Members Can Post Anonymously On This Site
IEEE Geoscience and Remote Sensing Society – Earth Science Informatics Workshop and Hackathon on Remote Sensing Data Systems Held at SRM University, Chennai
-
Similar Topics
-
By NASA
Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Wednesday, Jan. 15, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. The Blue Ghost lander will carry 10 NASA science and technology instruments to the lunar surface to further understand the Moon and help prepare for future human missions.Credit: NASA/Frank Michaux A suite of NASA scientific investigations and technology demonstrations is on its way to our nearest celestial neighbor aboard a commercial spacecraft, where they will provide insights into the Moon’s environment and test technologies to support future astronauts landing safely on the lunar surface under the agency’s Artemis campaign.
Carrying science and tech on Firefly Aerospace’s first CLPS or Commercial Lunar Payload Services flight for NASA, Blue Ghost Mission 1 launched at 1:11 a.m. EST aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The company is targeting a lunar landing on Sunday, March 2.
“This mission embodies the bold spirit of NASA’s Artemis campaign – a campaign driven by scientific exploration and discovery,” said NASA Deputy Administrator Pam Melroy. “Each flight we’re part of is vital step in the larger blueprint to establish a responsible, sustained human presence at the Moon, Mars, and beyond. Each scientific instrument and technology demonstration brings us closer to realizing our vision. Congratulations to the NASA, Firefly, and SpaceX teams on this successful launch.”
Once on the Moon, NASA will test and demonstrate lunar drilling technology, regolith (lunar rocks and soil) sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation methods. The data captured could also benefit humans on Earth by providing insights into how space weather and other cosmic forces impact our home planet.
“NASA leads the world in space exploration, and American companies are a critical part of bringing humanity back to the Moon,” said Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “We learned many lessons during the Apollo Era which informed the technological and science demonstrations aboard Firefly’s Blue Ghost Mission 1 – ensuring the safety and health of our future science instruments, spacecraft, and, most importantly, our astronauts on the lunar surface. I am excited to see the incredible science and technological data Firefly’s Blue Ghost Mission 1 will deliver in the days to come.”
As part of NASA’s modern lunar exploration activities, CLPS deliveries to the Moon will help humanity better understand planetary processes and evolution, search for water and other resources, and support long-term, sustainable human exploration of the Moon in preparation for the first human mission to Mars.
There are 10 NASA payloads flying on this flight:
Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will characterize heat flow from the interior of the Moon by measuring the thermal gradient and conductivity of the lunar subsurface. It will take several measurements to about a 10-foot final depth using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Lead organization: Texas Tech University Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. Lead organization: Honeybee Robotics Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon. The retroreflector that will fly on this mission could also collect data to understand various aspects of the lunar interior and address fundamental physics questions. Lead organization: University of Maryland Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. The RAC instrument will measure accumulation rates of lunar regolith on the surfaces of several materials including solar cells, optical systems, coatings, and sensors through imaging to determine their ability to repel or shed lunar dust. The data captured will allow the industry to test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but now will demonstrate the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. The EDS technology is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and the Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact it. Lead organizations: NASA’s Goddard Space Flight Center, Boston University, and Johns Hopkins University Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from Global Navigation Satellite System constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of rocket plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier payloads are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machine’s first CLPS delivery. Lead organization: NASA’s Langley Research Center “With 10 NASA science and technology instruments launching to the Moon, this is the largest CLPS delivery to date, and we are proud of the teams that have gotten us to this point,” said Chris Culbert, program manager for the Commercial Lunar Payload Services initiative at NASA’s Johnson Space Center in Houston. “We will follow this latest CLPS delivery with more in 2025 and later years. American innovation and interest to the Moon continues to grow, and NASA has already awarded 11 CLPS deliveries and plans to continue to select two more flights per year.”
Firefly’s Blue Ghost lander is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the Moon’s near side. The NASA science on this flight will gather valuable scientific data studying Earth’s nearest neighbor and helping pave the way for the first Artemis astronauts to explore the lunar surface later this decade.
Learn more about NASA’s CLPS initiative at:
https://www.nasa.gov/clps
-end-
Amber Jacobson / Karen Fox
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov / karen.c.fox@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Antonia Jaramillo
Kennedy Space Center, Florida
321-501-8425
antonia.jaramillobotero@nasa.gov
Share
Details
Last Updated Jan 15, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon Johnson Space Center Kennedy Space Center Lunar Science Science & Research Science Mission Directorate View the full article
-
By NASA
Firefly Aerospace’s Blue Ghost lander getting encapsulated in SpaceX’s rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA’s Kennedy Space Center in FloridaSpaceX As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the agency is preparing to fly ten instruments aboard Firefly Aerospace’s first delivery to the Moon. These science payloads and technology demonstrations will help advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions on the Moon and beyond, for the benefit of all.
Firefly’s lunar lander, named Blue Ghost, is scheduled to launch on a SpaceX Falcon 9 rocket Wednesday, Jan.15, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After a 45-day cruise phase, Blue Ghost is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a basin approximately 340 miles wide (550 kilometers) located in the northeast quadrant of the Moon’s near side.
How can we enable more precise navigation on the Moon? How do spacecraft interact with the lunar surface? How does Earth’s magnetic field influence the effects of space weather on our home planet? NASA’s instruments on this flight will conduct first-of-their-kind demonstrations to help answer these questions and more, including testing regolith sampling technologies, lunar subsurface drilling capabilities, increasing precision of positioning and navigation abilities, testing radiation tolerant computing, and learning how to mitigate lunar dust during lunar landings.
The ten NASA payloads aboard Firefly’s Blue Ghost lander include:
Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will measure heat flow from the Moon’s interior by measuring the thermal gradient, or changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it. LISTER will take several measurements up to 10 feet deep using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Data from LISTER will help scientists retrace the Moon’s thermal history and understand how it formed and cooled. Lead organization: Texas Tech University
Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber (sieving) for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. The LPV payload is designed to help increase the science return from planetary missions by testing low-cost technologies for collecting regolith samples in-situ. Lead organization: Honeybee Robotics
Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon by reflecting very short laser pulses from Earth-based Lunar Laser Ranging Observatories. The laser pulse transit time to the Moon and back is used to determine the distance. Data from NGLR could improve the accuracy of our lunar coordinate system and contribute to our understanding of the inner structure of the Moon and fundamental physics questions. Lead organization: University of Maryland
Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. RAC will measure accumulation rates of lunar regolith on surfaces (for example, solar cells, optical systems, coatings, and sensors) through imaging to determine their ability to repel or shed lunar dust. The data captured will help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace
Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but this flight will provide the biggest trial yet by demonstrating the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University
Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. EDS is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center
Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact Earth. Lead organizations: Boston University, NASA’s Goddard Space Flight Center, and Johns Hopkins University
Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from GNSS (Global Navigation Satellite System) constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier spacecraft and hardware are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machines’ first CLPS delivery. Lead organization: NASA’s Langley Research Center
Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.
Learn more about CLPS and Artemis at: http://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
View the full article
-
By NASA
NASA On April 21, 1972, NASA astronaut John W. Young, commander of the Apollo 16 mission, took a far-ultraviolet photo of Earth with an ultraviolet camera. Young’s original black-and-white picture was printed on Agfacontour professional film three times, with each exposure recording only one light level. The three light levels were then colored blue (dimmest), green (next brightest), and red (brightest), resulting in the enhanced-color image seen here.
Dr. George Carruthers, a scientist at the Naval Research Laboratory, developed the ultraviolet camera – the first Moon-based observatory – for Apollo 16. Apollo 16 astronauts placed the observatory on the Moon in April 1972, where it sits today on the Moon’s Descartes highland region, in the shadow of the lunar module Orion.
Image credit: NASA
View the full article
-
By NASA
Measurements from space support wildfire risk predictions
Researchers demonstrated that data from the International Space Station’s ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) instrument played a significant role in the ability of machine learning algorithms to predict wildfire susceptibility. This result could help support development of effective strategies for predicting, preventing, monitoring, and managing wildfires.
As the frequency and severity of wildfires increases worldwide, experts need reliable models of fire susceptibility to protect public safety and support natural resource planning and risk management. ECOSTRESS measures evapotranspiration, water use efficiency, and other plant-water dynamics on Earth. Researchers report that its water use efficiency data consistently emerged as the leading factor in predicting wildfires, with evaporative stress and topographic slope data also significant.
This ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station evapotranspiration image of California’s Central Valley in May 2022 shows high water use (blue) and dry conditions (brown). NASA Combining instruments provides better emissions data
Scientists found that averaging data from the International Space Station’s OCO‐3 and EMIT external instruments can accurately measure the rate of carbon dioxide emissions from power plants. This work could improve emissions monitoring and help communities respond to climate change.
Carbon dioxide emissions from fossil fuel combustion make up nearly a third of human-caused emissions and are a major contributor to climate change. In many places, though, scientists do not know exactly how much carbon dioxide these sources emit. The Orbiting Carbon Observatory-3 or OCO-3 can quantify emissions over large areas and Earth Surface Mineral Dust Source Investigation data can help determine emissions from individual facilities. The researchers suggest future work continue to investigate the effect of wind conditions on measurements.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
The The Orbiting Carbon Observatory-3 data showing carbon dioxide concentrations in Los Angeles. NASA Thunderstorm phenomena observed from space
Observations by the International Space Station’s Atmosphere-Space Interactions Monitor (ASIM) instrument during a tropical cyclone in 2019 provide insight into the formation and nature of blue corona discharges often observed at the tops of thunderclouds. A better understanding of such processes in Earth’s upper atmosphere could improve atmospheric models and weather and climate predictions.
Scientists do not fully understand the conditions that lead to formation of blue corona discharges, bursts of electrical streamers, which are precursors to lightning. Observations from the ground are affected by scattering and absorption in the clouds. ASIM, a facility from ESA (European Space Agency), provides a unique opportunity for observing these high-atmosphere events from space.
View of Atmosphere-Space Interactions Monitor, the white and blue box on the end of the International Space Station’s Columbus External Payload Facility. NASAView the full article
-
By NASA
7 min read
Newly Selected Citizen Science Proposals: A Peek at What’s Next
Last year, the NASA citizen science community saw a prize from the White House and two prizes from professional societies: one from the Division of Planetary Sciences and one from the American Astronomical Society. Our teams published two papers in the prestigious journal, Nature, one on a planetary crash and one about a distant world that seems to have auroras. 2024 was a year of 5000 comets, two solar eclipses and plenty of broken records.
But we’re not stopping to rest on our laurels. In 2024, NASA selected 25 new citizen science proposals for funding that will lead to new projects and new results to look forward to in 2025 and beyond. Here’s a roundup of those selections and the principal investigators (PIs) of each team—a sneak peek at what’s coming next in NASA citizen science! Note that these investigations are research grants–some of them will result in new opportunities for the public, others will use results from earlier citizen science projects or develop new tools.
Bright green glow observed from Texas on June 1, 2024, by Stephen Hummel. A new grant to the Spritacular project team will support citizen science research on this newly-discovered phenomenon. Stephen Hummel Citizen Science Seed Funding Program (CSSFP)
The CSSFP aims to support scientists and other experts to develop citizen science projects and to expand the pool of scientists who use citizen science techniques in their science investigations. Four divisions of NASA’s Science Mission Directorate are participating in the CSSFP: the Astrophysics Division, the Biological and Physical Sciences Division, the Heliophysics Division, and the Planetary Science Division. Nine new investigations were recently selected through this program:
Astrophysics Division
SuPerPiG Observing Grid, PI Rachel Huchmala, Boise State University. Use a small telescope to monitor exoplanets to improve our knowledge of their orbits. Understanding the Nature of Clumpy Galaxies with Clump-Scout 2: a New Citizen-Science Project to Characterize Star-Forming Clumps in Nearby Galaxies. PI Claudia Scarlata, University of Minnesota. Label clumps of distant galaxies to help us understand Hubble Space Telescope data. ‘Backyard Worlds: Binaries’ — Discovering Benchmark Brown Dwarfs Through Citizen Science. PI Aaron Meisner, NSF’s NOIRLab. Search for planet-like objects called brown dwarfs that orbit nearby stars. Mobile Toolkits to Enable Transient Follow-up Observations by Amateur Astronomers. PI Michael Coughlin, University of Minnesota. Use your own telescope to observe supernovae, kilonovae and other massive explosions. Planetary Science Division
A Citizen Scientist Approach to High Resolution Geologic Mapping of Intracrater Impact Melt Deposits as an input to Numerical Models, PI Kirby Runyon, Planetary Science Institute. Help map lunar craters so we can better understand how meteor impacts sculpt the moon’s surface. Identifying Active Asteroids in Public Datasets, PI Chad Trujillo, Northern Arizona University, Search for icy, comet-like bodies hiding in the asteroid belt using new data from the Canada-France-Hawaii telescope. Heliophysics Division
Enabling Magnetopause Observations With Informal Researchers (EMPOWR). PI Mo Wenil, Johns Hopkins University. Investigate plasma layers high above the Earth using data from NASA’s Magnetospheric Multiscale (MMS) mission and the Zooniverse platform. High-resolution Ionospheric Imaging using Dual-Frequency Smartphones. PI Josh Semeter, Boston University. Study the upper atmosphere using cell phone signals. Large Scale Structures Originating from the Sun (LASSOS) multi-point catalog: A citizen project connecting operations to research. PI Cecelia Mac Cormack, Catholic University of America. Help build a catalog of structures on the Sun. Comet Identification and Image Annotation Modernization for the Sungrazer Citizen Science Project. PI Oliver Gerland. Search for comets in data from ESA and NASA’s Solar and Heliospheric Observatory (SOHO) mission using new web tools. Heliophysics Citizen Science Investigations (HCSI)
The HCSI program supports medium-scale citizen science projects in the Heliophysics Division of NASA’s Science Mission Directorate. Six investigations were recently selected through this program:
Investigation of green afterglow observed above sprite and gigantic jet tops based on Spritacular project database, PI Burcu Kosar. Photograph electric phenomena above storm clouds to help us understand a newly discovered green glow and learn about atmospheric chemistry. Machine Learning competition for Solar Wind prediction in preparation of solar maximum. PI Enrico Camporeale, University of Colorado, Boulder. Take part in a competition to predict the speed of the solar wind using machine learning. A HamSCI investigation of the bottomside ionosphere during the 2023 annular and 2024 total solar eclipses. PI Gareth Perry, New Jersey Institute of Technology. Use Ham Radio data to investigate the effects of solar eclipses on the ionosphere. Dynamic footprint in mid-latitude mesospheric clouds. PI Chihiko Cullens, University of Colorado, Boulder. Collect and analyze data on noctilucent clouds, rare high-altitude clouds that shine at night. Monitoring Solar Activity During Solar Cycle 25 with the GAVRT Solar Patrol Science and Education Program. PI Marin Anderson, Jet Propulsion Laboratory. Track solar activity during the period leading up to and including solar maximum. What is the total energy input to the heliosphere from solar jets? PI Nour Rawafi, The Johns Hopkins University Applied Physics Laboratory. Identify solar jets in images from the Solar Dynamics Observatory Citizen Science for Earth Systems Program (CSESP)
CSESP opportunities focus on developing and implementing projects that harness contributions from members of the general public to advance our understanding of Earth as a system. Proposals for the 2024 request were required to demonstrate a clear link between citizen science and NASA observation systems to advance the agency’s Earth science mission. Nine projects received funding.
Engaging Citizen Scientists for Inclusive Earth Systems Monitoring, PI Duan Biggs, Northern Arizona University. Measure trees in tropical regions south of the equator with the GLOBE Observer App to improve models of vegetation structure and biomass models from NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission. Integrating Remote Sensing and Citizen Science to Support Conservation of Woodland Vernal Pools, PI Laura Bourgeau-Chavez, Michigan Technological University. Map and monitor shallow, seasonal wetlands in Michigan, Wisconsin and New York to better understand these key habitats of amphibians and other invertebrates. Citizen-Enabled Measurement of PM2.5 and Black Carbon: Addressing Local Inequities and Validating PM Composition from MAIA, Albert Presto/Carnegie Mellon University. Deploy sensors to measure sources of fine airborne particle pollution filling gaps in data from NASA’s Multi-Angle Imager for Aerosols (MAIA) mission. Expanding Citizen Science Hail Observations for Validation of NASA Satellite Algorithms and Understanding of Hail Melt, PI Russ Schumacher, Colorado State University. Measure the sizes and shapes of hailstones, starting in the southeastern United States, using photographs and special pads to help us understand microwave satellite data. X-Snow: A Citizen-Science Proposal for Snow in the New York Area, PI, Marco Tedesco, Columbia University. Measure snow in the Catskill and Adirondacks regions of New York to help improve NASA’s models of snow depth and water content. Coupling Citizen Science and Remote Sensing Observations to Assess the Impacts of Icebergs on Coastal Arctic Ecosystems, PI, Maria Vernet, University of California, San Diego. Measure phytoplankton samples in polar regions to understand how icebergs and their meltwater affect phytoplankton concentration and biodiversity. Forecasting Mosquito-Borne Disease Risk in a Changing Climate: Integrating GLOBE Citizen Science and NASA Earth System Modeling, PI Di Yang, University of Florida, Gainesville. Using data on mosquitoes from the GLOBE Observer App to predict future changes in mosquito-borne disease risk. Ozone Measurements from General Aviation: Supporting TEMPO Satellite Validation and Addressing Air Quality Issues in California’s San Joaquin Valley with Citizen Science, PI Emma Yates, NASA Ames Research Center. Deploy air-quality sensors around Bakersfield, California and compare the data to measurements from NASA’s Tropospheric Emissions Monitoring of Pollution instrument (TEMPO). Under the Canopy: Capturing the Role of Understory Phenology on Animal Communities Using Citizen Science, PI Benjamin Zuckerberg, University of Wisconsin, Madison. Measure snow depth, temperature, and sound in forest understories to improve satellite-based models of vegetation and snow cover for better modeling of wildlife communities. For more information on citizen science awards from previous years, see articles from:
September 2023 August 2022 July 2021 For more information on NASA’s citizen science programs, visit https://science.nasa.gov/citizenscience.
Share
Details
Last Updated Jan 13, 2025 Related Terms
Citizen Science Explore More
2 min read First NASA Neurodiversity Network Intern to Present at the American Geophysical Union Annual Conference
Article
3 days ago
2 min read Science Done by Volunteers Highlighted at December’s American Geophysical Union Meeting
Article
3 weeks ago
2 min read Jovian Vortex Hunters Spun Up Over New Paper
Article
4 weeks ago
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.