Jump to content

SERVIR/ResilienceLinks Webinar on “Floods, Drought, and Water Security: How is Water Data Critical to Climate Resilience?”


NASA

Recommended Posts

  • Publishers

On 5/22/24, Chinmay Deval, the Water Security Lead at the SERVIR Science Coordination Office, moderated a virtual panel for the ResilienceLinks monthly webinar series. ResilienceLinks is the knowledge platform for the US Agency for International Development (USAID) Center for Resilience. The theme for May focused on Water Data and Climate Resilience. The panel featured distinguished water experts from the SERVIR global network, including: Jamilatou Chaibou Begou from the Agrometeorology, Hydrology, and Meteorology Regional Center/SERVIR West Africa, Chinaporn Meechaiya from the Asian Disaster Preparedness Center/SERVIR Southeast Asia, Jim Nelson, Principal Investigator of the SERVIR Applied Sciences Team at Brigham Young University, and Angelica Gutierrez from the National Oceanic and Atmospheric Administration (NOAA) Throughout the webinar, panelists shared their expertise and insights on the use of water data to enhance climate resilience. They discussed real-world applications, challenges in data accessibility, and innovative solutions for integrating local knowledge and gender equity into climate adaptation strategies. The webinar was hosted by Peter Epanchin, Senior Climate Adaptation and Resilience Advisor at USAID’s Bureau for Resilience, Environment, and Food Security.

servir3-0-black.png?w=1040

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Coastal locations, such as Drakes Bay on the Point Reyes peninsula in Northern California, are increasingly vulnerable to sea level rise.NOAA/NMFS/WCR/CCO The information will help people who live in coastal areas prepare for impacts caused by rising sea levels.
      Earth’s ocean is rising, disrupting livelihoods and infrastructure in coastal communities around the world. Agencies and organizations are working to prepare people as their world changes around them, and NASA information is helping these efforts.
      The agency’s global data is now available in the sea level section of the Earth Information Center. NASA developed the global sea level change website in collaboration with the U.S. Department of Defense, the World Bank, the U.S. Department of State, and the United Nations Development Programme.  
      The site includes information on projected sea level rise through the year 2150 for coastlines around the world, as well as estimates of how much flooding a coastal community or region can expect to see in the next 30 years. The projections come from data collected by NASA and its partners and from computer models of ice sheets and the ocean, as well as the latest sea level assessment from the Intergovernmental Panel on Climate Change, and other sources.
      “NASA innovates for the benefit of humanity. Our cutting-edge instruments and data-driven information tools help communities and organizations respond to natural hazards and extreme weather, and inform critical coastal infrastructure planning decisions,” said Karen St. Germain, director of the Earth science division at NASA Headquarters in Washington.
      Information to Action
      International organizations such as the World Bank will use the data from the global sea level change site for tasks including the creation of Climate Risk Profiles for countries especially vulnerable to sea level rise.
      The Defense Department will continue to incorporate sea level rise data into its plans to anticipate and respond to hazards posed to its facilities by the effects of rising oceans. Similarly, the State Department uses the information for activities ranging from disaster preparedness to long-term adaptation planning to supporting partners around the world in related efforts.
      “We are at a moment of truth in our fight against the climate crisis. The science is unequivocal and must serve as the bedrock upon which decision-making is built. With many communities around the world already facing severe impacts from sea-level rise, this new resource provides a vital tool to help them protect lives and livelihoods. It also illustrates what is at stake between a 1.5-degree-Celsius world and a current-policies trajectory for all coastal communities worldwide,” said Assistant Secretary-General Selwin Hart, special adviser to the United Nations secretary-general on climate action and just transition.
      Rising Faster
      NASA-led data analyses have revealed that between 1970 and 2023, 96% of countries with coastlines have experienced sea level rise. The rate of that global rise has also accelerated, more than doubling from 0.08 inches (0.21 centimeters) per year in 1993 to about 0.18 inches (0.45 centimeters) per year in 2023.
      As the rate of sea level rise increases, millions of people could face the related effects sooner than previously projected, including larger storm surges, more saltwater intrusion into groundwater, and additional high-tide flood days — also known as nuisance floods or sunny day floods.
      “This new platform shows the timing of future floods and the magnitude of rising waters in all coastal countries worldwide, connecting science and physics to impacts on people’s livelihoods and safety,” said Nadya Vinogradova Shiffer, director of the ocean physics program at NASA Headquarters in Washington.
      Data released earlier this year found that Pacific Island nations will experience at least 6 inches (15 centimeters) of sea level rise in the next 30 years. The number of high-tide flood days will increase by an order of magnitude for nearly all Pacific Island nations by the 2050s.
      “The data is clear: Sea levels are rising around the world, and they’re rising faster and faster,” said Ben Hamlington, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California and head of the agency’s sea level change science team. “Having the best information to make decisions about how to plan for rising seas is more crucial than ever.”
      To explore the global sea level change site:
      https://earth.gov/sealevel
      News Media Contacts
       
      Karen Fox / Elizabeth Vlock
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-158
      Share
      Details
      Last Updated Nov 13, 2024 Related Terms
      Oceans Climate Change Earth Jet Propulsion Laboratory Natural Disasters Explore More
      5 min read JPL Workforce Update
      Article 17 hours ago 6 min read Inia Soto Ramos, From the Mountains of Puerto Rico to Mountains of NASA Earth Data
      Dr. Inia Soto Ramos became fascinated by the mysteries of the ocean while growing up…
      Article 22 hours ago 4 min read NASA-developed Technology Supports Ocean Wind Speed Measurements from Commercial Satellite
      A science antenna developed with support from NASA’s Earth Science Technology Office (ESTO) is now…
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Name: Dr. Inia Soto Ramos
      Title and Formal Job Classification: Associate Research Scientist
      Organization: Ocean Ecology Laboratory (Code 616) via Morgan State University and GESTAR II cooperative agreement
      Dr. Inia Soto Ramos is an associate research scientist with NASA’s PACE — the Plankton, Aerosol, Cloud, ocean Ecosystem mission — at the agency’s Goddard Space Flight Center in Greenbelt, Md.Photo courtesy of Inia Soto Ramos What do you do and what is most interesting about your role here at Goddard?
      I am currently co-leading the validation efforts for PACE, NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem mission. I am also part of NASA’s SeaBASS (SeaWiFS Bio-optical Archive and Storage System) team, which is responsible for archiving, distributing, and managing field data used for validation and development of satellite ocean color data products. It has been exciting to be a part of a satellite mission, to see it being built, tested and launched. And now, be able to validate the data and in the near future, use the data to do science.
      What is your educational background?
      I graduated with a bachelor’s degree in biology from The University of Puerto Rico, Mayagüez Campus, and I have a master’s and Ph.D. in Biological Oceanography from the University of South Florida.
      How did you get your foot in the door at NASA?
      While I was a student at the University of Puerto Rico, I saw a flyer for a program called PaSCoR (Partnership for Spatial and Computational Research). It was a partnership between universities, NASA and other institutions with the intent to train students in remote sensing and Geographical Information Systems. Although, this program was targeted mainly for engineers, I decided to apply. That took me to the first remote sensing classes I had taken. That’s how I started learning that you can study the ocean from space. I had no idea that could be done. That program planted the curiosity about satellite oceanography and gave me the tools to go into graduate school in that field.
      How did you first gain exposure to oceanography and diving?
      I am from Puerto Rico and grew up all the way in the mountains. There wasn’t much of a connection to the ocean for me, only a few trips to the beach. I remember my dad taking me to a small beach called La Poza del Obispo in Arecibo and he held me while I used a small snorkel underwater. That was the first connection I had with marine life. I started diving sometime when I was about 18 years old, and I remember saying, “This is the most amazing thing ever,” and that’s when I decided I needed to pursue a life in that field.
      What interested you in phytoplankton as a specialty?
      Initially, I was curious about harmful algal blooms in the West Florida Shelf, which I studied when I moved to Florida to do my grad studies. I learned that the blooms can produce neurotoxins, and those can affect humans in different ways. So, if you have asthma, they can make you feel worse. I remember developing asthma that night after going to the beach and having go to the ER. I didn’t see the connection at the time until I learned about these events and how toxins can get in the air. It felt like something important that I could study to help people or do something that’s meaningful. It’s amazing that we can see something so tiny from space and study them.
      How does your identity, being a Latina, show up at NASA?
      This is kind of a dream come true. It is so amazing to be able to fulfill that dream. I came from a small town. There appeared to me no chances to come all the way to NASA. So, having this opportunity is exciting, and bringing it back to my community and saying, “Hey, anyone can actually do it.” One of the advantages is that you speak a different language, so you can make connections with different countries.
      What do you look forward to in the future? What are some of your goals?
       I would love to keep growing in my field. As a mother, sometimes is hard to visualize where I want to be in the future, so I find it best to focus on the present. My priority right now is my family, however in the future I would love to engage in a job in which I can transfer my knowledge and love to the oceans to future generations; and be more involved in the community.
      When you think of your village and growing up in Puerto Rico, what is a memory you have that makes you smile?
      I still remember going to collect coffee with my mom and dad. My dad had a small basket for me that I would fill with only the most beautiful red grains of coffee. I was around 5 years old, and I remember the toys that my mom would take, and they’d settle me under the coffee trees. I still go to Puerto Rico, and I am fascinated when I see the coffee trees; it reminds me of my childhood.
      What advice would you give to other little girls who might not think NASA is a dream they can achieve?
      I was the little girl with the dream of being a scientist at NASA, and then I was a teenager, an adult, and a mother, all with the same dream! It took me several decades and many life stages to get here. Many times, along my path, I thought of giving up. Others, I thought I was completely off track and I would never fulfill my dream. I had limited resources while growing up. There were no fancy swimming or piano classes, but I had amazing teachers and mentors who guided me along the way. So, no matter how young or old you are, you can still fulfill that dream. The key to success is to know where you want to go, surround yourself with people that believe in you, and if you fall, just shake it off and try again!
      By Alexa Figueroa
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Nov 12, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Earth Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) People of NASA SeaWiFS (Sea-viewing Wide Field-of-view Sensor) View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Voyager 2 captured this image of Uranus while flying by the ice giant in 1986. New research using data from the mission shows a solar wind event took place during the flyby, leading to a mystery about the planet’s magnetosphere that now may be solved.NASA/JPL-Caltech NASA’s Voyager 2 flyby of Uranus decades ago shaped scientists’ understanding of the planet but also introduced unexplained oddities. A recent data dive has offered answers.
      When NASA’s Voyager 2 spacecraft flew by Uranus in 1986, it provided scientists’ first — and, so far, only — close glimpse of this strange, sideways-rotating outer planet. Alongside the discovery of new moons and rings, baffling new mysteries confronted scientists. The energized particles around the planet defied their understanding of how magnetic fields work to trap particle radiation, and Uranus earned a reputation as an outlier in our solar system.
      Now, new research analyzing the data collected during that flyby 38 years ago has found that the source of that particular mystery is a cosmic coincidence: It turns out that in the days just before Voyager 2’s flyby, the planet had been affected by an unusual kind of space weather that squashed the planet’s magnetic field, dramatically compressing Uranus’ magnetosphere.
      “If Voyager 2 had arrived just a few days earlier, it would have observed a completely different magnetosphere at Uranus,” said Jamie Jasinski of NASA’s Jet Propulsion Laboratory in Southern California and lead author of the new work published in Nature Astronomy. “The spacecraft saw Uranus in conditions that only occur about 4% of the time.”
      The first panel of this artist’s concept depicts how Uranus’s magnetosphere — its protective bubble — was behaving before the flyby of NASA’s Voyager 2. The second panel shows an unusual kind of solar weather was happening during the 1986 flyby, giving scientists a skewed view of the magnetosphere.NASA/JPL-Caltech Magnetospheres serve as protective bubbles around planets (including Earth) with magnetic cores and magnetic fields, shielding them from jets of ionized gas — or plasma — that stream out from the Sun in the solar wind. Learning more about how magnetospheres work is important for understanding our own planet, as well as those in seldom-visited corners of our solar system and beyond.
      That’s why scientists were eager to study Uranus’ magnetosphere, and what they saw in the Voyager 2 data in 1986 flummoxed them. Inside the planet’s magnetosphere were electron radiation belts with an intensity second only to Jupiter’s notoriously brutal radiation belts. But there was apparently no source of energized particles to feed those active belts; in fact, the rest of Uranus’ magnetosphere was almost devoid of plasma.
      The missing plasma also puzzled scientists because they knew that the five major Uranian moons in the magnetic bubble should have produced water ions, as icy moons around other outer planets do. They concluded that the moons must be inert with no ongoing activity.
      Solving the Mystery
      So why was no plasma observed, and what was happening to beef up the radiation belts? The new data analysis points to the solar wind. When plasma from the Sun pounded and compressed the magnetosphere, it likely drove plasma out of the system. The solar wind event also would have briefly intensified the dynamics of the magnetosphere, which would have fed the belts by injecting electrons into them.
      The findings could be good news for those five major moons of Uranus: Some of them might be geologically active after all. With an explanation for the temporarily missing plasma, researchers say it’s plausible that the moons actually may have been spewing ions into the surrounding bubble all along.
      Planetary scientists are focusing on bolstering their knowledge about the mysterious Uranus system, which the National Academies’ 2023 Planetary Science and Astrobiology Decadal Survey prioritized as a target for a future NASA mission.
      JPL’s Linda Spilker was among the Voyager 2 mission scientists glued to the images and other data that flowed in during the Uranus flyby in 1986. She remembers the anticipation and excitement of the event, which changed how scientists thought about the Uranian system.
      “The flyby was packed with surprises, and we were searching for an explanation of its unusual behavior. The magnetosphere Voyager 2 measured was only a snapshot in time,” said Spilker, who has returned to the iconic mission to lead its science team as project scientist. “This new work explains some of the apparent contradictions, and it will change our view of Uranus once again.”
      Voyager 2, now in interstellar space, is almost 13 billion miles (21 billion kilometers) from Earth.
      News Media Contacts
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215
      gretchen.p.mccartney@jpl.nasa.gov
      2024-156
      Share
      Details
      Last Updated Nov 11, 2024 Related Terms
      Voyager 2 Heliophysics Jet Propulsion Laboratory Magnetosphere Solar Wind Uranus Uranus Moons Explore More
      6 min read Powerful New US-Indian Satellite Will Track Earth’s Changing Surface
      Article 3 days ago 2 min read Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE
      On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm…
      Article 4 days ago 3 min read Bundling the Best of Heliophysics Education: DigiKits for Physics and Astronomy Teachers
      For nearly a decade, the American Association of Physics Teachers (AAPT) has been working to…
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Torrential rainfall causing deadly flash floods has hit southern and eastern Spain in regions including the Costa del Sol, where the city of Malaga is located, and Valencia in the east. As these areas struggle to cope with the aftermath, satellite technology has played a crucial role in assessing the damages of the affected areas.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4348-4349: Smoke on the Water
      NASA’s Mars rover Curiosity created this composite image from its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm. An onboard process, focus merging, makes a composite of images of the same target — acquired at different focus positions — to bring all (or, as many as possible) features into focus in a single image. Curiosity performed this merge on Oct. 27, 2024, sol 4346 (Martian day 4,346) of the Mars Science Laboratory Mission, at 15:45:47 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Oct. 28, 2024
      Before the science team starts planning, we first look at the latest Navcam image downlinked from Curiosity to see where the rover is located. It can be all too easy to get lost in the scenery of the Navcam and find new places in the distance we want to drive towards, but there’s so much beauty in the smaller things. Today I’ve chosen to show a photo from Curiosity’s hand lens camera, MAHLI, that takes photos so close that we can see the individual grains of the rock.
      The planning day usually starts by thinking about these smaller features: What rocks are the closest to the rover? What can we shoot with our laser? What instruments can we use to document these features? Today we planned two sols, and the focus of the close-up contact science became a coating of material that in some image stretches looks like a deep-purple color.
      We planned lots of activities to characterize this coating including use of the dust removal tool (DRT) and the APXS instrument on a target called “Reds Meadow.” This target will also be photographed by the MAHLI instrument. The team planned a ChemCam LIBS target on “Midge Lake” as well as a passive ChemCam target on “Primrose Lake” to document this coating with a full suite of instruments. Mastcam will then document the ChemCam LIBS target Midge Lake, and take a mosaic of the vertical faces of a few rocks near to the rover called “Peep Sight Peak” to observe the sedimentary structures here. Mastcam will also take a mosaic of “Pinnacle Ridge,” an area seen previously by the rover, from a different angle. ChemCam is rounding off the first sol with two long-distance RMI mosaics to document the stratigraphy of two structures we are currently driving between: Texoli butte and the Gediz Vallis channel.
      In the second sol of the plan, after driving about 20 meters (about 66 feet), Curiosity will be undertaking some environmental monitoring activities before an AEGIS activity that automatically selects a LIBS target in our new workspace prior to our planning on Wednesday morning.
      Written by Emma Harris, Graduate Student at Natural History Museum, London
      Share








      Details
      Last Updated Oct 30, 2024 Related Terms
      Blogs Explore More
      2 min read A Spooky Soliday: Haunting Whispers from the Martian Landscape


      Article


      9 hours ago
      3 min read Sols 4345-4347: Contact Science is Back on the Table


      Article


      2 days ago
      4 min read Sols 4343-4344: Late Slide, Late Changes


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...