Members Can Post Anonymously On This Site
Collegiate Teams to Focus on Aviation Solutions for Agriculture in 2025 Gateways to Blue Skies Competition
-
Similar Topics
-
By NASA
This content is password protected. To view it please enter your password below:
Password:
View the full article
-
By NASA
Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers 14 Min Read NASA’s Brad Doorn Brings Farm Belt Wisdom to Space-Age Agriculture
This image shows corn cultivation patterns across the U.S. Midwest in 2020, with lands planted in corn marked in yellow. Credits:
NASA Earth Observatory/ Lauren Dauphin Bradley Doorn grew up in his family’s trucking business, which hauled milk and animal feed across the sprawling plains of South Dakota. Home was Mitchell, a small town famous for its Corn Palace, where murals crafted from corn kernels and husks have adorned its facade since 1892—a tribute to the abundance of the surrounding farmland.
Trucking was often grueling work for the family, the day breaking early and ending in headlights. Like farming, driving a truck wasn’t just a job; it was the engine of daily life, thrumming through nearly every conversation and decision.
Brad loved the outdoors, and by the time he started college in the early 1980s, studying geological engineering felt like a natural fit. “I wanted to be out in the field somewhere, working under the big skies of the West,” Brad recalled. But in his sophomore year at the South Dakota School of Mines and Technology, the tuition money dried up.
Dean Doorn, Brad Doorn’s father, stands beside a milk truck used in the family’s business of hauling milk across South Dakota in the 1960s and ’70s. Credit: B. Doorn Doorn found himself at a crossroads familiar to many in rural America: return to the certainty of a family trade or chart a new route. “That’s when the Army stepped in,” he said. The ROTC program offered a way to continue with school and a path into the world of remote sensing—a field that would come to define his career.
Brad’s choice to join the Army would eventually place him at the forefront of a mapping revolution, equipping him to see and analyze Earth in ways never possible before the advent of satellites. But more than the technical skills, the military showed him the allure of a life anchored to mission and team.
Even as his career took him far from Mitchell, Doorn would remain connected to his rural America roots. Today, he leads NASA’s agriculture programs within the agency’s Earth Science Division. “My family wasn’t made up of farmers, but farming was a part of everything growing up,” said Brad. “Even now, working with NASA, that connection to the land—the sense of how weather, crops, and people are tied together—it’s still in everything I do.”
Amid the dazzle of NASA’s feats exploring the solar system and universe, it’s easy to miss the agency’s quiet work in fields of soy and wheat. But for more than 60 years, the agency has harnessed the power of its satellites to deliver crucial data on temperature, precipitation, crop yields, and more to farmers, policymakers, and food security experts worldwide.
The Landsat 9 satellite captured this false-color image of Louisiana rice fields in February 2023. Dark blue shows flooded areas, while green indicates vegetation. Grid-like levees separate fields pre-planting. Louisiana is the third largest producer of rice in the U.S. Credit: NASA Earth Observatory/ Lauren Dauphin From orbit, satellites beam down streams of data—numbers and pixels that, when paired with farmers’ knowledge of the land, can guide growers as they adjust irrigation levels or plan for the next planting. But the satellites don’t just yield data; they tell stories that call for action, enabling nations to brace for droughts, floods, and the prospect of empty grain silos.
“Under Brad’s guidance, NASA’s agriculture program has become a global leader for satellite-driven solutions, tackling food security and sustainability head-on,” said Lawrence Friedl, the senior engagement officer for NASA Earth Science. Reflecting on years of collaboration, he added: “I am so impressed and grateful for what he and his teams have accomplished.”
Boots Meet Satellites in the First Gulf War
Long before Brad began guiding NASA’s agricultural initiatives, he was already navigating tricky terrain, both literal and figurative, with satellite imagery. His career in remote sensing didn’t start with crops, but with the deserts of Iraq and Kuwait.
As part of the Army’s 18th Airborne Corps, Brad led a company at Fort Bragg (now Fort Liberty) in North Carolina that had just returned from operations in the First Gulf War, in the early 1990s. “I loved being part of a unit, part of something bigger than just me,” Brad recalled. “It felt good to have that purpose and mission.”
Far from the combat zone, Doorn’s company became cartographers of the invisible. Their task: merge data from the Landsat satellite with the gritty reality of desert warfare depicted on military maps.
Brad Doorn, then a U.S. Army officer, sits at his desk during his early career in remote sensing. His military experience would later shape his work at NASA, applying satellite technology to real-world challenges. Credit: B. Doorn Landsat, a civilian satellite built by NASA and operated by the U.S. Geological Survey, could see what the soldiers on the ground could not. Its thermal infrared sensor—a camera with a penchant for temperature and moisture—read the desert floor like an ancient script, picking out the cold, soggy signature of mud lurking beneath the desert’s deceptive crust. Each pixel of satellite data became a brushstroke in a new kind of map, keeping tanks out of the mire and the missions on track.
“It was so neat to see the remote sensing techniques I’d learned about in school actually making a difference,” Doorn said.
With this knowledge, he helped guide his unit’s shift from analog maps—paper grids and grease pencils—to the emerging world of digital mapping, a leap that sharpened the military’s ability to read the landscape and steer clear of trouble.
From Desert Muck to Farm Fields
Brad’s military experience gave him an early look at how satellite data could address tangible, on-the-ground challenges. In the Army, he saw how integrating satellite data into military maps could offer soldiers critical information. That experience set the foundation for his later work at NASA, where he would help develop technology with lasting, practical impacts.
Consider OpenET, a NASA-funded initiative that uses Landsat data to give farmers insights into water use and irrigation needs at field scale. The ET in OpenET stands not for the little alien who phoned home, but for evapotranspiration. It’s a combination of water evaporating from the ground and water released by plants into the air.
The program relies on the same thermal technology Doorn used during the Gulf War. Just as cooler, wetter areas in the desert hint at muddy spots, cooler patches in farm fields show where there’s more moisture or plants are releasing more water. These data are key to managing water resources wisely and keeping crops healthy.
“OpenET has transformed our understanding of water demand,” explained Doorn.
To better manage water, state officials and farmers in California are using satellite data through OpenET to track evapotranspiration. Here, the colors represent total evapotranspiration for 2023 as the equivalent depth of water in millimeters. Dark blue regions have higher evapotranspiration rates, such as in the Central Valley. Credit: NASA Earth Observatory using openetdata.org In the late 2000s, when a new generation of Landsat satellites was being planned, the thermal infrared imagers were initially left off the drawing board. “Landsat 8’s design caused a lot of consternation in some Western states that were beginning to use the instrument for measuring and monitoring water use,” said Tony Willardson, the executive director of the Western States Water Council, a government entity that advises western governors on water policy.
Brad played a key role in conveying to NASA the critical need for this technology, both for agriculture and water management, Willardson said. The thermal imager was eventually reinstated and has since “helped to close a gap in western water management.”
“A lot of the technologies that we are using more and more were developed by NASA,” said Willardson. “We need NASA to be doing even more in Earth science.”
Sowing Global Food Stability from Space
Brad ended up serving in the Army for nearly a decade. “You hit that 10-year mark in the military, and you sort of have to decide if you’re staying in for 20 or if you’re getting out,” said Brad. “My wife, Kristen, was able to manage her career as a registered dietician through the first four moves in six years, but eventually it was too much. So, I told her: ‘Your choice. You decide where we go next.’”
She chose southern Pennsylvania to be closer to her family. Brad was 32 years old, and the couple had two small children at the time—one of whom had had open-heart surgery at 6 weeks old to fix a heart defect. They would go on to have another child.
In the late 1990s, within a few years of leaving the military, Doorn found himself someplace he had never imagined: sitting behind a desk at the U.S. Department of Agriculture. For a boy who had grown up driving trucks across the plains of South Dakota—who had vowed never to work in an office, much less live east of the Mississippi—this was an unexpected detour. But he had long since learned that the best paths are often the ones you don’t see coming.
At USDA, he moved forward not with a grand plan, but with an instinctive trust in where curiosity and challenge might lead. He rose through the ranks, from a programmer to directing the agency’s international food production analysis program. He was increasingly driven by a conviction that satellite data, if used the right way, could transform how we see the land and the way we feed the world.
While at USDA, and later at NASA, which he joined in 2009, Brad was instrumental in developing and overseeing the Global Agricultural Monitoring (GLAM) system. This real-time interactive satellite platform delivers massive amounts of ready-to-use satellite data directly to USDA crop analysts, eliminating the burden of data processing and enabling them to focus on rapid crop analysis across the globe. It was a pioneering tool, said Inbal Becker-Reshef, a research professor at University of Maryland’s Department of Geographical Sciences, who played a central role in developing the GLAM system.
At a 2022 Kansas gathering, Brad Doorn presents to farmers about NASA’s Earth Science Division and its activities supporting agriculture. Credit: A. Whitcraft GLAM set the stage for GEOGLAM, a separate, international initiative launched in 2011 by agriculture ministers from the G20—a group of the world’s major economies—partly as a response to global food price volatility. GEOGLAM, which stands for Group on Earth Observations Global Agricultural Monitoring, uses satellite data to monitor global crop conditions, from drought stress to excessive rain, around the world.
Joseph Glauber, a former USDA chief economist, noted that there was initial uncertainty within USDA about the initiative’s longevity, but he credited Brad’s background with rallying support. Today, GEOGLAM’s monthly crop assessments, produced by over 40 organizations including USDA and NASA, serve as a global consensus on crop conditions, helping governments and humanitarian organizations anticipate food shortages.
“Even today, the G20 points to GEOGLAM and its sister initiative, the Agricultural Market Information System—which tracks how crop conditions affect markets—as major successes,” Glauber said.
Harvesting Data Amid Conflict
Doorn’s work crosses continents. When war broke out between Russia and Ukraine in 2022, it rattled global food markets. The Ukrainian government turned to NASA Harvest—a global food security and agriculture consortium led by the University of Maryland and funded by NASA—for help. As manager of NASA’s agriculture program, Brad was a driving force behind the launch of NASA Harvest in 2017, envisioning it as a program that would harness satellite data to provide timely, actionable insights for global agriculture.
From orbit, satellites could observe the sown and the harvested wheat, sunflowers, and barley, offering some of the only reliable estimates for fields in the war zone. Satellite imagery revealed that, despite the conflict, more cropland had been planted and harvested in Ukraine than anyone had expected, a finding that helped stabilize volatile global food prices.
“Brad and the team recognized that providing that type of rapid agricultural assessment for policy support is what NASA Harvest exists for,” said Becker-Reshef, who is the director of the consortium.
NASA Harvest’s reach stretches well beyond Europe. In sub-Saharan Africa, the consortium collaborates with local and international partners, tracking the health of crops and the creeping spread of drought. This information helps equip governments, aid organizations, and farmers to act before disaster strikes, making each data point a crucial defense against hunger.
NASA Harvest has since been joined by NASA Acres, founded in 2023 to provide satellite data and tools that help farmers make well-informed decisions for healthier crops and soil in the United States. One project, for example, involves working with farmers in Illinois to manage nitrogen use more effectively, leveraging satellite data to enhance crop yields while reducing environmental impact.
This image shows corn cultivation patterns across the U.S. Midwest in 2020, with lands planted in corn marked in yellow. The map was built from the Cropland Data Layer product provided by the National Agricultural Statistics Service, which includes data from the USGS National Land Cover Database and from satellites such as Landsat 8. Credit: NASA Earth Observatory/ Lauren Dauphin Friedl noted that Doorn understands the missions of both NASA and the USDA, and with his agricultural roots, he knows the needs of farmers and agricultural businesses firsthand. “Often in meetings, Brad would remind us that the margins for a farmer are in the pennies,” Friedl said. “They wouldn’t be able to afford remote sensing,” so making sure NASA’s satellite information was free and accessible was that much more important.
“It’s hard to imagine that NASA would have the agriculture program it does without somebody like Brad continuing to advocate and push for this to exist,” said Alyssa Whitcraft, the director of NASA Acres. “He knows how critical it is for satellite data to be accessible and useful to those on the ground. He makes sure we never lose sight of that.”
An Emissary Between Worlds
Colleagues say Doorn’s strength lies in his ability to bridge worlds, whether it’s making connections between agencies like NASA and USDA, or connecting such agencies to state water councils or farming communities. His fluency in translating complex science into simple terms makes him equally at ease in whichever world he finds himself.
“There’s NASA language and there’s farm language,” says Lance Lillibridge, who farms about 1,400 acres of corn and soybeans in Benton County, Iowa, and has helped lead the Iowa Corn Growers Association. “Sometimes you need an interpreter, and Brad’s that guy.” He recalled a meeting where some farmers were skeptical, wary of NASA’s “big brother” eyes in the sky, “but Brad had a way of putting people at ease, keeping everyone focused on the shared goal of better data for better decisions.”
Brad Doorn speaks during NASA’s “Space for Ag” roadshow in Iowa, July 2023, highlighting NASA’s role in supporting sustainable farming practices. Credit: N. Pepper “One of my favorite memories of Brad,” said Forrest Melton, the OpenET project scientist at NASA’s Ames Research Center, “is an afternoon spent visiting with farmers in western Nebraska, drinking iced tea and talking with them about the challenges facing their family farm.”
Colleagues describe Brad as a nearly unflappable guide, one who knows the agricultural landscape so well that he makes the impossible seem manageable. They say his calm, approachable style, paired with a ready smile, puts people at ease whether in Washington conference rooms or Midwestern barns. And he listens closely to understand where there may be opportunities to help.
“Few people in the water and agriculture communities, from the small-scale farmer to the federal government appointee, aren’t familiar with some aspect of the work Brad has enabled over the decades,” said Sarah Brennan, a former deputy program manager for NASA’s water resources programs. “He has supported the development of some of the greatest advancements in using remote sensing in these communities.”
It’s About the People and the Team
Doorn’s leadership is less about issuing directives, colleagues say, and more about cultivating growth—in crops, in data systems, and in people. Like a farmer tending to his fields, he nurtures the potential in every project and person he encounters. “Almost everyone who has worked for Brad can point back to the opportunities he provided them that launched their successful careers,” said Brennan.
Over the years, he’s added layers to this work of creating paths for others to succeed: as president of the American Society of Photogrammetry and Remote Sensing, as an adjunct professor at Penn State, and as a youth basketball league director.
“What I’ve learned, probably in the military and I’ve carried it forward, is that it’s the people that matter,” Brad said. “I had great mentors who believed it’s just as important to help others grow as it is to meet the day’s demands. Those roles shift your focus toward the people around you, and often, the more you give of your time, the more you end up getting back.”
Young Brad Doorn (front center) stands with his siblings, capturing a family moment in 1960s South Dakota. His youngest brother isn’t pictured. Credit: B. Doorn It has been a long journey from hauling milk and animal feed across the South Dakota plains to surveying them now as a scientist. The tools of his career have changed—from truck routes to satellite orbits, from paper maps to digital data—but his mission remains the same: helping farmers feed the world.
“Growing up in South Dakota, I saw firsthand the challenges farmers face. Today, I’m proud to help provide the tools and data that can make a real difference in their lives,” Doorn added. “Whether it’s a farmer, an economist, or a military analyst, if you give them the right tools, they’ll take them to places you never even thought about. That’s what excites me—seeing where they go.”
By Emily DeMarco
NASA’s Earth Science Division, Headquarters
Share
Details
Last Updated Nov 20, 2024 Related Terms
Earth People of NASA Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Explore Earth Science
Earth Science in Action
NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.
Climate Change
NASA is a global leader in studying Earth’s changing climate.
View the full article
-
By Space Force
SSC’s annual Fight Tonight competition was launched three years ago, seeking to empower solutions in alignment with the critical Space Force mission of ensuring a secure space domain for all.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Abigail Reigner, a systems engineer at NASA’s Glenn Research Center in Cleveland, supports the agency’s research in electrified aircraft propulsion to enable more sustainable air travel. Behind her is a 25% scale model of NASA’s SUbsonic Single Aft eNgine (SUSAN) Electrofan aircraft concept used to test and demonstrate hybrid electric propulsion systems for emission reductions and performance boosts in future commercial aircraft.
Credit: NASA/Sara Lowthian-Hanna Growing up outside of Philadelphia, Abigail Reigner spent most of her childhood miles away from where her family called home, and where there was little trace of her Native American tribe and culture.
Belonging to the Comanche Nation that resides in Lawton, Oklahoma, Reigner’s parents made every effort to keep her connected to her Indigenous heritage and part of a community that would later play a key role in her professional journey.
“My parents were really adamant on making sure my brother and I were still involved in the Native American traditions."
Abigail Reigner
“My parents were really adamant on making sure my brother and I were still involved in the Native American traditions,” Reigner said. “We would go down to Oklahoma often in the summertime, spending time with family and staying immersed in our culture.”
Both her parents come from a teaching background, so Reigner was surrounded by hands-on learning experiences early in life. As a school teacher, her mother would participate in local outreach events each year, talking and interacting with students. Her father, a middle school technology education teacher, taught Reigner how to use computer-aided design (CAD) and helped introduce her to the world of engineering at a young age.
These unique experiences helped spark Reigner’s curiosity for learning about science, technology, engineering, and math (STEM) and connecting with others in her community who shared these interests. Reigner says she never takes her upbringing for granted.
“I feel pretty lucky to have grown up with so many educational opportunities, and I try to use them as a way to give back to my community,” Reigner said.
After participating in various engineering and robotics classes in high school and realizing a career in STEM was the right fit for her, Reigner went on to attend the Rochester Institute of Technology in New York where she earned bachelor’s and master’s degrees in mechanical engineering.
During her time there, she joined the American Indian Science and Engineering Society (AISES) where she got the unique opportunity to connect with other Indigenous students and mentors in STEM fields and gain leadership experience on projects that eventually set her up for internship opportunities at NASA.
“The opportunities I got through AISES led me to get an internship at NASA’s Jet Propulsion Laboratory during the summer of 2021, and then an eight-month co-op the following year working in the center’s materials science division,” Reigner said.
Through AISES, Reigner also met Joseph Connolly, an aerospace engineer at NASA’s Glenn Research Center in Cleveland who was looking to recruit Indigenous students for full-time positions in the agency. Upon graduating from college, Reigner joined NASA Glenn as an engineer in the summer of 2024.
Abigail Reigner (top far left) and Joseph Connolly (middle far right) pose with NASA employees while staffing a booth at an American Indian Science and Engineering Society (AISES) conference to help recruit Indigenous students to the agency. Credit: Abigail Reigner Today, Reigner works as a systems engineer supporting NASA Glenn’s efforts to test and demonstrate electrified aircraft propulsion technologies for future commercial aircraft as part of the agency’s mission to make air travel more sustainable.
One of the projects she works on is NASA’s Electrified Powertrain Flight Demonstration (EPFD), where she supports risk-reduction testing that enables the project to explore the feasibility of hybrid electric propulsion in reducing emissions and improving efficiency in future aircraft.
“It’s always good to know that you’re doing something that is furthering the benefit of humanity,” Reigner said. “Seeing that unity across NASA centers and knowing that you are a part of something that is accelerating technology for the future is very cool.”
“I really feel like the reason I am here at NASA is because of the success of not just the Native American support group here at Glenn, but also Natives across the agency.”
Abigail Reigner
The growing community of Native Americans at NASA Glenn has fostered several initiatives over the years that have helped recruit, inspire, and retain Indigenous employees.
Leveraging some of the agency’s diversity programs that provide educational STEM opportunities for underrepresented communities, the Native Americans at NASA group has encouraged more students with Indigenous backgrounds to get involved in technical projects while developing the skills needed to excel in STEM fields.
“The Native American support group at NASA has been around since the mid-to-late 1980s and was actually one of the first Native American employee resources groups at the agency,” Connolly said. “Through this, we’ve been able to connect a number of Native employees with senior leaders across NASA and establish more agencywide recruitment efforts and initiatives for Native Americans.”
These initiatives range from support through NASA’s Minority University Research and Education Project (MUREP) to help recruit more Indigenous students, to encouraging participation in hands-on learning experiences through projects such as NASA’s University Leadership Initiative (ULI) and the agency’s involvement in the First Nations Launch competition, which helps provide students with opportunities to conduct research while developing engineering and team-building skills.
The efforts of the Native American community at NASA Glenn and across the agency have been successful in not only creating a direct pipeline for Indigenous students into the NASA workforce, but also allowing them to feel seen and represented in the agency, says Connolly.
For Reigner, having this community and resource group at NASA to help guide and support her through her journey has been crucial to her success and important for the future of diversity within the agency.
“I really feel like the reason I am here at NASA is because of the success of not just the Native American support group here at Glenn, but also Natives across the agency,” Reigner said. Without their support and initiatives to recruit and retain students, I wouldn’t be here today.”
Explore More
7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
Article 4 days ago 1 min read NASA Glenn Chief Counsel Named to CSU Law Hall of Fame
Article 6 days ago 1 min read NASA Encourages Careers in STEM During Event
Article 6 days ago View the full article
-
By NASA
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 22 min read
NASA’s BlueFlux Campaign Supports Blue Carbon Management in South Florida
Photo 1. A Mangrove stand lines the bank of Shark River, an Everglades distributary that carries water into the Gulf of Mexico’s Ponce De Leon Bay. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Introduction
Along the southernmost rim of the Florida Peninsula, the arching prop roots or “knees” of red mangroves (Rhizophora mangle) line the coast – see Photo 1. Where they dip below the water’s surface, fish lay their eggs, enjoying the protection from predators that the trees provide. Among their branches, wading birds, such as the great blue heron and the roseate spoonbill establish rookeries to rear their young. The tangled matrix of roots collects organic matter and ocean-bound sediments, adding little-by-little to the coastline and shielding inland biology from the erosive force of the sea. In these ways, mangroves are equal parts products and engineers of their environment, but their ecological value extends far beyond this local sphere of influence.
Mangroves are an important carbon dioxide (CO2) sink – responsible for removing CO2 from the atmosphere with impressive efficiency. Current estimates suggest mangroves sequester CO2 10 times faster and store up to 5 times more carbon than rainforests and old-growth forests. But as part of the ever-changing line between land and sea, they’re exceptionally vulnerable to climate disturbances such as sea level rise, hurricanes, and changes in ocean salinity. As these threats intensify, Florida’s sub-tropical wetlands – and their role as a critical sink of CO2 – face an uncertain future.
NASA’s BlueFlux Campaign, a three-year (2021–2024), $1.5-million project operating under the agency’s Carbon Monitoring System, used field, aircraft, and satellite data to study the impact of both natural and anthropogenic pressures on South Florida’s coastal ecology. BlueFlux consists of a series of ground-based and airborne fieldwork campaigns, providing a framework for the development of a satellite-based data product that will estimate daily rates of surface-atmosphere gas transfer or gaseous flux across coastal ecosystems in Florida and the Caribbean. “The goal is to enhance our understanding of how blue-carbon ecosystems fit into the global carbon market,” said Ben Poulter [NASA’s Goddard Space Flight Center (GSFC)—Project Lead]. “BlueFlux will ultimately answer scientific questions and provide policy-related solutions on the role that coastal wetlands play in reducing atmospheric greenhouse gas (GHG) concentrations.”
This article provides an overview of BlueFlux fieldwork operations – see Figure 1 – and outlines how the project might help refine global GHG budgets and support the restoration of Florida’s wetland ecology.
Figure 1. A map of South Florida overlaying a true-color image captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board NASA’s Terra satellite. Red triangles mark locations of primary ground-based fieldwork operations described in this article. Figure Credit: NASA’s Goddard Space Flight Center (GSFC) BlueFlux Ground-based Fieldwork
Across the street from the Flamingo Visitors center, at the base of the Everglades National Park, there was once a thriving mangrove population. Now, the skeletal remains of the trees form one of the Everglades’ largest ghost forests – see Photo 2. When Hurricane Irma made landfall in September 2017, violent winds battered the shore and a storm surge swept across the coast, decimating large swaths of the mangrove forest. Most of Florida’s mangroves recovered swiftly. But seven years later, this site and others like it have seen little to no growth.
“At this point, I doubt they’ll ever recover,” said David Lagomasino [East Carolina University].
Photo 2. A mangrove ghost forest is all that remains of a once-thriving mangrove stand, preserving an image of Hurricane Irma’s lasting impact on South Florida’s wetland ecology. Most of the ghost forests in the region are a product of natural depressions in the landscape that collect saltwater following severe storms. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Lagomasino was in the Everglades this summer conducting research as part of the fifth leg of BlueFlux fieldwork – see Photo 3. His team focused on measuring how changes in wetland ecology affect the sequestration and emission rates of both CO2 and methane (CH4). In areas where vegetative health is severely degraded, like in ghost forests, a general decline in CO2 uptake is accompanied by an increase in CH4 production, the net effect of which could dramatically amplify the atmosphere’s ability to trap heat. Ghost forests offer an example at one end of an extreme, but defining the way more subtle gradients among wetland variables – such as changes in water level, tree height, canopy coverage, ocean salinity, or mangrove species distribution – might influence flux is harder to tease out of the limited data available.
Photo 3. Assistant professor David Lagomasino and Ph.D. candidate Daystar Babanawo [both from East Carolina University] explore the lower Everglades by boat. Due to the relative inaccessibility of the region, measurements of flux in wetland ecosystems are limited. The plant life here consists almost entirely of Florida’s three Mangrove species (red, black, and white), which are among the only vegetation that can withstand the brackish waters characteristic of coastal wetlands. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) In the Everglades, flux measurements are confined to a handful of eddy covariance towers – or flux towers – constructed as part of the National Science Foundation’s (NSF) Long-Term Ecological Research (LTER) Network.
The first flux tower in this network, erected in June 2003, stands near the edge of Shark River at a research site called SRS-6, short for Shark River Slough site 6. A short walk from the riverbank, across a snaking path of rain-weathered, wooden planks, sits a small platform where the flux tower is anchored to the forest floor – see Photo 4. About 20 m (65 feet) above the platform, the tower breaches the canopy, where a suite of instruments continuously measures wind velocity, temperature, humidity, and the vertical movement of trace atmospheric gases, such as water vapor (H2Ov), CO2, and CH4. It’s these measurements collectively that are used to calculate flux.
Photo 4. At SRS-6, an eddy covariance tower measures C02 and CH4 flux among a dense grove of red, black, and white mangroves. The term eddy covariance refers to the statistical technique used to calculate gaseous flux based on the meteorological and scalar atmospheric data collected by the flux towers. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) “Hundreds of research papers have come from this site,” said Lagomasino. The abundance of research generated from the data captured at SRS-6 speaks in part to the value of the measurements that the tower makes. It also points to the gaps that exist just beyond each tower’s reach. A significant goal of the BlueFlux campaign is to explain flux on a scale that isn’t covered by existing data – to fill in the gaps between the towers.
One way to do that is by gathering data by hand.
On Lagomasino’s boat is a broad, black case carrying a tool called a Russian peat auger. The instrument is designed to extract core samples from soft soils – see Photo 5.
Everglades peat, which is made almost entirely of the partially decomposed roots, stems, and leaves of the surrounding mangroves, offers a perfect study subject. Each thin, half-cylinder sample gets sealed and shipped back to the lab, where it will be sliced into flat discs. The discs will be analyzed for their age and carbon content by Lagomasino’s team and partners at Yale University. These cores are like biomass time capsules. In Florida’s mangrove forests, a 1-m (3-ft) core might represent more than 300 years of carbon accumulation. On average, a 1 to 3 mm (0.04 to 0.12 in) layer of matter is added to the forest floor each year, building up over time like sand filling an hourglass.
Photo 5. David Lagomasino holds a Russian peat auger containing a sample of Everglades peat. The primary source of the soil’s elevated carbon content – evident from its coarse, fibrous texture – is the partially decayed plant tissue of the surrounding mangroves. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Although coastal wetlands account for less than 2% of the planet’s land-surface area, they house a disproportionate amount of blue carbon – carbon stored in marine and coastal environments. In the Everglades, the source of this immense accumulation of organic material is the quick-growing vegetation – see Photo 6.
When a CO2 molecule finds its way through one of the many small, porous openings on a mangrove leaf – called stomata – its next step is one of creation, where it plays a part in the miraculous transformation of inorganic matter into living tissue. Inside the leaf’s chloroplasts, energy from stored sunlight kickstarts a long chain of chemical reactions that will ultimately divide CO2 into its constituent parts. Oxygen atoms are returned to the atmosphere as the byproduct of photosynthesis, but the carbon stays behind to help build the sugar molecules that will fuel new plant growth. In short, the same carbon that once flowed through the atmosphere defines the molecular structure of all wetland vegetation. When a plant dies or a gust of wind pulls a leaf to the forest floor, this carbon-based matter finds its way into the soil, where it can stay locked in place for thousands of years thanks to a critical wetland ingredient: water.
The inundated, anoxic – an environment deficient or absent of oxygen – peat soils characteristic of wetlands host microbial populations that are uniquely adapted to their environment. In these low- to no-oxygen conditions, the prevailing microbiota consumes organic material slowly, leading to an accumulation of carbon in the soil. As wetland conditions change, the soil’s microbial balance shifts. For example, a decline in water level, which can increase the oxygen-content of the soil, produces conditions favorable to aerobic bacteria. These oxygen-breathing lifeforms consume organic matter far more rapidly than their anaerobic counterparts – and release more CO2 into the atmosphere as a result.
Water level isn’t the only environmental condition that influences rates of carbon sequestration. The soil cores collected during the campaign will be analyzed alongside records of interrelated variables such as water salinity, sea surface height, and temperature to understand not just the timescales associated with blue carbon development in mangrove forests but how and why rates of soil deposition change in response to specific environmental pressures. In many parts of the Everglades, accumulated peat can reach depths of up to 3 m (9.8 feet) – holding thousands of years’ worth of insights that would otherwise be lost to time.
Photo 6. Mangroves are viviparous plants. Their propagules – or seedlings – germinate while still attached to their parent tree. Propagules that fall to the forest floor are primed to begin life as soon as they hit the ground. But even those that fall into bodies of water and are carried out to sea can float for months before finding a suitable place to lay their roots. The high growth rate of mangroves contributes to the efficiency with which mangrove forests remove CO2 from the atmosphere. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Lola Fatoyinbo [NASA’s Goddard Space Flight Center (GSFC), Biospheric Sciences Lab] and Peter Raymond [Yale University’s School of the Environment] led additional fieldwork teams tasked with collecting forest inventory data in locations where vegetation was dead, regenerating, or recently disturbed by severe weather events. A terrestrial laser system was used to obtain three-dimensional (3D) images of mangrove forest structure, which provided maps of stem density, vertical distributions of biomass, and stand volume surface area. Spectroradiometers were also used to acquire visible, near infrared, and shortwave infrared spectra, delivering detailed information about species composition, vegetative health, water levels, and soil properties.
To tie these variables to flux, the researchers made measurements using chambers – see Figure 2 – designed to adhere neatly to points where significant rates of gas exchange occur, (i.e., mangrove lenticels—cell-sized breathing pores found on tree bark and root systems— and the forest floor). As an example, black mangroves (Avicennia germinans) possess unique aerial roots called pneumatophores that, similar to the prop roots of red mangroves, provide them with access to atmospheric oxygen. Pneumatophores sprout vertically from the forest floor and line up like matchsticks around the base of each tree. The team used cylindrical chambers to measure the transfer of gas between a single pneumatophore and the atmosphere – see Figure 2a.
These observations are archived in NASA’s Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) and publicly available to researchers who wish to monitor and identify trends in the data. After nearly three years of field work, these data have already given scientists a more detailed picture of how Florida’s wetlands are responding to environmental pressures.
Research based on data from early BlueFlux fieldwork deployments confirms that aerobic, methanogenic microbes living in flooded, wetland soils naturally release a significant amount of CH4 as a byproduct of the process by which they create their own energy.
“We’re especially interested in this methane part,” said Fatoyinbo. “It’s the least understood, and there’s a lot more of it than we previously thought.” Fatoyinbo also noted a “significant difference in CO2 and CH4 fluxes between healthy mangroves and degraded ones.” In areas where mangrove health is in decline, due to reduced freshwater levels or as the result of damage sustained during severe weather events, “you can end up with more ‘bad’ gases in the atmosphere,” she said. Since CH4 is roughly 80 times more potent than CO2 over 100-year period, these emissions can undermine some of the net benefits that blue carbon ecosystems provide as a sink of atmospheric carbon.
Figure 2. To directly measure the emission and sequestration rates of CO2 and CH4 in mangrove forests, chambers were designed to adhere to specific targets where gas exchange occurs (i.e. mangrove lenticles, root systems, and the forest floor). Credit: GSFC Airborne Research Teams Measure GHG Flux from Above
Florida’s mangrove forests blanket roughly 966 km2 (600 mi2) of coastal terrain. Even with over 20 years of tower data and the extensive measurements from ground-based fieldwork operations, making comprehensive inferences about the entire ecosystem is tenuous work. To provide flux data at scale – and help quantify the atmospheric influence that Florida’s coastal wetlands carry as a whole – NASA’s BlueFlux campaign relies on a relatively new, airborne technique for measuring flux – see Photo 7.
Photo 7. At the Miami Executive Airfield, members of NASA’s BlueFlux airborne science team stand in front of the Beechcraft 200 King Air before the final flight of the fieldwork campaign. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Between 2022 and 2024, over 5 deployments, the team conducted more than 34 carefully planned flights – see Figure 3 – collecting flux data over Florida’s wetlands by plane. Each flight is equipped with a payload known colloquially as “CARAFE,” short for the CARbon Airborne Flux Experiment, which is the airborne campaign’s primary means of data collection. “This is one of the first times an instrument like this has flown over a mangrove forest anywhere in the world,” said Fatoyinbo. “So, it’s really just kind of groundbreaking.”
Figure 3. An example of flight paths from eight BlueFlux airborne deployments flown in April 2023. The flight paths are highlighted in blue. The legs of each flight where flux measurements were taken are highlighted in green. Accurate flux calculations rely on stable measurements of the aircraft’s speed and orientation, which is why the flux legs of each flight are flown in straight lines. Credit: GSFC In the air, GHG concentrations are measured using a well-established technique called cavity ringdown spectroscopy, which involves firing a laser into a small cavity where it will ping back and forth between two highly reflective mirrors. Most gas-phase molecules absorb light at specific wavelengths, depending on their atomic makeup. Since the target molecules in this case are CO2 and CH4, the laser is configured to emit light at a wavelength that only these molecules will absorb. As the laser bounces between the mirrors, a fraction of the light is absorbed by any molecules present in the chamber. The rate of the light’s decay is used to estimate CO2 and CH4 concentrations, generating a time series with continuous readings of gas concentrations, measured in parts per million – see Photo 8. This information is combined with measurements of vertical wind velocity to calculate a corresponding time series of fluxes along the flight track. While these measurements are important on their own, a priority for the airborne team is understanding GHG fluxes in relation to what’s happening on the ground.
Photo 8. The CARAFE payload is responsible for taking readings of atmospheric CO2, CH4, and H2Ov levels using a wind probe and two optical spectroscopy instruments manufactured by Picarro: the G2401m Gas Concentration Analyzer and the G2311f Gas Concentration Analyzer. The readings pictured above were made by the G2311f, which measures gas concentrations at a faster rate than the G2401m. The G2401m makes slower but more stable measurements, which are necessary for verifying the accuracy of measurements made by the G2311f. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Unlike flux towers, which only collect data within a 100 m2 (328 ft2) “footprint,” airborne readings have a footprint that can stretch up to 1 km (0.6 mi) in upwind directions. The plane’s speed, position, and orientation are used to help link flux data to fixed points along the flight’s path – so the team can make comparisons between aerial measurements and those made by the ground-based towers – see Photo 9.
“One challenge with that is the flux towers are much lower to the ground, and their footprint is much smaller,” said Glenn Wolfe [GSFC—BlueFlux Flight Lead]. “So, we have to be really careful with our airborne observations, to make sure they closely resemble our ground-based measurements.”
Part of decoding the airborne data involves overlaying each footprint with detailed maps of different surface properties, such as vegetation cover, soil water depth, or leaf-area index, so the team can constrain the measurements and assign fluxes to specific sources – whether its mangroves, sawgrass, or even water.
Photo 9. The BlueFlux airborne science team collects flux measurements from 90m (300ft) above Florida’s mangrove forests. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Data Upscaling – Making Daily Flux Predictions from Space
The coupling of BlueFlux’s ground-based and airborne data provides the framework for the production of a broader, regional image of GHG flux.
“The eddy flux towers give us information about the temporal variability,” said Cheryl Doughty [GSFC]. “And the airborne campaign gives us this great intermediate dataset that allows us to go from individual trees to a much larger area.”
Doughty is now using BlueFlux data to train a remote-sensing data product, the prototype of which is called Daily Flux Predictions for South Florida. The product’s underlying model relies on machine learning algorithms and an ensemble modeling technique called random forest regression. It will make flux predictions based on surface reflectance data captured by the Moderate Resolution Imaging Spectroradiometer (MODIS), an instrument that flies on NASA’s polar-orbiting Aqua and Terra satellites – see Figure 4.
“We’re really at the mercy of the data that’s out there,” said Doughty. “One of the things we’re trying to produce as part of this project is a daily archive of fluxes, so MODIS is an amazing resource, because it has over 20 years of data at a daily temporal resolution.”
This archival flux data will help researchers explain how fluxes change in relation to processes that are directly described by MODIS surface reflectance data, including sea-level rise, land use, water management, and disturbances from hurricanes and fires.
Figure 4. Sample of methane flux upscaling, in which MODIS surface reflectance retrievals are used to predict CH4 flux for South Florida at a regional scale [bottom row, left]. The model inputs rely on a composite of MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Radiance (NBAR) measurements from all available MODIS land bands: [top row, left to right]: red (620–670 nm), green (545–565 nm), blue (459–479 nm); [middle row, left to right] near infrared 1, or NIR1 (841–876 nm), NIR2 (1230–1250 nm), shortwave IR 1, or SWIR1 (1628–1652 nm), and SWIR 2 (2105–2155 nm). The Everglades National Park boundary is indicated on each image with a white line. Output of the model is shown [bottom row, left] as well as a comparison between modeled fluxes of MODIS NBAR with Terra and Aqua [bottom row, right]. Credit: GSFC To help validate the model, researchers must reformat flux measurements from the airborne campaign to match the daily temporal resolution and 500m2 (0.3mi2) spatial resolution of MODIS reflectance retrievals.
“It’s best practice to meet the data at the coarsest resolution,” said Doughty. “So, we have to take an average of the hourly estimates to match MODIS’ daily scale.”
The matching process is slightly more complicated for spatial datasets. BlueFlux’s airborne flux measurements produce roughly 20 data points for each 500 m2 (0.3 mi2) area, the same resolution as a single MODIS pixel.
“We’re essentially taking an average of all those CARAFE points to get an estimate that corresponds to one pixel,” said Doughty.
This symmetry is critical, allowing the team to test, train, and tune the model using measurements that capture what’s really happening on the ground – ensuring the accuracy of flux measurements generated from satellite data alone.
Researchers don’t expect the model to serve as a perfect reconstruction of reality. The heterogenous nature of Florida’s wetland terrain – which consists of a patchwork of sawgrass marshland, mangrove forests, hardwood hammocks, and freshwater swamps – contributes to high degree of variability in CO2 removal rates within and across its distinct regions. The daily flux product accounts for some of this complexity by making hundreds of calculations at a time, each with slightly different parameters based on in-situ measurements.
“The goal isn’t to just give people one flux measurement but an estimate of the uncertainty that is so inherent to these wetlands,” explained Doughty.
The prototype of the product will be operational by early 2025 and accessible to the public through NASA’s ORNL DAAC. Doughty hopes it will help stakeholders and decision makers evaluate policies related to water management, land use, and conservation that might impact critical stocks of blue carbon.
From Drainage to Restoration in the Florida Everglades
In the late 19th century, land developers were drawn to South Florida, where they hoped the fertile soil and tropical climate could support year-round cultivation of commodities such as exotic fruits, vegetables, and sugar cane. There was just one thing standing in the way – the water. If they could find a way to tame Florida’s wilderness, to drain the wetland of its excess water, Florida would offer Americans a new agricultural frontier.
Progress was made incrementally, but the Everglades drainage project idled for more than 50 years as its organizers wrestled with the literal and political morass surrounding South Florida’s wetland topography. It was mother nature’s hand that ultimately accelerated the drainage project. In 1926 and 1928, two large hurricanes tore through the barrier along Lake Okeechobee’s southern shore built to prevent water from spilling onto the newly settled, small-scale farmland just south of the lake. The second of the two storms – 1928’s Okeechobee Hurricane – made landfall in early September and resulted in nearly 3,000 recorded fatalities. In some areas, the torrent of flood water was deep enough that even those who sought refuge from the flood on the roofs of their homes were swept away by the current. The federal government was forced to step in.
By 1938, the U.S. Army Corps of Engineers had completed construction of the Hoover Dike, adding to a collection of four canals responsible for siphoning water away from Lake Okeechobee’s floodplain and into the Atlantic Ocean. Seasonal flooding was brought under control, but the complete reclamation of South Florida’s wetlands proved more challenging than anticipated. As water levels fell and freshly cleared lands dried out, the high organic content of the soil fueled tremendous peat and muck fires that could burn for days, spreading through underground seams where water once flowed. In some areas, fires consumed the entire topsoil layer – exposing the limestone substrata to the atmosphere for the first time in thousands of years. The engineers in charge of Florida’s early wetland reclamation projects underestimated the value of the state’s hydrological system and overestimated its capacity to withstand human interference.
“Those initial four canals were enough to drain the everglades three times over,” said Fred Sklar [South Florida Water Management District—Everglades System Sciences Director]. “And they still exist, but now there are more than seven million people who rely on them for drinking water and flood control.”
Today, much of the Water Management District’s work involves unwinding the damage wrought by earlier drainage efforts.
“One thing we’re trying to do is make sure these peat fires never happen again,” said Sklar.
But restoring natural water flow to the Everglades – which is critical to the region’s ecological health – isn’t an option. Even if drainage could be reversed, it would subject Florida’s residents to the same flood risks that made drainage a priority. Some residents, including members of the Miccosukee and Seminole tribes, live directly alongside or within Everglades wilderness areas, where the risk of flooding is even greater than it is in the state’s highly populated coastal communities. These areas are also out of reach of the Water Management District’s existing infrastructure. It’s not as simple as turning the tap on and off.
Photo 10. The Tamiami Trail Canal runs across the Florida Peninsula from west to east, towards a saltwater treatment facility near the Miami River. Construction was completed in 1928, shortly after the first four drainage canals opened. It quickly became apparent that the canal and its adjacent roadway dramatically impede water flow to the Everglades wilderness areas to their south, cutting off the region’s vegetation and wildlife from a critical source of freshwater. New modifications to the canal are currently underway, which aim to introduce a hydrological regime that more closely resembles the pre-drainage system. Photo credit: U.S. National Park Service Florida’s Water Management District works with federal agencies, including the U.S. Army Corps of Engineers, to monitor and govern the flow of Florida’s freshwater. The District has overseen the construction and management of dozens of canals, dikes, levees, dredges, and pumps over the last half-century that offer a higher degree of control over Florida’s complex hydrological network – see Photo 10.
“The goal is to restore as much acreage as we can, but we also need to restore it functionally, without degrading the whole system or putting residents at risk,” summarized Sklar. “To do this effectively, we need a detailed understanding of how the hydrology functions and how it influences all of these other systems, such as carbon sequestration.”
Since the 1920s, more than half of Florida’s original wetland coverage has been lost. The present system also carries 65% less peat coverage and 77% less stored carbon than it did prior to drainage. As atmospheric CO2 concentrations climb at unprecedented rates, an accompanying rise in sea levels, severe weather, and ocean salinity all present serious threats to Florida’s wetland ecology – see Figure 5.
“We’re worried about losing that stored carbon,” said Poulter. “But blue carbon also offers tremendous opportunities for climate mitigation if conservation and restoration are properly supported by science.”
Figure 5. A map of the BlueFlux study region, showing mangrove extent (green) and the paths of tropical storms and hurricanes from 2011 to 2021 (red). These storms drive losses in mangrove forest coverage – the result of erosion and wind damage. The inset regions at the top of the image highlight proposed targets for the airborne component of NASA’s BlueFlux Campaign. Figure credit: GSFC Conclusion – The Future of Flux
Every few years, the Intergovernmental Panel on Climate Change (IPCC) releases emissions data and budget reports that have important policy implications related to the Paris Agreement’s goal of limiting global warming to between 1.5°C (2.7°F) and 2°C (3.6°F) compared to pre-industrial levels. Refining the accuracy of global carbon budgets is paramount to reaching that goal, and wetland ecosystems – which have been historically under-represented in climate research – are an important part of the equation.
Early estimates based on BlueFlux fieldwork deployments and upscaled using MODIS surface reflectance data suggest that wetland CH4 emissions in South Florida offset CO2 removal in the region by about 5% based on a 100-year CH4 warming potential, resulting in a net annual CO2 removal of 31.8 Tg (3.18 million metric tons) per year. This is a small fraction of total CO2 emissions in the U.S. and an even smaller fraction of global emissions. In 2023, an estimated 34,800 Tg (34.8 billion metric tons) of CO2 were released into the atmosphere. But relative to their size, the CO2 removal services provided by tropical wetlands are hardly dismissible.
“We’re finding that massive amounts of CO2 are removed and substantial amounts of CH4 are produced, but overall, these ecosystems provide a net climate benefit by removing more greenhouse gases than they produce,” Poulter said.
Access to a daily satellite data product also provides researchers with the means to make more regular adjustments to budgets based on how Florida’s mutable landscape is responding to climate disturbances and restoration efforts in real time.
With the right resources in hand, the scientists who dedicate their careers to understanding and restoring South Florida’s ecology share a hopeful outlook.
“Nature and people can absolutely coexist,” said Meenakshi Chabba [The Everglades Foundation—Ecologist and Resilience Scientist]. “But what we need is good science and good management to reach that goal.”
The Everglades Foundation provides scientific evaluation and guidance to the elected officials and governmental institutions responsible for the implementation of the Comprehensive Everglades Restoration Plan (CERP), a federal program approved by Congress in 2000 that outlines a 30-year plan to restore Florida’s wetland ecology. The Foundation sees NASA’s BlueFlux campaign as an important accompaniment to that goal.
“The [Daily Flux Predictions for South Florida] data product is incredibly valuable, because it provides us with an indicator of the health of the whole system,” said Steve Davis [The Everglades Foundation—Chief Science Officer]. “We know how valuable the wetlands are, but we need this reliable science from NASA and the BlueFlux Campaign to help translate those benefits into something we can use to reach people as well as policymakers.”
Researchers hope the product can inform decisions about the management of Florida’s wetlands, the preservation of which is not only a necessity but – to many – a responsibility.
“These impacts are of our own doing,” added Chabba. “So, now it’s incumbent upon us to make these changes and correct the mistakes of the past.”
Next, the BlueFlux team is shifting their focus to what they call BlueFlux 2. This stage of the project centers around further analysis of the data collected during fieldwork campaigns and outlines the deployment of the beta version of Daily BlueFlux Predictions for South Florida, which will help generate a more accurate evaluation of flux for the many wetland ecosystems that exist beyond Florida’s borders.
“We’re trying to contribute to a better understanding of global carbon markets and inspire further and more ambitious investments in these critical stocks of blue carbon,” said Poulter. “First, we want to scale this work to the Caribbean, where we have these great maps of mangrove distribution but limited data on flux.”
An additional BlueFlux fieldwork deployment is slated for 2026, with plans to make flux measurements above sites targeted by the state for upcoming restoration initiatives, such as the Everglades Agricultural Area Environmental Protection District. In the Agricultural Area, construction is underway on a series of reservoirs that will store excess water during wet seasons and provide a reserve source of water for wildlife and residents during dry seasons. As the landscape evolves, BlueFlux will help local officials evaluate how Florida’s wetlands are responding to efforts designed to protect the state’s most precious natural resource – and all those who depend on it.
Nathan Marder
NASA’s Goddard Space Flight Center/Global Science and Technology Inc.
nathan.marder@nasa.gov
Share
Details
Last Updated Nov 12, 2024 Related Terms
Earth Science View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.