Jump to content

Bindu Rani Explores Black Holes, Mothers Hard, Balances Life


NASA

Recommended Posts

  • Publishers

Bindu Rani had childhood dreams of flight. Today she lifts her gaze even higher, helping researchers study stars, planets beyond our solar system, and black holes billions of times more massive than our Sun.

Name: Bindu Rani
Title: Astrophysicist, Neil Gehrels Swift Observatory Guest Investigator Program Lead Scientist
Organization: Astroparticle Physics Laboratory, Science Directorate (Code 661)

bindu-pic1.jpg?w=1394
Bindu Rani is an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md.
Photo credit: NASA/Jay Friedlander

What do you do and what is most interesting about your role here at Goddard?

I study supermassive black holes using both space-based and ground-based observations. I love trying to understand the dynamics and nature of physical processes that happen in the vicinity of a black hole.

Why did you become an astrophysicist?

When I was a little girl, I wanted to fly way up in the sky and be a pilot. When I was doing my master’s, I got interested in black holes and neutron stars. I was so fascinated that I decided to pursue this field.

What is your educational background?

In 2005, I got a bachelor’s degree in science from Government College Bahadurgarh, India. In 2007, I got a master’s degree in in physics from the Department of Physics and Astrophysics, Delhi University, India. In 2013, I got a doctorate in astrophysics from the Max Planck Institute for Radio Astronomy, Bonn, Germany. From 2014 to 2016, I was a post-doctoral fellow at Max Plank.

How did you come to Goddard?

In 2016, I came to Goddard through NASA’s Postdoctoral Fellowship program.

From 2020 to 2022, I worked at the Korea Astronomy and Space Science Institute in South Korea as a staff scientist. I can say please and thank you in Korean, but everyone in the lab and the young students spoke English and loved practicing English.

In September 2022, I returned to Goddard as the Swift Guest Investigator Program lead scientist.

You have lived in India, South Korea, Germany, and now the United States. What are your favorite aspects of each country?

The best thing about India is that my family is there, and I deeply miss them. All my happy memories are in one small town along with my parents, siblings, and friends. I deeply miss Indian food too. My family and I visit India whenever we can.

I love South Korean food. What motivated me in the mornings was their delicious coffee and cafeteria food. I miss their culture, so warm and welcoming. When I left, there was a hole in my heart.

Life in Germany is amazing. They have the best work life balance. Also, I miss German bread and beer.

What are your goals as the Swift Guest Investigator Program lead?

I lead the program, including managing the proposals, staffing the program, conducting reviews, and supporting the users. Swift is an amazing mission because it provides X-rays and ultraviolet to optical observations of all different kinds of astronomical objects including exoplanets, stars, dwarf stars, and black holes up to millions to billions of solar masses.

How do you keep your people motivated?

Our work is super interesting which itself is motivating. My idea is that if you want the best out of people, you have to make them comfortable. I try to apply this both at work and at home.

Bindu Rani stands in in front of glass windows next to a statue of Albert Einstein. She is wearing a light colored button down with tan pants and is holding the handle to a blue suitcase.
“Most of my inspiration comes from my own curiosity and from the fact that I am very determined,” said Bindu.
Photo courtesy of Bindu Rani

How do you feel when you discover a black hole?

Swift observes radiation from many black holes ranging in size from a few solar masses (that is, a few times the mass of our Sun) to billions of solar masses. In the vicinity of black holes, infalling material heats up and emits radiation. In some cases, black holes consuming dust and gas at the center of galaxies produce jets — a laser-like beam of light that we observe with our telescopes.

When we have a new discovery, it is very exciting, and many observations follow using many different ground and space telescopes. For example, the brightest of all time gamma-ray burst (BOAT GRB), which is likely the birth cry of a new black hole, was jointly discovered by Swift and the Fermi Gamma-ray Space Telescope on Oct. 9, 2022. It was subsequently observed by about 50 space- and ground-based telescopes.

What is the most amazing observation you have seen from a black hole?

Black holes are extremely fascinating astronomical objects to study and to test our theoretical models in extreme gravity environments. I believe the most amazing observation is the first image of a black hole itself. In 2019, the first direct image of a black hole at the center of galaxy M87 confirmed the existence of black holes, marking a historic milestone in astrophysics.

Who inspires you?

Most of my inspiration comes from my own curiosity and from the fact that I am very determined. My family is my true inspiration, especially my parents. They were motivating in many different ways. My parents are really hard working. They are very proud of me.

What do you say to the people you mentor?

I tell them to keep learning, to enjoy what they are doing even if it feels hard. I them to stay curious. I also tell them to strengthen their speaking, writing and coding skills to become a good scientists. As my doctorate advisor told me, you have to learn how to sell yourself.

As an avid reader, who is your favorite author?

Books bring me peace. I enjoy reading books in Hindi, by an Indian author called Munsi Prem Chand, who wrote about social fiction. I am currently reading Laura Markam’s “Peaceful Parents, Happy Kids” because I have a young child.

What else do you do to relax?

I like to run and practice yoga. Mostly either I work or spend time with my child.

What is it like for both you and your husband to both work at Goddard?

My husband, Pankaj Kumar, is a heliophysicist in the Space Weather Laboratory (Code 674). We met in India, and both found jobs at Goddard. It is so wonderful to be at the same working institute. At home, we try not to discuss work. But our child is very curious and asks us a lot of questions about our research. Our child wants to become a NASA scientist, which he calls a NASA professor.

What do you value most about working at Goddard?

Goddard has the best work culture. Everyone is so open and friendly. I can just knock on any door and will be able to talk. The open communication puts you at ease.

Also, Goddard has a lot of women researchers in lead positions. Goddard values women.

How do you describe yourself?

I am a girl who came from a small village in India and am now at Goddard. I dreamed about going to space one day and now I am doing research at Goddard. My family’s support mattered. My own strong-willed nature helped too. At this stage, my curiosity and love of challenges continues to motivate me. Several factors in my life got me to where I am.

Who do you want to thank?

I am grateful to the people who believed in me (my family, friends, and colleagues) as well as those who tried to hinder me.

What’s your “big dream”?

I want to be an astronaut. When I was doing my master’s, I became interested in being an astronaut.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Aug 06, 2024
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for life before DNA emerged — can favor making the building blocks of proteins in either the left-hand or the right-hand orientation. Resolving this mystery could provide clues to the origin of life. The findings appear in research recently published in Nature Communications.
      Proteins are the workhorse molecules of life, used in everything from structures like hair to enzymes (catalysts that speed up or regulate chemical reactions). Just as the 26 letters of the alphabet are arranged in limitless combinations to make words, life uses 20 different amino acid building blocks in a huge variety of arrangements to make millions of different proteins. Some amino acid molecules can be built in two ways, such that mirror-image versions exist, like your hands, and life uses the left-handed variety of these amino acids. Although life based on right-handed amino acids would presumably work fine, the two mirror images are rarely mixed in biology, a characteristic of life called homochirality. It is a mystery to scientists why life chose the left-handed variety over the right-handed one.
      A diagram of left-handed and right-handed versions of the amino acid isovaline, found in the Murchison meteorite.NASA DNA (deoxyribonucleic acid) is the molecule that holds the instructions for building and running a living organism. However, DNA is complex and specialized; it “subcontracts” the work of reading the instructions to RNA (ribonucleic acid) molecules and building proteins to ribosome molecules. DNA’s specialization and complexity lead scientists to think that something simpler should have preceded it billions of years ago during the early evolution of life. A leading candidate for this is RNA, which can both store genetic information and build proteins. The hypothesis that RNA may have preceded DNA is called the “RNA world” hypothesis.
      If the RNA world proposition is correct, then perhaps something about RNA caused it to favor building left-handed proteins over right-handed ones. However, the new work did not support this idea, deepening the mystery of why life went with left-handed proteins.
      The experiment tested RNA molecules that act like enzymes to build proteins, called ribozymes. “The experiment demonstrated that ribozymes can favor either left- or right-handed amino acids, indicating that RNA worlds, in general, would not necessarily have a strong bias for the form of amino acids we observe in biology now,” said Irene Chen, of the University of California, Los Angeles (UCLA) Samueli School of Engineering, corresponding author of the Nature Communications paper.
      In the experiment, the researchers simulated what could have been early-Earth conditions of the RNA world. They incubated a solution containing ribozymes and amino acid precursors to see the relative percentages of the right-handed and left-handed amino acid, phenylalanine, that it would help produce. They tested 15 different ribozyme combinations and found that ribozymes can favor either left-handed or right-handed amino acids. This suggested that RNA did not initially have a predisposed chemical bias for one form of amino acids. This lack of preference challenges the notion that early life was predisposed to select left-handed-amino acids, which dominate in modern proteins.
      “The findings suggest that life’s eventual homochirality might not be a result of chemical determinism but could have emerged through later evolutionary pressures,” said co-author Alberto Vázquez-Salazar, a UCLA postdoctoral scholar and member of Chen’s research group.
      Earth’s prebiotic history lies beyond the oldest part of the fossil record, which has been erased by plate tectonics, the slow churning of Earth’s crust. During that time, the planet was likely bombarded by asteroids, which may have delivered some of life’s building blocks, such as amino acids. In parallel to chemical experiments, other origin-of-life researchers have been looking at molecular evidence from meteorites and asteroids.
      “Understanding the chemical properties of life helps us know what to look for in our search for life across the solar system,” said co-author Jason Dworkin, senior scientist for astrobiology at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and director of Goddard’s Astrobiology Analytical Laboratory.
      Dworkin is the project scientist on NASA’s OSIRIS-REx mission, which extracted samples from the asteroid Bennu and delivered them to Earth last year for further study.
      “We are analyzing OSIRIS-REx samples for the chirality (handedness) of individual amino acids, and in the future, samples from Mars will also be tested in laboratories for evidence of life including ribozymes and proteins,” said Dworkin.
      The research was supported by grants from NASA, the Simons Foundation Collaboration on the Origin of Life, and the National Science Foundation. Vázquez-Salazar acknowledges support through the NASA Postdoctoral Program, which is administered by Oak Ridge Associated Universities under contract with NASA.
      Share
      Details
      Last Updated Nov 21, 2024 EditorWilliam SteigerwaldContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Astrobiology Explore More
      2 min read NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
      NASA-supported scientists have developed a method to compute how tides affect the interiors of planets…
      Article 2 weeks ago 2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
      NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
      Article 3 weeks ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
      Article 3 weeks ago View the full article
    • By SpaceX
      Making Life Multi-Planetary
    • By NASA
      This illustration shows a red, early-universe dwarf galaxy that hosts a rapidly feeding black hole at its center. Using data from NASA’s James Webb Space Telescope and Chandra X-ray Observatory, a team of astronomers have discovered this low-mass supermassive black hole at the center of a galaxy just 1.5 billion years after the Big Bang. It is pulling in matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s “feast” could help astronomers explain how supermassive black holes grew so quickly in the early universe.NOIRLab/NSF/AURA/J. da Silva/M. Zamani A rapidly feeding black hole at the center of a dwarf galaxy in the early universe, shown in this artist’s concept, may hold important clues to the evolution of supermassive black holes in general.
      Using data from NASA’s James Webb Space Telescope and Chandra X-ray Observatory, a team of astronomers discovered this low-mass supermassive black hole just 1.5 billion years after the big bang. The black hole is pulling in matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s “feast” could help astronomers explain how supermassive black holes grew so quickly in the early universe.
      Supermassive black holes exist at the center of most galaxies, and modern telescopes continue to observe them at surprisingly early times in the universe’s evolution. It’s difficult to understand how these black holes were able to grow so big so rapidly. But with the discovery of a low-mass supermassive black hole feasting on material at an extreme rate so soon after the birth of the universe, astronomers now have valuable new insights into the mechanisms of rapidly growing black holes in the early universe.
      The black hole, called LID-568, was hidden among thousands of objects in the Chandra X-ray Observatory’s COSMOS legacy survey, a catalog resulting from some 4.6 million Chandra observations. This population of galaxies is very bright in the X-ray light, but invisible in optical and previous near-infrared observations. By following up with Webb, astronomers could use the observatory’s unique infrared sensitivity to detect these faint counterpart emissions, which led to the discovery of the black hole.
      The speed and size of these outflows led the team to infer that a substantial fraction of the mass growth of LID-568 may have occurred in a single episode of rapid accretion.
      LID-568 appears to be feeding on matter at a rate 40 times its Eddington limit. This limit relates to the maximum amount of light that material surrounding a black hole can emit, as well as how fast it can absorb matter, such that its inward gravitational force and outward pressure generated from the heat of the compressed, infalling matter remain in balance.
      These results provide new insights into the formation of supermassive black holes from smaller black hole “seeds,” which current theories suggest arise either from the death of the universe’s first stars (light seeds) or the direct collapse of gas clouds (heavy seeds). Until now, these theories lacked observational confirmation.
      The new discovery suggests that “a significant portion of mass growth can occur during a single episode of rapid feeding, regardless of whether the black hole originated from a light or heavy seed,” said International Gemini Observatory/NSF NOIRLab astronomer Hyewon Suh, who led the research team.
      A paper describing these results (“A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST”) appears in the journal Nature Astronomy.
      About the Missions
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      News Media Contact
      Elizabeth Laundau
      NASA Headquarters
      Washington, DC
      202-923-0167
      elizabeth.r.landau@nasa.gov
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      4 min read
      NASA’s Swift Studies Gas-Churning Monster Black Holes
      A pair of monster black holes swirl in a cloud of gas in this artist’s concept of AT 2021hdr, a recurring outburst studied by NASA’s Neil Gehrels Swift Observatory and the Zwicky Transient Facility at Palomar Observatory in California. NASA/Aurore Simonnet (Sonoma State University) Scientists using observations from NASA’s Neil Gehrels Swift Observatory have discovered, for the first time, the signal from a pair of monster black holes disrupting a cloud of gas in the center of a galaxy.
      “It’s a very weird event, called AT 2021hdr, that keeps recurring every few months,” said Lorena Hernández-García, an astrophysicist at the Millennium Institute of Astrophysics, the Millennium Nucleus on Transversal Research and Technology to Explore Supermassive Black Holes, and University of Valparaíso in Chile. “We think that a gas cloud engulfed the black holes. As they orbit each other, the black holes interact with the cloud, perturbing and consuming its gas. This produces an oscillating pattern in the light from the system.”  
      A paper about AT 2021hdr, led by Hernández-García, was published Nov. 13 in the journal Astronomy and Astrophysics.
      The dual black holes are in the center of a galaxy called 2MASX J21240027+3409114, located 1 billion light-years away in the northern constellation Cygnus. The pair are about 16 billion miles (26 billion kilometers) apart, close enough that light only takes a day to travel between them. Together they contain 40 million times the Sun’s mass.
      Scientists estimate the black holes complete an orbit every 130 days and will collide and merge in approximately 70,000 years.
      AT 2021hdr was first spotted in March 2021 by the Caltech-led ZTF (Zwicky Transient Facility) at the Palomar Observatory in California. It was flagged as a potentially interesting source by ALeRCE (Automatic Learning for the Rapid Classification of Events). This multidisciplinary team combines artificial intelligence tools with human expertise to report events in the night sky to the astronomical community using the mountains of data collected by survey programs like ZTF.
      “Although this flare was originally thought to be a supernova, outbursts in 2022 made us think of other explanations,” said co-author Alejandra Muñoz-Arancibia, an ALeRCE team member and astrophysicist at the Millennium Institute of Astrophysics and the Center for Mathematical Modeling at the University of Chile. “Each subsequent event has helped us refine our model of what’s going on in the system.”
      Since the first flare, ZTF has detected outbursts from AT 2021hdr every 60 to 90 days.    
      Hernández-García and her team have been observing the source with Swift since November 2022. Swift helped them determine that the binary produces oscillations in ultraviolet and X-ray light on the same time scales as ZTF sees them in the visible range.
      The researchers conducted a Goldilocks-type elimination of different models to explain what they saw in the data.
      Initially, they thought the signal could be the byproduct of normal activity in the galactic center. Then they considered whether a tidal disruption event — the destruction of a star that wandered too close to one of the black holes — could be the cause.
      Finally, they settled on another possibility, the tidal disruption of a gas cloud, one that was bigger than the binary itself. When the cloud encountered the black holes, gravity ripped it apart, forming filaments around the pair, and friction started to heat it. The gas got particularly dense and hot close to the black holes. As the binary orbits, the complex interplay of forces ejects some of the gas from the system on each rotation. These interactions produce the fluctuating light Swift and ZTF observe.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Watch as a gas cloud encounters two supermassive black holes in this simulation. The complex interplay of gravitational and frictional forces causes the cloud to condense and heat. Some of the gas is ejected from the system with each orbit of the black holes. F. Goicovic et al. 2016 Hernández-García and her team plan to continue observations of AT 2021hdr to better understand the system and improve their models. They’re also interested in studying its home galaxy, which is currently merging with another one nearby — an event first reported in their paper.
      “As Swift approaches its 20th anniversary, it’s incredible to see all the new science it’s still helping the community accomplish,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “There’s still so much it has left to teach us about our ever-changing cosmos.”
      NASA’s missions are part of a growing, worldwide network watching for changes in the sky to solve mysteries of how the universe works.
      Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency.

      Download high-resolution images and videos.

      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Nov 13, 2024 Editor Jeanette Kazmierczak Related Terms
      Astrophysics Black Holes Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Neil Gehrels Swift Observatory Science & Research Supermassive Black Holes The Universe View the full article
    • By Amazing Space
      Lets Talk Space - The Search For Intelligent Life.
  • Check out these Videos

×
×
  • Create New...