Jump to content

Bindu Rani Explores Black Holes, Mothers Hard, Balances Life


Recommended Posts

  • Publishers
Posted

Bindu Rani had childhood dreams of flight. Today she lifts her gaze even higher, helping researchers study stars, planets beyond our solar system, and black holes billions of times more massive than our Sun.

Name: Bindu Rani
Title: Astrophysicist, Neil Gehrels Swift Observatory Guest Investigator Program Lead Scientist
Organization: Astroparticle Physics Laboratory, Science Directorate (Code 661)

bindu-pic1.jpg?w=1394
Bindu Rani is an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md.
Photo credit: NASA/Jay Friedlander

What do you do and what is most interesting about your role here at Goddard?

I study supermassive black holes using both space-based and ground-based observations. I love trying to understand the dynamics and nature of physical processes that happen in the vicinity of a black hole.

Why did you become an astrophysicist?

When I was a little girl, I wanted to fly way up in the sky and be a pilot. When I was doing my master’s, I got interested in black holes and neutron stars. I was so fascinated that I decided to pursue this field.

What is your educational background?

In 2005, I got a bachelor’s degree in science from Government College Bahadurgarh, India. In 2007, I got a master’s degree in in physics from the Department of Physics and Astrophysics, Delhi University, India. In 2013, I got a doctorate in astrophysics from the Max Planck Institute for Radio Astronomy, Bonn, Germany. From 2014 to 2016, I was a post-doctoral fellow at Max Plank.

How did you come to Goddard?

In 2016, I came to Goddard through NASA’s Postdoctoral Fellowship program.

From 2020 to 2022, I worked at the Korea Astronomy and Space Science Institute in South Korea as a staff scientist. I can say please and thank you in Korean, but everyone in the lab and the young students spoke English and loved practicing English.

In September 2022, I returned to Goddard as the Swift Guest Investigator Program lead scientist.

You have lived in India, South Korea, Germany, and now the United States. What are your favorite aspects of each country?

The best thing about India is that my family is there, and I deeply miss them. All my happy memories are in one small town along with my parents, siblings, and friends. I deeply miss Indian food too. My family and I visit India whenever we can.

I love South Korean food. What motivated me in the mornings was their delicious coffee and cafeteria food. I miss their culture, so warm and welcoming. When I left, there was a hole in my heart.

Life in Germany is amazing. They have the best work life balance. Also, I miss German bread and beer.

What are your goals as the Swift Guest Investigator Program lead?

I lead the program, including managing the proposals, staffing the program, conducting reviews, and supporting the users. Swift is an amazing mission because it provides X-rays and ultraviolet to optical observations of all different kinds of astronomical objects including exoplanets, stars, dwarf stars, and black holes up to millions to billions of solar masses.

How do you keep your people motivated?

Our work is super interesting which itself is motivating. My idea is that if you want the best out of people, you have to make them comfortable. I try to apply this both at work and at home.

Bindu Rani stands in in front of glass windows next to a statue of Albert Einstein. She is wearing a light colored button down with tan pants and is holding the handle to a blue suitcase.
“Most of my inspiration comes from my own curiosity and from the fact that I am very determined,” said Bindu.
Photo courtesy of Bindu Rani

How do you feel when you discover a black hole?

Swift observes radiation from many black holes ranging in size from a few solar masses (that is, a few times the mass of our Sun) to billions of solar masses. In the vicinity of black holes, infalling material heats up and emits radiation. In some cases, black holes consuming dust and gas at the center of galaxies produce jets — a laser-like beam of light that we observe with our telescopes.

When we have a new discovery, it is very exciting, and many observations follow using many different ground and space telescopes. For example, the brightest of all time gamma-ray burst (BOAT GRB), which is likely the birth cry of a new black hole, was jointly discovered by Swift and the Fermi Gamma-ray Space Telescope on Oct. 9, 2022. It was subsequently observed by about 50 space- and ground-based telescopes.

What is the most amazing observation you have seen from a black hole?

Black holes are extremely fascinating astronomical objects to study and to test our theoretical models in extreme gravity environments. I believe the most amazing observation is the first image of a black hole itself. In 2019, the first direct image of a black hole at the center of galaxy M87 confirmed the existence of black holes, marking a historic milestone in astrophysics.

Who inspires you?

Most of my inspiration comes from my own curiosity and from the fact that I am very determined. My family is my true inspiration, especially my parents. They were motivating in many different ways. My parents are really hard working. They are very proud of me.

What do you say to the people you mentor?

I tell them to keep learning, to enjoy what they are doing even if it feels hard. I them to stay curious. I also tell them to strengthen their speaking, writing and coding skills to become a good scientists. As my doctorate advisor told me, you have to learn how to sell yourself.

As an avid reader, who is your favorite author?

Books bring me peace. I enjoy reading books in Hindi, by an Indian author called Munsi Prem Chand, who wrote about social fiction. I am currently reading Laura Markam’s “Peaceful Parents, Happy Kids” because I have a young child.

What else do you do to relax?

I like to run and practice yoga. Mostly either I work or spend time with my child.

What is it like for both you and your husband to both work at Goddard?

My husband, Pankaj Kumar, is a heliophysicist in the Space Weather Laboratory (Code 674). We met in India, and both found jobs at Goddard. It is so wonderful to be at the same working institute. At home, we try not to discuss work. But our child is very curious and asks us a lot of questions about our research. Our child wants to become a NASA scientist, which he calls a NASA professor.

What do you value most about working at Goddard?

Goddard has the best work culture. Everyone is so open and friendly. I can just knock on any door and will be able to talk. The open communication puts you at ease.

Also, Goddard has a lot of women researchers in lead positions. Goddard values women.

How do you describe yourself?

I am a girl who came from a small village in India and am now at Goddard. I dreamed about going to space one day and now I am doing research at Goddard. My family’s support mattered. My own strong-willed nature helped too. At this stage, my curiosity and love of challenges continues to motivate me. Several factors in my life got me to where I am.

Who do you want to thank?

I am grateful to the people who believed in me (my family, friends, and colleagues) as well as those who tried to hinder me.

What’s your “big dream”?

I want to be an astronaut. When I was doing my master’s, I became interested in being an astronaut.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Aug 06, 2024
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:08:54 Meet Amelie Schoenenwald— biotechnologist, business expert, and PhD in structural biology. Whether in the lab or the great outdoors, she thrives in extreme environments, ready to embrace the adventure of ESA’s Astronaut Reserve.
      In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training. 
      ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond.
      This interview was recorded in November 2024.
      Learn more about Amelie’s favourite space mission.
      You can listen to this episode on all major podcast platforms.
      Keep exploring with ESA Explores!
      View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA Webb Explores Effect of Strong Magnetic Fields on Star Formation
      An image of the Milky Way captured by the MeerKAT radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. Full image below. Credits:
      NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Follow-up research on a 2023 image of the Sagittarius C stellar nursery in the heart of our Milky Way galaxy, captured by NASA’s James Webb Space Telescope, has revealed ejections from still-forming protostars and insights into the impact of strong magnetic fields on interstellar gas and the life cycle of stars.  
      “A big question in the Central Molecular Zone of our galaxy has been, if there is so much dense gas and cosmic dust here, and we know that stars form in such clouds, why are so few stars born here?” said astrophysicist John Bally of the University of Colorado Boulder, one of the principal investigators. “Now, for the first time, we are seeing directly that strong magnetic fields may play an important role in suppressing star formation, even at small scales.”
      Detailed study of stars in this crowded, dusty region has been limited, but Webb’s advanced near-infrared instruments have allowed astronomers to see through the clouds to study young stars like never before.
      “The extreme environment of the galactic center is a fascinating place to put star formation theories to the test, and the infrared capabilities of NASA’s James Webb Space Telescope provide the opportunity to build on past important observations from ground-based telescopes like ALMA and MeerKAT,” said Samuel Crowe, another principal investigator on the research, a senior undergraduate at the University of Virginia and a 2025 Rhodes Scholar.
      Bally and Crowe each led a paper published in The Astrophysical Journal.
      Image A: Milky Way Center (MeerKAT and Webb)
      An image of the Milky Way captured by the MeerKAT (formerly the Karoo Array Telescope) radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. Like a super-long exposure photograph, MeerKAT shows the bubble-like remnants of supernovas that exploded over millennia, capturing the dynamic nature of the Milky Way’s chaotic core. At the center of the MeerKAT image the region surrounding the Milky Way’s supermassive black hole blazes bright. Huge vertical filamentary structures echo those captured on a smaller scale by Webb in Sagittarius C’s blue-green hydrogen cloud. NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Image B: Milky Way Center (MeerKAT and Webb), Labeled
      The star-forming region Sagittarius C, captured by the James Webb Space Telescope, is about 200 light-years from the Milky Way’s central supermassive black hole, Sagittarius A*. The spectral index at the lower left shows how color was assigned to the radio data to create the image. On the negative end, there is non-thermal emission, stimulated by electrons spiraling around magnetic field lines. On the positive side, thermal emission is coming from hot, ionized plasma. For Webb, color is assigned by shifting the infrared spectrum to visible light colors. The shortest infrared wavelengths are bluer, and the longer wavelengths appear more red. NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Using Infrared to Reveal Forming Stars
      In Sagittarius C’s brightest cluster, the researchers confirmed the tentative finding from the Atacama Large Millimeter Array (ALMA) that two massive stars are forming there. Along with infrared data from NASA’s retired Spitzer Space Telescope and SOFIA (Stratospheric Observatory for Infrared Astronomy) mission, as well as the Herschel Space Observatory, they used Webb to determine that each of the massive protostars is already more than 20 times the mass of the Sun. Webb also revealed the bright outflows powered by each protostar.
      Even more challenging is finding low-mass protostars, still shrouded in cocoons of cosmic dust. Researchers compared Webb’s data with ALMA’s past observations to identify five likely low-mass protostar candidates.
      The team also identified 88 features that appear to be shocked hydrogen gas, where material being blasted out in jets from young stars impacts the surrounding gas cloud. Analysis of these features led to the discovery of a new star-forming cloud, distinct from the main Sagittarius C cloud, hosting at least two protostars powering their own jets.
      “Outflows from forming stars in Sagittarius C have been hinted at in past observations, but this is the first time we’ve been able to confirm them in infrared light. It’s very exciting to see, because there is still a lot we don’t know about star formation, especially in the Central Molecular Zone, and it’s so important to how the universe works,” said Crowe.
      Magnetic Fields and Star Formation
      Webb’s 2023 image of Sagittarius C showed dozens of distinctive filaments in a region of hot hydrogen plasma surrounding the main star-forming cloud. New analysis by Bally and his team has led them to hypothesize that the filaments are shaped by magnetic fields, which have also been observed in the past by the ground-based observatories ALMA and MeerKAT (formerly the Karoo Array Telescope).
      “The motion of gas swirling in the extreme tidal forces of the Milky Way’s supermassive black hole, Sagittarius A*, can stretch and amplify the surrounding magnetic fields. Those fields, in turn, are shaping the plasma in Sagittarius C,” said Bally.
      The researchers think that the magnetic forces in the galactic center may be strong enough to keep the plasma from spreading, instead confining it into the concentrated filaments seen in the Webb image. These strong magnetic fields may also resist the gravity that would typically cause dense clouds of gas and dust to collapse and forge stars, explaining Sagittarius C’s lower-than-expected star formation rate. 
      “This is an exciting area for future research, as the influence of strong magnetic fields, in the center of our galaxy or other galaxies, on stellar ecology has not been fully considered,” said Crowe.  
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the science paper led by Bally from the The Astrophysical Journal.
      View/Download the science paper led by Crowe from the The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Leah Ramsay – lramsay@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more: press releases about the center of the Milky Way
      NASA’s Universe of Learning: ViewSpace Interactive image tour of the center of the Milky Way
      Learn more about the Milky Way and Sagittarius Constellation
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What Is a Nebula?
      What Is a Galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una nebulosa?
      ¿Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Galaxies



      Universe


      Share








      Details
      Last Updated Apr 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Protostars Science & Research Stars The Milky Way The Universe View the full article
    • By NASA
      2 min read
      Citizen Scientists Use NASA Open Science Data to Research Life in Space
      2023 Workshop of Analysis Working Group members, Washington, D.C., November 14, 2023. Now, you are invited to join their quest to understand how life can thrive in deep space! Want to learn more first? Join our live virtual event April 17 at 3pm Eastern Time to hear an overview of the OSDR AWG’s operations. Photo: NASA OSDR Team How can life thrive in deep space? The Open Science Data Repository Analysis Working Groups invite volunteers from all backgrounds to help answer this question. Request to join these citizen science groups to help investigate how life adapts to space environments, exploring topics like radiation effects, microgravity’s impact on human and plant health, and how microbes change in orbit.
      Currently, nine Analysis Working Groups (AWGs) hold monthly meetings to advance their specific focus areas. Participants collaborate using an online platform, the AWG “Forum-Space”, where they connect with peers and experts, join discussions, and contribute to over 20 active projects. 
      The AWGs work with data primarily from the NASA Open Science Data Repository (OSDR), a treasure trove of spaceflight data on physiology, molecular biology, bioimaging, and much more. For newcomers, there are tutorials and a comprehensive paper covering all aspects of the repository and the AWG community. You can explore 500+ studies, an omics multi-study visualization portal, the environmental data app, and RadLab, a portal for radiation telemetry data. (“Omics” refers to fields of biology that end in “omics,” like “genomics”.)   
      Each of the nine AWGs has a Lead who organizes their group and holds monthly virtual meetings. Once you join, make sure to connect with the Lead and get on the agenda so you can introduce yourself. Learn more about the AWGs here.
      Have an idea for a new project? Propose a new project and help lead it! From data analysis and visualization to shaping data standards and conducting literature meta-analyses, there’s a place for everyone to contribute. Request to join, and together, we can address a great challenge for humanity: understanding and enabling life to thrive in deep space! 
      Want to learn more?
      On April 17 at 3pm Eastern Time, the NASA Citizen Science Leaders Series is hosting an virtual event with Ryan Scott about these Analysis Working Groups and their work. Ryan is the Science Lead for the Ames Life Sciences Data Archive and the liaison between the Open Data Science Repository and the Analysis Working Groups. Click here to register for this event!
      Share








      Details
      Last Updated Apr 01, 2025 Related Terms
      Citizen Science Biological & Physical Sciences Explore More
      9 min read Interview with Michiharu Hyogo, Citizen Scientist and First Author of a New Scientific Paper


      Article


      2 weeks ago
      2 min read Redshift Wranglers Reach Remarkable Milestones


      Article


      4 weeks ago
      2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds


      Article


      4 weeks ago
      View the full article
    • By European Space Agency
      Video: 00:15:30 Meet Arnaud Prost—aerospace engineer, professional diver, and member of ESA’s Astronaut Reserve. From flying aircraft to getting a taste of spacewalk simulation, his passion for exploration knows no bounds.
      In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training.
      ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond.
      This interview was recorded in November 2024. 
      You can listen to this episode on all major podcast platforms.
      Keep exploring with ESA Explores!
      Learn more about Arnaud’s PANGAEA training here.
      View the full article
    • By European Space Agency
      Video: 00:09:13 Meet Andrea Patassa—test pilot, aviator, passionate outdoor adventurer, and Member of ESA’s Astronaut Reserve. 
      In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training. 
      ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond. 
      This interview was recorded in November 2024. 
      You can also listen to this episode on all major podcast platforms. 
      Keep exploring with ESA Explores! 
      View the full article
  • Check out these Videos

×
×
  • Create New...