of 3.2 and 2.4 standard deviations. However, the ‘grass’, ‘tree’ and ‘combined’ NDVI anomalies were statistically insignificant during both MHWs, showing that although NDVI appeared to increase during the shorter and less intense MHW, these values may be attributed to other factors. The data qualitatively suggest that MHW’s don’t impact the peak NDVI date, but more data at higher temporal resolution are necessary. Further research will involve analyzing fog indices and exploring confounding variables impacting NDVI, such as plant physiology, anthropogenic disturbance, and wildfires. In addition, it’s important to understand to what extent changes in NDVI are attributed to the driving factors of MHWs or the MHWs themselves. Ultimately, mechanistically understanding the impacts MHW intensity and duration have on terrestrial ecosystems will better inform coastal community resilience.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      10 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Guanyu Huang, Stony Brook University
      Graduate Mentor:
      Ryan Schmedding, McGill University

      Ryan Schmedding, Graduate Mentor
      Ryan Schmedding, graduate mentor for the 2024 SARP Atmospheric Science group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Danielle Jones
      Remote sensing of poor air quality in mountains: A case study in Kathmandu, Nepal
      Danielle Jones
      Urban activity produces particulate matter in the atmosphere known as aerosol particles. These aerosols can negatively affect human health and cause changes to the climate system. Measures for aerosols include surface level PM2.5 concentration and aerosol optical depth (AOD). Kathmandu, Nepal is an urban area that rests in a valley on the edge of the Himalayas and is home to over three million people. Despite the prevailing easterly winds, local aerosols are mostly concentrated in the valley from the residential burning of coal followed by industry. Exposure to PM2.5 has caused an estimated ≥8.6% of deaths annually in Nepal. We paired NASA satellite AOD and elevation data, model  meteorological data, and local AirNow PM2.5 and air quality index (AQI) data to determine causes of variation in pollutant measurement during 2023, with increased emphasis on the post-monsoon season (Oct. 1 – Dec. 31). We see the seasonality of meteorological data related to PM2.5 and AQI. During periods of low temperature, low wind speed, and high pressure, PM2.5 and AQI data slightly diverge. This may indicate that temperature inversions increase surface level concentrations of aerosols but have little effect on the total air column. The individual measurements of surface pressure, surface temperature, and wind speed had no observable correlation to AOD (which was less variable than PM2.5 and AQI over the entire year). Elevation was found to have no observable effect on AOD during the period of study. Future research should focus on the relative contributions of different pollutants to the AQI to test if little atmospheric mixing causes the formation of low-altitude secondary pollutants in addition to PM2.5 leading to the observed divergence in AQI and PM2.5.

      Madison Holland
      Analyzing the Transport and Impact of June 2023 Canadian Wildfire Smoke on Surface PM2.5 Levels in Allentown, Pennsylvania
      Madison Holland
      The 2023 wildfire season in Canada was unparalleled in its severity. Over 17 million hectares burned, the largest area ever burned in a single season. The smoke from these wildfires spread thousands of kilometers, causing a large population to be exposed to air pollution. Wildfires can release a variety of air pollutants, including fine particulate matter (PM2.5). PM2.5 directly affects human health – exposure to wildfire-related PM2.5 has been associated with respiratory issues such as the exacerbation of asthma and chronic obstructive pulmonary disease. In June 2023, smoke from the Canadian wildfires drifted southward into the United States. The northeastern United States reported unhealthy levels of air quality due to the transportation of the smoke. In particular, Pennsylvania reported that Canadian wildfires caused portions of the state to have “Hazardous” air quality. Our research focused on how Allentown, PA experienced hazardous levels of air quality from this event. To analyze the concentrations of PM2.5 at the surface level, NASA’s Hazardous Air Quality Ensemble System (HAQES) and the EPA’s Air Quality System (AQS) ground-based site data were utilized. By comparing HAQES’s forecast of hazardous air quality events with recorded daily average PM2.5 with the EPA’s AQS, we were able to compare how well the ensemble system was at predicting total PM2.5 during unhealthy air quality days. NOAA’s Hybrid Single-Particle Lagrangian Integrated Trajectory model, pyrsig, and the Canadian National Fire Database were used. These datasets revealed the trajectory of aerosols from the wildfires to Allentown, Pennsylvania, identified the densest regions of the smoke plumes, and provided a map of wildfire locations in southeastern Canada. By integrating these datasets, we traced how wildfire smoke transported aerosols from the source at the ground level.

      Michele Iraci
      Trends and Transport of Tropospheric Ozone From New York City to Connecticut in the Summer of 2023
      Michele Iraci
      Tropospheric Ozone, or O₃, is a criteria pollutant contributing to most of Connecticut and New York City’s poor air quality days. It has adverse effects on human health, particularly for high-risk individuals. Ozone is produced by nitrogen oxides and volatile organic compounds from fuel combustion reacting with sunlight. The Ozone Transport Region (OTR) is a collection of states in the Northeast and Mid-Atlantic United States that experience cross-state pollution of O₃. Connecticut has multiple days a year where O₃ values exceed the National Ambient Air Quality Standards requiring the implementation of additional monitoring and standards because it falls in the OTR. Partially due to upstream transport from New York City, Connecticut experiences increases in O₃ concentrations in the summer months. Connecticut has seen declines in poor air quality days from O₃ every year due to the regulations on ozone and its precursors. We use ground-based Lidar, Air Quality System data, and a back-trajectory model to examine a case of ozone enhancement in Connecticut caused by air pollutants from New York between June and August 2023. In this time period, Connecticut’s ozone enhancement was caused by air pollutants from New York City. As a result, New York City and Connecticut saw similar O₃ spikes and decline trends. High-temperature days increase O₃ in both places, and wind out of the southwest may transport O₃ to Connecticut. Production and transport of O₃ from New York City help contribute to Connecticut’s poor air quality days, resulting in the need for interstate agreements on pollution management.

      Stefan Sundin
      Correlations Between the Planetary Boundary Layer Height and the Lifting Condensation Level
      Stefan Sundin
      The Planetary Boundary Layer (PBL) characterizes the lowest layer in the atmosphere that is coupled with diurnal heating at the surface. The PBL grows during the day as solar heating causes pockets of air near the surface to rise and mix with cooler air above. Depending on the type of terrain and surface albedo that receives solar heating, the depth of the PBL can vary to a great extent. This makes PBL height (PBLH) a difficult variable to quantify spatially and temporally. While several methods have been used to obtain the PBLH such as wind profilers and lidar techniques, there is still a level of uncertainty associated with PBLH. One method of predicting seasonal PBLH fluctuation and potentially lessening uncertainty that will be discussed in this study is recognizing a correlation in PBLH with the lifting condensation level (LCL). Like the PBL, the LCL is used as a convective parameter when analyzing upper air data, and classifies the height in the atmosphere at which a parcel becomes saturated when lifted by a forcing mechanism, such as a frontal boundary, localized convergence, or orographic lifting. A reason to believe that PBLH and LCL are interconnected is their dependency on both the amount of surface heating and moisture that is present in the environment. These thermodynamic properties are of interest in heavily populated metropolitan areas within the Great Plains, as they are more susceptible to severe weather outbreaks and associated economic losses. Correlations between PBLH and LCL over the Minneapolis-St. Paul metropolitan statistical area during the summer months of 2019-2023 will be discussed.

      Angelica Kusen
      Coupling of Chlorophyll-a Concentrations and Aerosol Optical Depth in the Subantarctic Southern Ocean and South China Sea (2019-2021)
      Angelica Kusen
      Air-sea interactions form a complex feedback mechanism, whereby aerosols impact physical and biogeochemical processes in marine environments, which, in turn, alter aerosol properties. One key indicator of these interactions is chlorophyll-a (Chl-a), a pigment common to all phytoplankton and a widely used proxy for primary productivity in marine ecosystems. Phytoplankton require soluble nutrients and trace metals for growth, which typically come from oceanic processes such as upwelling. These nutrients can also be supplied via wet and dry deposition, where atmospheric aerosols are removed from the atmosphere and deposited into the ocean. To explore this interaction, we analyze the spatial and temporal variations of satellite-derived chl-a and AOD, their correlations, and their relationship with wind patterns in the Subantarctic Southern Ocean and the South China Sea from 2019 to 2021, two regions with contrasting environmental conditions.
      In the Subantarctic Southern Ocean, a positive correlation (r²= 0.26) between AOD and Chl-a was found, likely due to dust storms following Austrian wildfires. Winds deposit dust aerosols rich in nutrients, such as iron, to the iron-limited ocean, enhancing phytoplankton photosynthesis and increasing chl-a. In contrast, the South China Sea showed no notable correlation (r² = -0.02) between AOD and chl-a. Decreased emissions due to COVID-19 and stricter pollution controls likely reduced the total AOD load and shifted the composition of aerosols from anthropogenic to more natural sources.
      These findings highlight the complex interrelationship between oceanic biological activity and the chemical composition of the atmosphere, emphasizing that atmospheric delivery of essential nutrients, such as iron and phosphorus, promotes phytoplankton growth. Finally, NASA’s recently launched PACE mission will contribute observations of phytoplankton community composition at unprecedented scale, possibly enabling attribution of AOD levels to particular groups of phytoplankton.

      Chris Hautman
      Estimating CO₂ Emission from Rocket Plumes Using in Situ Data from Low Earth Atmosphere
      Chris Hautman
      Rocket emissions in the lower atmosphere are becoming an increasing environmental concern as space exploration and commercial satellite launches have increased exponentially in recent years. Rocket plumes are one of the few known sources of anthropogenic emissions directly into the upper atmosphere. Emissions in the lower atmosphere may also be of interest due to their impacts on human health and the environment, in particular, ground level pollutants transported over wildlife protected zones, such as the Everglades, or population centers near launch sites. While rockets are a known source of atmospheric pollution, the study of rocket exhaust is an ongoing task. Rocket exhaust can have a variety of compositions depending on the type of engine, the propellants used, including fuels, oxidizers, and monopropellants, the stoichiometry of the combustion itself also plays a role. In addition, there has been increasing research into compounds being vaporized in atmospheric reentry. These emissions, while relatively minimal compared to other methods of travel, pose an increasing threat to atmospheric stability and environmental health with the increase in human space activity. This study attempts to create a method for estimating the total amount of carbon dioxide released by the first stage of a rocket launch relative to the mass flow of RP-1, a highly refined kerosene (C₁₂H₂₆)), and liquid oxygen (LOX) propellants. Particularly, this study will focus on relating in situ CO₂ emission data from a Delta II rocket launch from Vandenberg Air Force Base on April 15, 1999, to CO₂ emissions from popular modern rockets, such as the Falcon 9 (SpaceX) and Soyuz variants (Russia). The findings indicate that the CO₂ density of any RP-1/LOX rocket is 6.9E-7 times the mass flow of the sum of all engines on the first stage. The total mass of CO₂ emitted can be further estimated by modeling the volume of the plume as cylindrical. Therefore, the total mass can be calculated as a function of mass flow and first stage main engine cutoff. Future CO₂ emissions on an annual basis are calculated based on these estimations and anticipated increases in launch frequency.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      10 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Dom Ciruzzi, College of William & Mary
      Graduate Mentor:
      Marley Majetic, Pennsylvania State University

      Marley Majetic, Graduate Mentor
      Marley Majetic, graduate mentor for the 2024 SARP Hydroecology group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Jordan DiPrima
      How are different land cover types affected by land subsidence on the U.S. Atlantic Coast?
      Jordan DiPrima
      Land subsidence is a frequently overlooked geologic hazard that is caused by natural processes and, more recently, anthropogenic stressors. The goal of this study is to observe subsidence trends and hotspots among land cover types on Virginia’s Eastern Shore and Long Island, New York. This study utilizes interferometric synthetic aperture radar, or InSAR, satellite data from Sentinel-1 to map vertical land motion from 2017 to 2023. Land cover data were sourced from Landsat 8 satellite imagery. Subsidence was mapped within the following land cover types on the Eastern Shore: urban, wetland, cropland, temperate or sub-polar grassland, temperate or sub-polar shrubland, mixed forest, and temperate or subpolar needleleaf forest. These land cover types have mean vertical velocities ranging from -0.2 mm/yr to -5.2 mm/yr. Results suggest that land subsidence is most severe in cropland areas on the Eastern Shore, with a mean vertical velocity of -5.2 mm/yr. In contrast, wetlands display the most subsidence on Long Island with a mean vertical velocity of -2.1 mm/yr. Long Island lacked distinct trends among land cover types and instead showed evidence of subsidence hotspots. These hotspots exist in the following land cover types: temperate or sub-polar grassland, barren lands, wetland, cropland, and temperate or sub-polar broadleaf deciduous forest. Overall, Eastern Shore croplands and Long Island wetlands were determined to be the most susceptible land cover types. These findings highlight regions at risk of sea level rise, flooding, and coastal erosion as a result of subsidence. With further research, we can map subsiding landscapes on a global scale to improve resource allocation and mitigation techniques.

      Isabelle Peterson
      Total Thermokarst Lake Changes on the Seward Peninsula, Alaska: 2016 to 2024
      Isabelle Peterson
      Thermokarst landscapes have and will continue to change as the arctic landscape warms due to climate change. Permafrost underlies much of these arctic landscapes, and as it melts, thermokarst landscapes are left behind. The Seward Peninsula in Alaska has an abundance of these landscapes, and thermokarst lakes are present in the northernmost portion. Several lakes have come and gone, but with increasing climate instability and warming of the area, there is a possibility of more permafrost melting, creating more of these lakes. To capture these changes, Harmonized Landsat Sentinel-2 (HLS) imagery were used to create annual lake maps of the northern portion of the Seward Peninsula from 2016 to 2024. Much of the methodology was informed from Jones et al. (2011); however, their study used eCognition, while the present study used ArcGIS Pro. This caused some differences in results likely due to the differences in software, satellite imagery, and the proposed study area. Lake number changes were observed annually. From this annual change, several 10 to 40 ha lakes disappeared and reappeared within the study period, along with smaller lakes filling in where larger lakes once were. Thermokarst lake drainage is a process described by Jones and Arp (2015) which has devastating geomorphological impacts on the surrounding area, creating large drainage troughs which diminish surrounding permafrost in a quick time frame. To capture these events and overall changes, satellite imagery is essential. This is especially true in remote regions which are hard to reach by foot and require flight missions to be scheduled over the area for aerial photography. However, LVIS and other higher resolution aerial instruments would provide higher accuracy when identifying smaller lakes, as satellite imagery does not accurately capture lakes below 1 ha in the study area. This assertion is made due to conflicting results compared to Jones et al (2011). While the methodologies of this study have been executed manually, Qin, Zhang, and Lu (2023) have proposed the idea of using Sentinel-2 imagery to map thermokarst lakes through automatic methods. While automatization has not yet been perfected, the potential is there and can be used to analyze thermokarst areas effectively. With more satellite imagery, annual, monthly, and potentially daily changes can be captured in favorable months to monitor changing landscapes in arctic regions. Thermokarst lakes have been changing, and monitoring them can help in the process of understanding the changing climate in arctic areas, especially through the lens melting permafrost.

      Emmanelle Cuasay
      Finding Refuge in Climate Crisis: Analyzing the Differences between Refugia and Non-Refugia in the Northern Philippines Using Remote Sensing
      Emmanelle Cuasay
      Refugia are areas that are characterized by stable environmental conditions that can act as a refuge for species as Earth’s climate warms. In this study, fourteen Harmonized Landsat Sentinel-2 images from February 2014 – March 2024 of the northern Philippines region were used. The region of interest is the terrestrial biome by Lake Taal. Normalized Difference Vegetation Index (NDVI) maps were created from all fourteen images to determine the NDVI 25th highest quartiles of the long-term average NDVI images and of a dry and wet year NDVI image. These values were then used to create refugia and non-refugia maps using ArcGIS Pro. Land cover data from Sentinel-2 and a digital elevation model (DEM), using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), were plotted in ArcGIS Pro to determine the slope and aspect of the area. Global Ecosystems Dynamics Investigation (GEDI) data were used to look at forest height of the study area, and the distribution of forest height, slope, aspect, and elevation were plotted to determine their probability densities in refugia and non-refugia areas. Results of this study show increased biomass in refugia areas. This suggests that conservation practices are crucial to aid in the preservation of biodiversity and biomass within these refugia areas.

      Jayce Crayne
      Site-Based Observations of a Saharan Dust Storm’s Impacts on Evapotranspiration in North-Central Florida
      Jayce Crayne
      Saharan dust storms serve an important role in the western Atlantic’s climate in their contribution to Earth’s radiation budget, modulating sea surface temperatures (SSTs), fertilizing ecosystems, and suppressing cloud and precipitation patterns (Yuan et al., 2020). However, Saharan dust storms are expected to become less frequent in this region as SSTs continue to rise (Yuan et al., 2020). Predicting the climate response to this change requires a keen understanding of how the presence of these storms affect evapotranspiration (ET) and its indicators. This study utilizes site-based observational data from an AmeriFlux tower near Gainesville, FL recorded during a large dust storm in late June 2020. The storm’s progression was documented using satellite imagery from Aqua and Terra and aerosol optical depth (AOD) measurements from an Aerosol Robotic Network (AERONET) station co-located with the AmeriFlux tower. Indicators of ET such as surface air temperature, vapor pressure deficit, photosynthetic photon flux density, and net radiation were analyzed. Findings were compared to modeled ET and latent energy flux reanalysis data provided by the Global Land Data Assimilation System (GLDAS). Both model simulations and on-site observations support that ET decreased during the days dust concentrations were heaviest and for a short time thereafter. Cloud cover data adopted from meteorological aerodrome reports (METARs) provided by an automated surface observing system (ASOS) located in Gainesville showed that clouds were not a major contributor in decreasing ET during the days of heaviest dust. The results of this study show a considerable decrease in ET as a result of dust aerosols. Further research is necessary to determine whether changes in ET due to Saharan dust storms are significant enough to alter climates in the western Atlantic and, if so, what the climate response will be if the frequency of storms decreases.

      Brandon Wilson
      Predicting 2025 and 2028 dNBR and dNDIV for Csarf Smith River Complex / Evaluating the Effects of 2019 California Wildfire Fund
      Brandon Wilson
      Biodiverse regions across California remain vulnerable to harmful wildfires year round. Quantifying and measuring these regions’ wildfire resilience is necessary for understanding where/how to allocate environmental resources. Several ecological wildfire studies have been conducted utilizing artificial intelligence and remote sensing to analyze and predict biodiversity damage across wildfire prone regions, including Northern Algeria and Arkansas, USA. The current case study aims to analyze biodiversity damage from the 2023 Csarf Smith River Complex Fire in Six Rivers National Forest, California and predict the difference in Normalized Burn Ratio (dNBR) and difference in Normalized Difference Vegetation Index (dNDVI) for 2025 and 2028 using remote-sensing-based random forest (RF) regression. Furthermore, to observe, holistically, a practical method California has implemented to address state-wide wildfire damage, the 2019 California Wildfire Fund (AB 1054 and AB 111) was evaluated using the synthetic control method (SCM). For this case study, remote sensing data from the United States Geological Survey (USGS) and NASA (Landsat 9 Satellite C2 L2, TerraClimate and the Land Data Assimilation System) were utilized for processing relevant spectral indexes for the RF. Data from NOAA, Energy Information Agency, International Monetary Fund and Bureau of Economic Analysis were utilized as synthetic control datasets to evaluate the effects of the 2019 California Wildfire Fund. Elevated topography in this study area is susceptible to high severity burn effects, while less elevated topography burns less. This result affected dNBR and dNDVI predictions as elevated areas seemingly did not have strong resilience to rampant burns. This demonstrates a direct correlation to potential lower transpiration rates for elevated areas, warranting further analysis. Results of low variance, post-treatment, between the treated unit and the synthetic control unit, poses concern for the positive effect of the 2019 Wildfire Fund.

      Carrie Hashimoto
      Describing changes in evapotranspiration following the 2020 Creek Fire in the southern Sierra Nevada
      Carrie Hashimoto
      Climatic warming and high tree density have caused larger and more severe wildfires to occur in western United States forests over time. Wildfires affect both the hydrology and ecology of forests via alterations to the water balance (e.g., evapotranspiration, streamflow, infiltration, and more) and could shift vegetation communities and subsequent ecosystem structure and function. This project explores ecological characteristics of a landscape that predict the extent to which the Creek Fire in the southern Sierra Nevada has affected evapotranspiration. Strides in understanding of consequential evapotranspiration changes can create pathways to address emerging forest health challenges posed by similar western fires. For analysis, various remote sensing and modeled data were collected from OpenET, the North American Land Data Assimilation System, TerraClimate, Harmonized LandSat Sentinel-2 data, and the Shuttle Radar Topography Mission. Multiple linear regression and generalized additive models were constructed. Relative change in evapotranspiration served as the response variable. Model covariates included average temperature, total precipitation in the preceding months, average soil moisture, elevation, slope, aspect, northness, latitude, pre-fire normalized difference vegetation index (NDVI), and post-fire change in normalized burn ratio (dNBR). Best subset selection with cross validation demonstrated minimization of cross-validation error with a 7-covariate model. This reduced model yields lower complexity and more interpretability while sustaining an adjusted R2 of 0.626, compared to the full model’s adjusted R2 of 0.663. A reduced generalized additive model (GAM) with interaction terms drawn from the linear model variable selection demonstrated an adjusted R2 of 0.695, indicating a better fit that comes at the cost of reduced interpretability and higher computational requirements than the linear models. The goal of this work is to disentangle environmental indicators of post-fire evapotranspiration change, such that predictive modeling of future wildfire impacts on evapotranspiration can be achieved.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      11 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Lisa Haber, Virginia Commonwealth University
      Dr. Brandon Alveshere, Virginia Commonwealth University
      Dr. Chris Gough, Virginia Commonwealth University
      Graduate Mentor:
      Mindy Priddy, Virginia Commonwealth University

      Mindy Priddy, Graduate Mentor
      Mindy Priddy, graduate mentor for the 2024 SARP Terrestrial Fluxes group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.

      Angelina De La Torre
      Using NDVI as a Proxy for GPP to Predict Carbon Dioxide Fluxes
      Angelina De La Torre
      Climate change, driven primarily by greenhouse gases, poses a threat to the future of our planet. Among these gases is carbon dioxide (CO₂), which has a much longer atmospheric residence time compared to other greenhouse gases. One potential factor in reducing atmospheric CO₂ enrichment is plant productivity. Gross Primary Productivity (GPP) estimates the amount of CO₂ fixed during photosynthesis. The Normalized Difference Vegetation Index (NDVI) provides insight into the health of an ecosystem by measuring the density and greenness of vegetation. Therefore, it can be inferred that there is a relationship between NDVI and GPP, as greener plants are likely more productive. In this study, we used NDVI as a proxy for GPP and analyzed the effect NDVI had on CO₂ fluxes during California’s wet season between January and March 2023 in a restored tidal freshwater wetland. GPP and CO₂ flux data were obtained from the Dutch Slough AmeriFlux tower in Oakley, California. Landsat data were used to calculate the average NDVI. The influence of NDVI on GPP was assessed using linear regression. A second linear regression was then performed using NDVI and CO₂ flux, of which GPP is one component. We anticipate that wetlands with greater vegetation density will have lower CO₂ emissions.

      Because Landsat data scans in 16-day intervals, daily variation in NDVI could not be observed. This translates to a frequency discrepancy between the Landsat and AmeriFlux data, as AmeriFlux towers measure in half-hour intervals. Additionally, the wet season represented was limited by data availability, as the data before 2023 were unavailable. Despite data limitations in this study, the outlined process could be repeated in various wetland and climate classifications for further analysis of a larger sample size. This study could assist in developing strategies to increase CO₂ sequestration in an attempt to slow the effects of climate change.

      Samarth Jayadev
      Using Machine Learning to Assess Relationships between NDVI and Net Carbon Exchange During the COVID-19 Pandemic
      Samarth Jayadev
      Understanding the movement of carbon between Earth’s land surface and atmosphere is essential for ecosystem monitoring, creating climate change mitigation strategies, and assessing the carbon budget on national to global scales. Measures of greenness serve as indicators of processes such as photosynthesis that control carbon exchange and are vital in modeling of carbon fluxes. NASA’s Orbiting Carbon Observatory (OCO-2) provides high quality measurements of column-averaged CO₂ concentrations that can be used to derive net carbon exchange (NCE), a measure of CO₂ flux between terrestrial ecosystems and the atmosphere.
      From OCO-2, NCE data collected at the land nadir, land glint satellite position combined with in situ sampling can provide accurate measurements on a 1°x1° scale suitable for carbon flux characterization across the contiguous United States (CONUS). Normalized difference vegetation index (NDVI), which ranges from -1 to +1, measures the greenness of vegetation, serving as an indicator of plant density and health. This can help to understand ecosystem to carbon-cycle interactions and be leveraged for determining patterns with NCE. We examined the relationship between NDVI and NCE across CONUS during 2020 using Gradient Boosting Decision Trees (GBDT) which specialize in classifying and predicting non-linear relationships. This algorithm takes multiple weak learners (decision trees) and combines their predictions in an iterative ensemble method to improve prediction accuracy. Feature and permutation importance tests found that January and August (trough and peak NDVI, respectively) were the highest weighted predictor variables related to NCE. The dataset was split in a 90% training 10% test ratio across latitude/longitude grid cells to assess and verify model performance. Using the mean squared error loss function and hyperparameters with optimal estimators, tree depth, sample split, and learning rate the algorithm was able to converge the test predictions to match the deviance of the training data. The gradient boosting model can be applied to different months and years of NDVI/NCE to further explore these relationships or a multitude of research questions. Further studies should consider integrating land use and land cover change variables such as bare land and urbanization to improve predictions of NCE.

      Makai Ogoshi
      Deep-learning Derived Spaceborne Canopy Structural Metrics Predict Forest Carbon Fluxes
      Makai Ogoshi
      Terrestrial and airborne lidar data products describing canopy structure are potent predictors of forest carbon fluxes, but whether satellite data products produce similarly robust indicators of canopy structure is not known. The assessment of contemporary spaceborne lidar and other remote sensing data products as predictors of carbon fluxes is crucial to next generation instrument and data product design and large-spatial scale modeling. We investigated relationships between deciduous broadleaf forest canopy structure, derived from deep-learning models created with lidar data from GEDI and optical imagery from Sentinel-2, and forest carbon exchange. These included comparisons to in-situ continuous net ecosystem exchange (NEE), gross primary production (GPP), and net primary production (NPP). We find that the mean  canopy height from the gridded spaceborne product has a strong correlation with forest NPP, similar to prior analysis with ground-based lidar (portable canopy lidar; PCL). For comparison to NPP, heights taken from the gridded spaceborne product were compared by overlapping the product with nine terrestrial forest sites from the National Ecological Observatory Network (NEON). We used standard deviation of canopy height as a measure of canopy structural complexity. Complexity derived from the gridded spaceborne product does not show the same strong correlation with NPP as found when using PCL. Mean annual GPP and NEE across five years were compared to the gridded spaceborne product at six Fluxnet2015-tower sites with continuous, gap-filled carbon flux data. When compared to in-situ flux tower data, neither mean canopy height nor structural complexity strongly correlate to annual NEE or GPP. Primarily, the finding that derived spaceborne products exhibit a strong correlation between forest canopy height and NPP will advance global-scale application of forest-carbon flux predictions. Secondarily, a variety of limitations highlight shortcomings in the current terrestrial flux data network. A small number of available study sites, both spatially and temporally, and lack of resolution in vertical complexity of canopy structure both contribute to uncertainty in assessing the relationships to NEE and GPP.

      Sebastian Reed
      Porewater Methane Concentrations Vary Significantly Across A Freshwater Tidal Wetland
      Sebastian Reed
      Methane is a potent greenhouse gas that is over 80 times more powerful than CO₂ at trapping heat and accounts for an estimated 30% of global temperature rise associated with climate change. The largest natural source of methane worldwide is wetlands. Despite the role of methane in driving climate change, the magnitude of global annual wetland methane flux remains highly uncertain. This study analyzes the effects of greenness (assessed using Normalized Difference Vegetation Index; NDVI), plant species composition, rooting depth, atmospheric methane concentration, and plant longevity on porewater methane concentration at the Kimages Rice Rivers Center tidal freshwater wetland. Samples for atmospheric and porewater concentrations were conducted in situ in June 2024. For each sampling location (n = 23) we collected whole air samples (WAS) 2m above the marsh surface and porewater samples 5cm below the marsh surface. We visually assessed species composition at each sample location, with 12 species of wetland plants present overall. We used the TRY plant database to find the rooting depth, leaf nitrogen content, and lifespan of each species. Drone multispectral data from 2023 was used to estimate NDVI values. These variables were compared to the pore water methane concentration via stepwise linear regression. Leaf N content, NDVI, plant species, and WAS sampling did not show statistically significant correlation to porewater methane concentration. Rooting depth showed a slight positive correlation with porewater methane (alpha = 0.1, p = 0.08, R^2 = 0.1). Samples with only perennial plants (as opposed to annual plants) had a higher mean value of porewater methane (p = 0.1). Analyzing porewater methane provides insight as to what wetland components affect methanogenesis and methane release, which aids in assessing which plant functional traits are most responsible for driving or mitigating climate change. Results from this study and future research in this area has the potential to more accurately assess how methane cycles through wetlands to the atmosphere.

      Nohemi Rodarte
      Understanding the vertical profile of CO₂ concentration: How carbon dioxide levels change with altitude
      Nohemi Rodarte
      Carbon dioxide (CO₂) is one of the main greenhouse gasses that contribute to global warming.While the relationship between CO₂ concentrations and land cover types, such as forests and urban areas, is well documented, there is limited knowledge of how CO₂ concentrations vary with altitude at fine spatial scales. Guided by our hypothesis that CO₂ levels vary with altitude and increase with elevation, we used airborne data collected from the B200 aircraft, which flew at different altitudes (400 to 1200 feet) above the urban area of Hopewell, Virginia, between 9:40 AM and 10:40 AM. We analyzed the CO₂ concentrations recorded by the flight to obtain the median and range for each 100 feet of altitude. Our results reveal that carbon dioxide concentrations varied significantly across the range of altitudes investigated. Within the area studied, CO₂ concentrations were found to range between 410 and 470 ppm. The distribution of these concentrations along the altitude gradient shows a bimodal pattern, with notable peaks at altitudes of 700 to 800 feet and 1100 to 1200 feet. Although CO₂ levels were present at all measured altitudes, there was a noticeable drop in the mean concentration at 800 feet,which then stabilized until reaching 1,000 feet before rising again. This pattern indicates that the concentrations of this greenhouse gas are not uniformly distributed with altitude, but rather vary significantly, showing higher concentrations at certain elevations and lower concentrations at others. The CO₂ distribution fluctuates with altitude, showing higher or lower levels at specific heights rather than a smooth gradient, indicating that altitude impacts CO₂ concentrations. While we did not identify the drivers of this change, future studies could evaluate how factors such as surface emissions, atmospheric mixing, and local conditions may contribute to vertical CO₂ profiles, since the altitudes we considered in this research are within the troposphere.

      Camille Shaw
      Linking NDVI with CO₂ and CH₄ Fluxes: Insights into Vegetation and Urban Source-Sink Dynamics in the Great Dismal Swamp
      Camille Shaw
      In recent years, carbon dioxide, methane, and other greenhouse gases have gained attention because of their contribution to the rise in Earth’s global mean temperature. Methane and carbon dioxide have various sources and sinks, but an expanding array of sources have created a need to assess ongoing change in carbon balance. This study aims to quantify the relationship between Normalized Difference Vegetation Index, or NDVI, and methane and carbon dioxide fluxes. We measured carbon dioxide and methane concentrations within the boundary layer using the PICARRO instrument, focusing on the Great Dismal Swamp, a forested wetland, and surrounding areas in the Eastern Mid-Atlantic Region. Data collection occurred at various times of day and along different flight paths in 2016, 2017, and 2024, with each year representing data from a single season, either spring or fall, for temporal analysis. We calculated methane and carbon dioxide fluxes along the flight paths using airborne eddy covariance, a method for capturing accurate flux measurements while accounting for the mixing of gases in the boundary layer caused by heat. Additionally, we calculated NDVI for this area using NASA’s Landsat 8 and 9 satellite imagery. Analysis of the afternoon flight data revealed a negative linear correlation between NDVI and carbon dioxide flux. Urban areas, characterized by low NDVI, exhibit a positive carbon dioxide flux as a consequence of emissions from vehicles, while forested areas, with high NDVI, show a negative carbon dioxide flux because of photosynthesis. In contrast, methane flux shows minimal correlation with NDVI. The lack of correlation arises because forested wetlands, with high NDVI, emit substantial amounts of methane, while urban areas, despite having low NDVI, still produce significant methane emissions from landfills and industrial activities. Future research could further investigate how seasonal and diurnal variations influence the correlations between NDVI and greenhouse gases by collecting comprehensive data across all seasons within a given year and at various times of the day.

      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago View the full article
  • Check out these Videos

×
×
  • Create New...