Members Can Post Anonymously On This Site
Drop it like it’s hot: Space Rider model falls gracefully
-
Similar Topics
-
By NASA
A SpaceX Falcon 9 rocket propelled the Dragon spacecraft into orbit carrying NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov. (Credit: NASA) Four crew members of NASA’s SpaceX Crew-10 mission launched at 7:03 p.m. EDT Friday from Launch Complex 39A at NASA’s Kennedy Space Center in Florida for a science expedition aboard the International Space Station.
A SpaceX Falcon 9 rocket propelled the Dragon spacecraft into orbit carrying NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov. The spacecraft will dock autonomously to the forward-facing port of the station’s Harmony module at approximately 11:30 p.m. on Saturday, March 15. Shortly after docking, the crew will join Expedition 72/73 for a long-duration stay aboard the orbiting laboratory.
“Congratulations to our NASA and SpaceX teams on the 10th crew rotation mission under our commercial crew partnership. This milestone demonstrates NASA’s continued commitment to advancing American leadership in space and driving growth in our national space economy,” said NASA acting Administrator Janet Petro. “Through these missions, we are laying the foundation for future exploration, from low Earth orbit to the Moon and Mars. Our international crew will contribute to innovative science research and technology development, delivering benefits to all humanity.”
During Dragon’s flight, SpaceX will monitor a series of automatic spacecraft maneuvers from its mission control center in Hawthorne, California. NASA will monitor space station operations throughout the flight from the Mission Control Center at the agency’s Johnson Space Center in Houston.
NASA’s live coverage resumes at 9:45 p.m., March 15, on NASA+ with rendezvous, docking, and hatching opening. After docking, the crew will change out of their spacesuits and prepare cargo for offload before opening the hatch between Dragon and the space station’s Harmony module around 1:05 a.m., Sunday, March 16. Once the new crew is aboard the orbital outpost, NASA will broadcast welcome remarks from Crew-10 and farewell remarks from the agency’s SpaceX Crew-9 crew, beginning at about 1:40 a.m.
Learn how to watch NASA content through a variety of platforms, including social media.
The number of crew aboard the space station will increase to 11 for a short time as Crew-10 joins NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Don Pettit, as well as Roscosmos cosmonauts Aleksandr Gorbunov, Alexey Ovchinin, and Ivan Vagner. Following a brief handover period, Hague, Williams, Wilmore, and Gorbunov will return to Earth no earlier than Wednesday, March 19.Ahead of Crew-9’s departure from station, mission teams will review weather conditions at the splashdown sites off the coast of Florida.
During their mission, Crew-10 is scheduled to conduct material flammability tests to contribute to future spacecraft and facility designs. The crew will engage with students worldwide via the ISS Ham Radio program and use the program’s existing hardware to test a backup lunar navigation solution. The astronauts also will serve as test subjects, with one crew member conducting an integrated study to better understand physiological and psychological changes to the human body to provide valuable insights for future deep space missions.
With this mission, NASA continues to maximize the use of the orbiting laboratory, where people have lived and worked continuously for more than 24 years, testing technologies, performing science, and developing the skills needed to operate future commercial destinations in low Earth orbit and explore farther from our home planet. Research conducted at the space station benefits people on Earth and paves the way for future long-duration missions to the Moon under NASA’s Artemis campaign and beyond.
More about Crew-10
McClain is the commander of Crew-10 and is making her second trip to the orbital outpost since her selection as an astronaut in 2013. She will serve as a flight engineer during Expeditions 72/73 aboard the space station. Follow McClain on X.
Ayers is the pilot of Crew-10 and is flying her first mission. Selected as an astronaut in 2021, Ayers will serve as a flight engineer during Expeditions 72/73. Follow Ayers on X and Instagram.
Onishi is a mission specialist for Crew-10 and is making his second flight to the space station. He will serve as a flight engineer during Expeditions 72/73. Follow Onishi on X.
Peskov is a mission specialist for Crew-10 and is making his first flight to the space station. Peskov will serve as a flight engineer during Expeditions 72/73.
Learn more about NASA’s SpaceX Crew-10 mission and the agency’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Josh Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Steven Siceloff / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
Kenna Pell / Sandra Jones
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
Share
Details
Last Updated Mar 14, 2025 LocationNASA Headquarters Related Terms
Humans in Space International Space Station (ISS) View the full article
-
By NASA
NICER (left) is shown mounted to the International Space Station, and LEXI (right) is shown attached to the top of Firefly Aerospace’s Blue Ghost in an artist’s rendering.NASA/Firefly Aerospace The International Space Station supports a wide range of scientific activities from looking out at our universe to breakthroughs in medical research, and is an active proving ground for technology for future Moon exploration missions and beyond. Firefly Aerospace’s Blue Ghost Mission-1 landed on the Moon on March 2, 2025, kicking off science and technology operations on the surface, including three experiments either tested on or enabled by space station research. These projects are helping scientists study space weather, navigation, and computer performance in space— knowledge crucial for future Moon missions.
One of the experiments, the Lunar Environment Heliospheric X-ray Imager (LEXI), is a small telescope designed to study the Earth’s magnetic environment and its interaction with the solar wind. Like the Neutron star Interior Composition Explorer (NICER) telescope mounted outside of the space station, LEXI observes X-ray sources. LEXI and NICER observed the same X-ray star to calibrate LEXI’s instrument and better analyze the X-rays emitted from Earth’s upper atmosphere, which is LEXI’s primary target. LEXI’s study of the interaction between the solar wind and Earth’s protective magnetosphere could help researchers develop methods to safeguard future space infrastructure and understand how this boundary responds to space weather.
Other researchers sent the Radiation Tolerant Computer System (RadPC) to the Moon to test how computers can recover from radiation-related faults. Before RadPC flew on Blue Ghost, researchers tested a radiation tolerant computer on the space station and developed an algorithm to detect potential hardware faults and prevent critical failures. RadPC aims to demonstrate computer resilience in the Moon’s radiation environment. The computer can gauge its own health in real time, and RadPC can identify a faulty location and repair it in the background as needed. Insights from this investigation could improve computer hardware for future deep-space missions.
In addition, the Lunar Global Navigation Satellite System (GNSS) Receiver Experiment (LuGRE) located on the lunar surface has officially received a GNSS signal at the farthest distance from Earth, the same signals that on Earth are used for navigation on everything from smartphones to airplanes. Aboard the International Space Station, Navigation and Communication Testbed (NAVCOM) has been testing a backup system to Earth’s GNSS using ground stations as an alternative method for lunar navigation where GNSS signals may have limitations. Bridging existing systems with emerging lunar-specific navigation solutions could help shape how spacecraft navigate the Moon on future missions.
The International Space Station serves as an important testbed for research conducted on missions like Blue Ghost and continues to lay the foundation for technologies of the future.
Keep Exploring Discover More Topics From NASA
International Space Station News
Space Station Research and Technology Tools and Information
Commercial Lunar Payload Services (CLPS)
The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
Space Station Research Results
View the full article
-
By Space Force
As global missile threats continue to evolve, U.S. Space Force and U.S. Air Force leaders took the stage at the 2025 Air and Space Forces Association Warfare Symposium
View the full article
-
By NASA
4 Min Read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
This compressed, resolution-limited video features a preliminary sequence of the Blue Ghost final descent and landing that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second. Altitude data is approximate. Credits: NASA/Olivia Tyrrell A team at NASA’s Langley Research Center in Hampton, Virginia, has captured first-of-its-kind imagery of a lunar lander’s engine plumes interacting with the Moon’s surface, a key piece of data as trips to the Moon increase in the coming years under the agency’s Artemis campaign.
The Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 instrument took the images during the descent and successful soft landing of Firefly Aerospace’s Blue Ghost lunar lander on the Moon’s Mare Crisium region on March 2, as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This compressed, resolution-limited video features a preliminary sequence of the Blue Ghost final descent and landing that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second. Altitude data is approximate.NASA/Olivia Tyrrell The compressed, resolution-limited video features a preliminary sequence that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second during the descent and landing.
The sequence, using approximate altitude data, begins roughly 91 feet (28 meters) above the surface. The descent images show evidence that the onset of the interaction between Blue Ghost’s reaction control thruster plumes and the surface begins at roughly 49 feet (15 meters). As the descent continues, the interaction becomes increasingly complex, with the plumes vigorously kicking up the lunar dust, soil and rocks — collectively known as regolith. After touchdown, the thrusters shut off and the dust settles. The lander levels a bit and the lunar terrain beneath and immediately around it becomes visible.
Although the data is still preliminary, the 3000-plus images we captured appear to contain exactly the type of information we were hoping for…
Rob Maddock
SCALPSS project manager
“Although the data is still preliminary, the 3000-plus images we captured appear to contain exactly the type of information we were hoping for in order to better understand plume-surface interaction and learn how to accurately model the phenomenon based on the number, size, thrust and configuration of the engines,” said Rob Maddock, SCALPSS project manager. “The data is vital to reducing risk in the design and operation of future lunar landers as well as surface infrastructure that may be in the vicinity. We have an absolutely amazing team of scientists and engineers, and I couldn’t be prouder of each and every one of them.”
As trips to the Moon increase and the number of payloads touching down in proximity to one another grows, scientists and engineers need to accurately predict the effects of landings. Data from SCALPSS will better inform future robotic and crewed Moon landings.
The SCALPSS 1.1 technology includes six cameras in all, four short focal length and two long focal length. The long-focal-length cameras allowed the instrument to begin taking images at a higher altitude, prior to the onset of the plume-surface interaction, to provide a more accurate before-and-after comparison of the surface. Using a technique called stereo photogrammetry, the team will later combine the overlapping images – one set from the long-focal-length cameras, another from the short focal length – to create 3D digital elevation maps of the surface.
This animation shows the arrangement of the six SCALPSS 1.1 cameras and the instrument’s data storage unit. The cameras are integrated around the base of the Blue Ghost lander. Credit: NASA/Advanced Concepts Lab The instrument is still operating on the Moon and as the light and shadows move during the long lunar day, it will see more surface details under and immediately around the lander. The team also hopes to capture images during the transition to lunar night to observe how the dust responds to the change.
“The successful SCALPSS operation is a key step in gathering fundamental knowledge about landing and operating on the Moon, and this technology is already providing data that could inform future missions,” said Michelle Munk, SCALPSS principal investigator.
The successful SCALPSS operation is a key step in gathering fundamental knowledge about landing and operating on the Moon, and this technology is already providing data that could inform future missions
Michelle Munk
SCALPSS principal investigator
It will take the team several months to fully process the data from the Blue Ghost landing. They plan to issue raw images from SCALPSS 1.1 publicly through NASA’s Planetary Data System within six months.
The team is already preparing for its next flight on Blue Origin’s Blue Moon lander, scheduled to launch later this year. The next version of SCALPSS is undergoing thermal vacuum testing at NASA Langley ahead of a late-March delivery to Blue Origin.
The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program.
NASA is working with several American companies to deliver science and technology to the lunar surface under the CLPS initiative. Through this opportunity, various companies from a select group of vendors bid on delivering payloads for NASA including everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon.
About the Author
Joe Atkinson
Public Affairs Officer, NASA Langley Research Center
Share
Details
Last Updated Mar 13, 2025 Related Terms
General Explore More
4 min read Five Facts About NASA’s Moon Bound Technology
Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
Article 2 months ago 3 min read Electrodynamic Dust Shield Heading to Moon on Firefly Lander
Article 2 months ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
The 2025 Spinoff publication features more than 40 commercial infusions of NASA technologies. Credit: NASA The work NASA conducts in space leads to ongoing innovations benefiting people on Earth. Some of these latest technologies, which have been successfully transferred from NASA to the commercial sector, are featured in the latest edition of NASA’s Spinoff 2025 publication now available online.
The publication features more than 40 commercial infusions of NASA technologies, including research originated at NASA’s Glenn Research Center in Cleveland.
Parallel Flight Technologies’ Firefly aircraft is designed to run for 100 minutes while fully loaded, allowing the aircraft to perform agricultural surveys as well as assist in the aftermath of natural disasters. Credit: Parallel Flight Technologies Inc. Bringing Hybrid Power to the Rescue
A NASA-funded hybrid power system makes drones more capable in disasters.
With Small Business Innovation Research funding from NASA Glenn, Parallel Flight Technologies of La Selva Beach, California, was able to test its hybrid propulsion technology, enabling longer-running, remotely piloted aircraft for use in agricultural and rescue applications. See the full Spinoff article for more information.
EnerVenue Inc. brought down the cost of nickel-hydrogen technology and encased it in safe, robust vessels, like the battery pictured here. These batteries store renewable energy in a wide range of terrestrial situations. Credit: EnerVenue Inc. Hubble Battery Tech Holds Power on Earth
Nickel-hydrogen technology is safe, durable, and long-lasting – and now it’s affordable, too.
Nickel-hydrogen batteries store renewable energy for power plants, businesses, and homes, thanks to innovations from Fremont, California-based EnerVenue, informed by papers published by NASA Glenn about the technology’s performance on the Hubble Space Telescope, International Space Station, and more. See the full Spinoff article for more information.
Spinoff 2025 also features 20 technologies available for licensing with the potential for commercialization. Check out the Spinoffs of Tomorrow section to learn more.
Return to Newsletter Explore More
1 min read NASA Glenn Experts Join Law College to Talk Human Spaceflight
Article 3 mins ago 1 min read NASA Glenn Welcomes Spring 2025 Interns
Article 4 mins ago 5 min read NASA’s Chevron Technology Quiets the Skies
Article 22 hours ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.