Jump to content

Quantum Scale Sensors used to Measure Planetary Scale Magnetic Fields


Recommended Posts

  • Publishers
Posted

6 min read

Quantum Scale Sensors used to Measure Planetary Scale Magnetic Fields

Magnetic fields are everywhere in our solar system. They originate from the Sun, planets, and moons, and are carried throughout interplanetary space by solar wind. This is precisely why magnetometers—devices used to measure magnetic fields—are flown on almost all missions in space to benefit the Earth, Planetary, and Heliophysics science communities, and ultimately enrich knowledge for all humankind. These instruments can remotely probe the interior of a planetary body to provide insight into its internal composition, structure, dynamics, and even evolution based on the magnetic history frozen into the body’s crustal rock layers. Magnetometers can even discover hidden oceans within our solar system and help determine their salinity, thereby providing insight into the potential habitability of these icy worlds.

An image of Jupiter is on the left, with purple magnetic field lines emanating from one pole of the planet, curving out into space, and ending at the other pole. The right image is a square magnetic field sensor mounted on top of a green printed circuit board (PCB) with gold leads, which allows for electrical connectivity with the sensor.
Left: The magnetic field of Jupiter provides insight into its interior composition, structure, dynamics, and even its evolutionary history. Right: Image of the first prototype 4H-SiC solid-state magnetometer sensor die (2mm by 2mm) developed by NASA-GRC. Each gold rectangle or square on the surface represents an individual sensor, the smallest being 10 microns by 10 microns.

Fluxgates are the most widely used magnetometers for missions in space due to their proven performance and simplicity. However, the conventional size, weight, and power (SWaP) of fluxgate instruments can restrict them from being used on small platforms like CubeSats and sometimes limit the number of sensors that can be used on a spacecraft for inter-sensor calibration, redundancy, and spacecraft magnetic field removal. Traditionally, a long boom is used to distance the fluxgate magnetometers from the contaminate magnetic field generated by the spacecraft, itself, and at least two sensors are used to characterize the falloff of this field contribution so it can be removed from the measurements. Fluxgates also do not provide an absolute measurement, meaning that they need to be routinely calibrated in space through spacecraft rolls, which can be time and resource intensive.

An SMD-funded team at NASA’s Jet Propulsion Laboratory in Southern California has partnered with NASA’s Glenn Research Center in Cleveland, Ohio to prototype a new magnetometer called the silicon carbide (SiC) magnetometer, or SiCMag, that could change the way magnetic fields are measured in space. SiCMag uses a solid-state sensor made of a silicon carbide (SiC) semiconductor. Inside the SiC sensor are quantum centers—intentionally introduced defects or irregularities at an atomic scale—that give rise to a magnetoresistance signal that can be detected by monitoring changes in the sensor’s electrical current, which indicate changes in the strength and direction of the external magnetic field. This new technology has the potential to be incredibly sensitive, and due to its large bandgap (i.e., the energy required to free an electron from its bound state so it can participate in electrical conduction), is capable of operating in the wide range of temperature extremes and harsh radiation environments commonly encountered in space.

Team member David Spry of NASA Glenn indicates, “Not only is the SiC material great for magnetic field sensing, but here at NASA Glenn we’re further developing robust SiC electronics that operate in hot environments far beyond the upper temperature limitations of silicon electronics. These SiC-based technologies will someday enable long-duration robotic scientific exploration of the 460 °C Venus surface.”

SiCMag is also very small— the sensor area is only 0.1 x 0.1 mm and the compensation coils are smaller than a penny. Consequently, dozens of SiCMag sensors can easily be incorporated on a spacecraft to better remove the complex contaminate magnetic field generated by the spacecraft, reducing the need for a long boom to distance the sensors from the spacecraft, like implemented on most spacecraft, including Psyche (see figure below).

Swirling magnetic field lines extend from a CAD model of the Psyche spacecraft.
The magnetic field lines associated with the Psyche spacecraft, modeled from over 200 individual magnetic sources. Removing this magnetic field contribution from the measurements conventionally requires the use of two fluxgate sensors on a long boom. Incorporating 4 or more SiCMag sensors in such a scenario would significantly reduce the size of the boom required, or even remove the need for a boom completely.
Image Credit: This image was adopted from https://science.nasa.gov/resource/magnetic-field-of-the-psyche-spacecraft/

SiCMag has several advantages when compared to fluxgates and other types of heritage magnetometers including those based on optically pumped atomic vapor. SiCMag is a simple instrument that doesn’t rely on optics or high-frequency components, which are sensitive to temperature variations. SiCMag’s low SWaP also allows for accommodation on small platforms such as CubeSats, enabling simultaneous spatial and temporal magnetic field measurements not possible with single large-scale spacecraft. This capability will enable planetary magnetic field mapping and space weather monitoring by constellations of CubeSats. Multiplatform measurements would also be very valuable on the surface of the Moon and Mars for crustal magnetic field mapping, composition identification, and magnetic history investigation of these bodies.

SiCMag has a true zero-field magnetic sensing ability (i.e., SiCMag can measure extremely weak magnetic fields), which is unattainable with most conventional atomic vapor magnetometers due to the requisite minimum magnetic field needed for the sensor to operate. And because the spin-carrying electrons in SiCMag are tied up in the quantum centers, they won’t escape the sensor, meaning they are well-suited for decades-long journeys to the ice-giants or to the edges of the heliosphere. This capability is also an advantage of SiCMag’s optical equivalent sibling, OPuS-MAGNM, an optically pumped solid state quantum magnetometer developed by Hannes Kraus and matured by Andreas Gottscholl of the JPL solid-state magnetometry group. SiCMag has the advantage of being extremely simple, while OPuS-MAGNM promises to have lower noise characteristics, but uses complex optical components.

According to Dr. Andreas Gottscholl, “SiCMag and OPuS-MAGNM are very similar, actually. Progress in one sensor system translates directly into benefits for the other. Therefore, enhancements in design and electronics advance both projects, effectively doubling the impact of our efforts while we are still flexible for different applications.”

SiCMag has the ability to self-calibrate due to its absolute sensing capability, which is a significant advantage in the remote space environment. SiCMag uses a spectroscopic calibration technique that atomic vapor magnetometers also leverage called magnetic resonance (in the case of SiCMag, the magnetic resonance is electrically detected) to measure the precession frequency of electrons associated with the quantum centers, which is directly related to the magnetic field in which the sensor is immersed. This relationship is a fundamental physical constant in nature that doesn’t change as a function of time or temperature, making the response ideal for calibration of the sensor’s measurements. “If we are successful in achieving the sought-out sensitivity improvement we anticipate using isotopically purer materials, SiC could change the way magnetometry is typically performed in space due to the instrument’s attractive SWaP, robustness, and self-calibration ability,” says JPL’s Dr. Corey Cochrane, principal investigator of the SiCMag technology.

Close up image of a 3D printed plastic fixture wrapped with copper wire next to a penny.
The 3-axis 3D printed electromagnet – no larger than the size of a US penny – is used to modulate and maintain a region of zero magnetic field around our 0.1 mm x 0.1 mm 4H-SiC solid-state sensor.

NASA has been funding this team’s solid-state quantum magnetometer sensor research through its PICASSO (Planetary Instrument Concepts for the Advancement of Solar System Observations) program since 2016. A variety of domestic partners from industry and academia also support this research, including NASA’s Glenn Research Center in Cleveland, Penn State University, University of Iowa, QuantCAD LLC, as well as international partners such as Japan’s Quantum Materials and Applications Research Center (QUARC) and Infineon Technologies.

Three smiling team members
The SiC magnetometer team leads from JPL and GRC (left: Dr. Hannes Kraus, middle: Dr. Phillip Neudeck, right: Dr. Corey Cochrane) at the last International Conference on Silicon Carbide and Related Materials (ICSCRM) where their research is presented annually.

Acknowledgment: The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004) and the NASA Glenn Research Center.

Project Lead(s):

Dr. Corey Cochrane, Dr. Hannes Kraus, Jet Propulsion Laboratory/California Institute of Technology

Dr. Phil Neudeck, David Spry, NASA Glenn Research Center

Sponsoring Organization(s):

Science Mission Directorate PICASSO, JPL R&D fund

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Rotor Optimization for the Advancement of Mars eXploration (ROAMX) team members and test stand at NASA Ames Research Center.NASA During 2024-2025, helicopter blades optimized for Mars were tested in the Planetary Aeolian Laboratory (PAL) at NASA Ames Research Center as part of the Rotor Optimization for the Advancement of Mars eXploration (ROAMX) project.  The experimental test-chamber of the PAL can be depressurized to create atmospheric air pressures of different planetary bodies such as Mars. The full-scale ROAMX blades were spun in hover configuration up to 4000 RPM at an atmospheric density of Mars (approximately 0.015 kilograms per cubic meter).  The Ingenuity blades were also tested in the PAL to compare the performance of the optimized blades against the Ingenuity Mars Helicopter Technology Demonstrator. The test was conducted to validate computational models of the performance of the optimized blades. Simulations show that the optimized ROAMX blades perform significantly better than the Ingenuity blades, allowing helicopters on Mars to fly farther, faster, and carry a science payload. The next phase of testing will occur with higher RPMs and additional collective angles.
      Rotor Optimization for the Advancement of Mars eXploration (ROAMX) hover test stand with ROAMX blades installed in the Planetary Aeolian Laboratory (PAL) low-pressure chamber at NASA Ames Research Center.NASAView the full article
    • By NASA
      5 Min Read NASA’s EZIE Launching to Study Magnetic Fingerprints of Earth’s Aurora
      High above Earth’s poles, intense electrical currents called electrojets flow through the upper atmosphere when auroras glow in the sky. These auroral electrojets push about a million amps of electrical charge around the poles every second. They can create some of the largest magnetic disturbances on the ground, and rapid changes in the currents can lead to effects such as power outages. In March, NASA plans to launch its EZIE (Electrojet Zeeman Imaging Explorer) mission to learn more about these powerful currents, in the hopes of ultimately mitigating the effects of such space weather for humans on Earth.
      Results from EZIE will help NASA better understand the dynamics of the Earth-Sun connection and help improve predictions of hazardous space weather that can harm astronauts, interfere with satellites, and trigger power outages.
      The EZIE mission includes three CubeSats, each about the size of a carry-on suitcase. These small satellites will fly in a pearls-on-a-string formation, following each other as they orbit Earth from pole to pole about 350 miles (550 kilometers) overhead. The spacecraft will look down toward the electrojets, which flow about 60 miles (100 kilometers) above the ground in an electrified layer of Earth’s atmosphere called the ionosphere.
      During every orbit, each EZIE spacecraft will map the electrojets to uncover their structure and evolution. The spacecraft will fly over the same region 2 to 10 minutes apart from one another, revealing how the electrojets change.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission will use three CubeSats to map Earth’s auroral electrojets — intense electric currents that flow high above Earth’s polar regions when auroras glow in the sky. As the trio orbits Earth, each satellite will use four dishes pointed at different angles to measure magnetic fields created by the electrojets. NASA/Johns Hopkins APL/Steve Gribben Previous ground-based experiments and spacecraft have observed auroral electrojets, which are a small part of a vast electric circuit that extends 100,000 miles (160,000 kilometers) from Earth to space. But for decades, scientists have debated what the overall system looks like and how it evolves. The mission team expects EZIE to resolve that debate. 
      “What EZIE does is unique,” said Larry Kepko, EZIE mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “EZIE is the first mission dedicated exclusively to studying the electrojets, and it does so with a completely new measurement technique.”
      EZIE is the first mission dedicated exclusively to studying the electrojets.
      Larry Kepko
      EZIE mission scientist, NASA’s Goddard Space Flight Center
      This technique involves looking at microwave emission from oxygen molecules about 10 miles (16 kilometers) below the electrojets. Normally, oxygen molecules emit microwaves at a frequency of 118 Gigahertz. However, the electrojets create a magnetic field that can split apart that 118 Gigahertz emission line in a process called Zeeman splitting. The stronger the magnetic field, the farther apart the line is split.
      Each of the three EZIE spacecraft will carry an instrument called the Microwave Electrojet Magnetogram to observe the Zeeman effect and measure the strength and direction of the electrojets’ magnetic fields. Built by NASA’s Jet Propulsion Laboratory (JPL) in Southern California, each of these instruments will use four antennas pointed at different angles to survey the magnetic fields along four different tracks as EZIE orbits.
      The technology used in the Microwave Electrojet Magnetograms was originally developed to study Earth’s atmosphere and weather systems. Engineers at JPL had reduced the size of the radio detectors so they could fit on small satellites, including NASA’s TEMPEST-D and CubeRRT missions, and improved the components that separate light into specific wavelengths.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission will investigate Earth’s auroral electrojets, which flow high above Earth’s polar regions when auroras (northern and southern lights) glow. By providing unprecedented measurements of these electrical currents, EZIE will answer decades-old mysteries. Understanding these currents will also improve scientists’ capabilities for predicting hazardous space weather. NASA/Johns Hopkins APL The electrojets flow through a region that is difficult to study directly, as it’s too high for scientific balloons to reach but too low for satellites to dwell.
      “The utilization of the Zeeman technique to remotely map current-induced magnetic fields is really a game-changing approach to get these measurements at an altitude that is notoriously difficult to measure,” said Sam Yee, EZIE’s principal investigator at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland.
      The mission is also including citizen scientists to enhance its research, distributing dozens of EZIE-Mag magnetometer kits to students in the U.S. and volunteers around the world to compare EZIE’s observations to those from Earth. “EZIE scientists will be collecting magnetic field data from above, and the students will be collecting magnetic field data from the ground,” said Nelli Mosavi-Hoyer, EZIE project manager at APL.
      EZIE scientists will be collecting magnetic field data from above, and the students will be collecting magnetic field data from the ground.
      Nelli Mosavi-Hoyer
      EZIE project manager, Johns Hopkins Applied Physics Laboratory
      The EZIE spacecraft will launch aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California as part of the Transporter-13 rideshare mission with SpaceX via launch integrator Maverick Space Systems.
      The mission will launch during what’s known as solar maximum — a phase during the 11-year solar cycle when the Sun’s activity is stronger and more frequent. This is an advantage for EZIE’s science.
      “It’s better to launch during solar max,” Kepko said. “The electrojets respond directly to solar activity.”
      The EZIE mission will also work alongside other NASA heliophysics missions, including PUNCH (Polarimeter to Unify the Corona and Heliosphere), launching in late February to study how material in the Sun’s outer atmosphere becomes the solar wind.
      According to Yee, EZIE’s CubeSat mission not only allows scientists to address compelling questions that have not been able to answer for decades but also demonstrates that great science can be achieved cost-effectively.
      “We’re leveraging the new capability of CubeSats,” Kepko added. “This is a mission that couldn’t have flown a decade ago. It’s pushing the envelope of what is possible, all on a small satellite. It’s exciting to think about what we will discover.”
      The EZIE mission is funded by the Heliophysics Division within NASA’s Science Mission Directorate and is managed by the Explorers Program Office at NASA Goddard. APL leads the mission for NASA. Blue Canyon Technologies in Boulder, Colorado, built the CubeSats.
      by Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Header Image:
      An artist’s concept shows the three EZIE satellites orbiting Earth.
      Credits: NASA/Johns Hopkins APL/Steve Gribben
      Share








      Details
      Last Updated Feb 25, 2025 Related Terms
      Heliophysics Auroras EZIE (Electrojet Zeeman Imaging Explorer) Goddard Space Flight Center Missions Small Satellite Missions The Sun Explore More
      6 min read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind 


      Article


      4 days ago
      2 min read Hubble Spies a Spiral That May Be Hiding an Imposter


      Article


      4 days ago
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Credit: NASA NASA has selected SpaceX of Starbase, Texas, to provide launch services for the Near-Earth Object (NEO) Surveyor mission, which will detect and observe asteroids and comets that could potentially pose an impact threat to Earth.
      The firm fixed price launch service task order is being awarded under the indefinite delivery/indefinite quantity NASA Launch Services II contract. The total cost to NASA for the launch service is approximately $100 million, which includes the launch service and other mission related costs. The NEO Surveyor mission is targeted to launch no earlier than September 2027 on a SpaceX Falcon 9 rocket from Florida.
      The NEO Surveyor mission consists of a single scientific instrument: an almost 20-inch (50-centimeter) diameter telescope that will operate in two heat-sensing infrared wavelengths. It will be capable of detecting both bright and dark asteroids, the latter being the most difficult type to find with existing assets. The space telescope is designed to help advance NASA’s planetary defense efforts to discover and characterize most of the potentially hazardous asteroids and comets that come within 30 million miles of Earth’s orbit. These are collectively known as near-Earth objects, or NEOs.
      The mission will carry out a five-year baseline survey to find at least two-thirds of the unknown NEOs larger than 140 meters (460 feet). These are the objects large enough to cause major regional damage in the event of an Earth impact. By using two heat-sensitive infrared imaging channels, the telescope can also make more accurate measurements of the sizes of NEOs and gain information about their composition, shapes, rotational states, and orbits.
      The mission is tasked by NASA’s Planetary Science Division within the agency’s Science Mission Directorate at NASA Headquarters in Washington. Program oversight is provided by NASA’s Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center in Huntsville, Alabama, provides program management for NEO Surveyor. The project is being developed by NASA’s Jet Propulsion Laboratory in Southern California.
      Multiple aerospace and engineering companies are contracted to build the spacecraft and its instrumentation, including BAE Systems SMS (Space & Mission Systems), Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, will support operations, and the Infrared Processing and Analysis Center at the California Institute of Technology (Caltech) in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA. Mission team leadership includes the University of California, Los Angeles. NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is responsible for managing the launch service.
      For more information about NEO Surveyor, visit:
      https://science.nasa.gov/mission/neo-surveyor/
      -end-
      Tiernan Doyle / Joshua Finch
      Headquarters, Washington
      202-358-1600 / 202-358-1100
      tiernan.doyle@nasa.gov / joshua.a.finch@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated Feb 21, 2025 LocationNASA Headquarters Related Terms
      Kennedy Space Center Launch Services Office Launch Services Program NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Coordination Office Planetary Science Division Science Mission Directorate Space Operations Mission Directorate View the full article
    • By European Space Agency
      The European Space Agency (ESA) has endorsed the United Nations' (UN) designation of 2029 as the International Year of Asteroid Awareness and Planetary Defence.
      The initiative will foster international collaboration in the field of planetary defence and educate the public on the risks and opportunities associated with near-Earth asteroids.
      View the full article
    • By NASA
      5 Min Read Planetary Alignments and Planet Parades
      A sky chart showing Mars, Jupiter, Saturn, and Venus in a “planet parade.” Credits:
      NASA/JPL-Caltech On most nights, weather permitting, you can spot at least one bright planet in the night sky. While two or three planets are commonly visible in the hours around sunset, occasionally four or five bright planets can be seen simultaneously with the naked eye. These events, often called “planet parades” or “planetary alignments,” can generate significant public interest. Though not exceedingly rare, they’re worth observing since they don’t happen every year.
      Why Planets Appear Along a Line in The Sky
      “Planet parade” isn’t a technical term in astronomy, and “planetary alignment” can refer to several different phenomena. As the planets of our solar system orbit the Sun, they occasionally line up in space in events called oppositions and conjunctions. A planetary alignment can also refer to apparent lineups in our sky with other planets, the Moon, or bright stars.
      The planets of our solar system always appear along a line on the sky. This line, referred to as the ecliptic, represents the plane in which the planets orbit, seen from our position within the plane itself. NASA/Preston Dyches When it comes to this second type of planetary alignment, it’s important to understand that planets always appear along a line or arc across the sky. This occurs because the planets orbit our Sun in a relatively flat, disc-shaped plane. From Earth, we’re looking into that solar system plane from within. We see the racetrack of the planets from the perspective of one of the racers ourselves. When viewed edge-on, this disc appears as a line, which we call the ecliptic or ecliptic plane.
      So, while planet alignment itself isn’t unusual, what makes these events special is the opportunity to observe multiple planets simultaneously with the naked eye.
      Will the Planets Actually be Visible?
      Before preparing to observe a planet parade, we have to consider how high the planets will appear above the horizon. For most observers to see a planet with the naked eye, it needs to be at least a few degrees above the horizon, and10 degrees or higher is best. This is crucial because Earth’s atmosphere near the ground dims celestial objects as they rise or set. Even bright planets become difficult or impossible to spot when they’re too low, as their light gets scattered and absorbed on its path to your eye. Buildings, trees, and other obstructions often block the view near the horizon as well.
      This visibility challenge is particularly notable after sunset or before sunrise, where the sky is still glowing. If a planet appears very low within the sunset glow, it is very difficult to observe.
      The Planets You Can See, and Those You Can’t
      Five planets are visible without optical aid: Mercury, Venus, Mars, Jupiter, and Saturn. Ancient civilizations recognized these worlds as bright lights that wandered across the starscape, while the background stars remained fixed in place. In fact, the word “planet” comes to us from the Greek word for “wanderer.”
      The solar system includes two additional major planets, Uranus and Neptune, plus numerous dwarf planets like Pluto and Ceres. Uranus and Neptune orbit in the dim, cold depths of the outer solar system. Neptune absolutely requires a telescope to observe. While Uranus is technically bright enough to detect with good eyesight, it’s quite faint and requires dark skies and precise knowledge of its location among similarly faint stars, so a telescope is recommended. As we’ll discuss in the next section, planet parades necessarily must be observed in twilight before dawn or after sunset, and this is not a good time to try observing extremely faint objects like Uranus and Neptune.
      Thus, claims about rare six- or seven-planet alignments which include Uranus and Neptune should be viewed with the understanding that these two distant planets will not be visible to the unaided eye.
      What Makes Multi-Planet Lineups Special
      Lineups of four or five planet naked-eye planets with optimal visibility typically occur every few years. Mars, Jupiter, and Saturn are frequently seen in the night sky, but the addition of Venus and Mercury make four- and five-planet lineups particularly noteworthy. Both orbit closer to the Sun than Earth, with smaller, faster orbits than the other planets. Venus is visible for only a couple of months at a time when it reaches its greatest separation from the Sun (called elongation), appearing just after sunset or before sunrise. Mercury, completing its orbit in just 88 days, is visible for only a couple of weeks (or even a few days) at a time just after sunset or just before sunrise.
      Planet parades aren’t single-day events, as the planets move too slowly for that. Generally, multi-planet viewing opportunities last for weeks to a month or more. Even five-planet events last for several days as Mercury briefly emerges from and returns to the Sun’s glare.
      In summary, while they aren’t once-in-a-lifetime events, planetary parades afford an uncommon opportunity to look up and appreciate our place in our solar system, with diverse worlds arrayed across the sky before our very eyes.
      Other Planet Lineups
      Other recent and near-future multi-planet viewing opportunities:
      January 2016 – Four planets visible at once before sunrise Late April to Late August 2022 – Four planets visible at once before sunrise Mid-June to Early July 2022 – Five planets visible at once before sunrise January to mid-February 2025 – Four planets visible at once after sunset Late August 2025 – Four planets visible at once before sunrise Late October 2028 – Five planets visible at once before sunrise Late February 2034 – Five planets visible at once after sunset (Venus and Mercury challenging to observe) About the January/February 2025 Planet Parade
      The current four-planet lineup concludes by mid-February, as Saturn sinks increasingly lower in the sky each night after sunset. By mid-to-late February, Saturn appears less than 10 degrees above the horizon as sunset fades, making it difficult to observe for most people. While Mercury briefly joins Saturn in the post-sunset glow at the end of February, both planets will be too low and faint for most observers to spot.
      Keep Exploring Discover More Topics From NASA
      Skywatching



      Planets



      Solar System Exploration



      Moons


      View the full article
  • Check out these Videos

×
×
  • Create New...