Jump to content

Paper on Coronal Jets and CMEs Published


NASA

Recommended Posts

  • Publishers

Alphonse Sterling (ST13) is co-author on a paper describing CMEs that appear to be initiated by a series of recurrent coronal jets.  The paper is entitled:  “Source Region and Launch Characteristics of Magnetic-arch-blowout Solar Coronal Mass Ejections Driven by Homologous Compact-flare Blowout Jets.”  It is led by Binal Patel, a graduate student of Sterling’s colleague in India, Bhuwan Joshi; Ronald Moore of UAH is also a co-author.  The paper will appear in ApJ shortly, and a preprint is available at https://arxiv.org/pdf/2405.03292.

sterling-coronal-mass-ejections.jpg?w=20
Pre-eruptive coronal magnetic field configurations of the source region obtained from the NLFFF extrapolations using HMI vector magnetograms before events I–IV. We show the flux rope in blue color in each panel. The source region consists of closed bipolar field lines (green), which constrain the underlying flux rope. The flux rope is formed between emerging negative flux (NE ) and positive polarity flux (P2) in the leading part of the AR. The red circles mark the southeastern footpoint location of the flux rope in each panel, which is rooted in the rapidly changing NE region. (a2)–(d2) The flux ropes are shown from side views before events I–IV. (a3)–(d3) An AIA 304 Å image before the respective event is plotted in the background of the flux ropes.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Learn Home NASA Earth Science Education… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   2 min read
      NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects
      On August 13, 2024, the publishers of the journal Insects notified authors of three papers selected to receive “Insects 2022 Best Paper Award” for research and review articles published in Insects from January 1 to December 31, 2022.
      One of the winning papers was co-authored by Russanne Low, PhD, Institute for Global Environmental Strategies (IGES). Low is a member of the NASA Earth Science Education Collaborative (NESEC), a NASA Science Activation project, and science lead for the Global Learning & Observations to Benefit the Environment (GLOBE) Mosquito Habitat Mapper.
      The paper – Integrating global citizen science platforms to enable next-generation surveillance of invasive and vector mosquitoes – was published as part of a special issue of Insects on Citizen Science Approaches to Vector Surveillance. It is in the top 5% of all research outputs scored by Altmetric, which is a high-level measure of the quality and quantity of online attention that it has received. The scoring algorithm takes various factors into account, such as the relative reach of the different sources of attention. The paper has been cited 23 times.
      Papers were selected by the journal’s Award Committee according to the following criteria:
      – Scientific merit and broad impact;
      – Originality of the research objectives and/or the ideas presented;
      – Creativity of the study design or uniqueness of the approaches and concepts;
      – Clarity of presentation;
      – Citations and downloads.
      Each winner of the best paper award will receive CHF 500 and a chance to publish a paper free of charge in Insects in 2024 after peer review.
      The paper is a result of a collaboration by IGES with University of South Florida, Woodrow Wilson International Center for Scholars, Universitat Pompeu Fabra, and iNaturalist.
      Following is the full citation: Ryan M. Carney, Connor Mapes, Russanne D. Low, Alex Long, Anne Bowser, David Durieux, Karlene Rivera, Berj Dekramanjian, Frederic Bartumeus, Daniel Guerrero, Carrie E. Seltzer, Farhat Azam, Sriram Chellappan, John R. B. Palmer.Role of Insects in Human Society Citizen Science Approaches to Vector Surveillance. Insects 2022, 13(8), 675; https://doi.org/10.3390/insects13080675 – 27 Jul 2022
      NESEC is supported by NASA under cooperative agreement award number NNX16AE28A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Screenshot of the Global Mosquito Observations interactive dashboard that combines various types of observations from data streams into an interoperable visualization. Each color-coded dot represents a citizen scientist’s observation and can be clicked to access the associated photos and data. Share








      Details
      Last Updated Sep 03, 2024 Editor NASA Science Editorial Team Related Terms
      Earth Science Science Activation Explore More
      2 min read Co-creating authentic STEM learning experiences with Latino communities


      Article


      4 days ago
      6 min read NASA Discovers a Long-Sought Global Electric Field on Earth
      An international team of scientists has successfully measured a planet-wide electric field thought to be…


      Article


      6 days ago
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Phil Kaaret (ST12) is lead author on the paper which describes Chandra X-ray Observatory observations of the galaxy NGC 2366. Escape of Lyman continuum (LyC) emission from galaxies found in the early universe was essential for the reionization of the universe when the intergalactic medium (IGM) changed from being neutral gas to the ionized IGM that we observe today. Compact emission-line galaxies (LCGs) are the most abundant class of confirmed Lyman continuum (LyC) emitters and provide (relatively) nearby analogs of the galaxies found in the early universe. An optical integral field study of NGC 2366 revealed an outflow originating at a star cluster known as “knot B” that is thought to clear a channel via mechanical feedback that enables LyC escape. We observed NGC 2366 with the Chandra and detected X-ray emission from a point source coincident with the apex of the outflow at knot B. The pointlike nature and variability of the X-ray emission suggests accretion onto a compact object in an X-ray binary. The accretion could produce sufficient kinetic energy to power the outflow. Thus, outflows from X-ray binaries may be important in enabling LyC emission from galaxies.
      Read more at: https://arxiv.org/abs/2405.13192.
      Illustration of ChandraView the full article
    • By NASA
      Timothy Lang (ST11) is a co-author on an article titled “Effective Visualization of Radar Data for Users Impacted by Color Vision Deficiency”, which was recently accepted for publication in Bulletin of the American Meteorological Society. The article is led by Zachary Sherman of Argonne National Laboratory (ANL), and it is an outgrowth of a long-standing collaboration on open science between ANL, MSFC, and other institutions that predates NASA Science Policy Directive (SPD) 41a and the Transform to Open Science (TOPS) campaign. Color Vision Deficiency (CVD) affects up to 8% of genetic males and 0.5% of genetic females, and traditional color maps used in radar meteorology and other Earth sciences often lack perceptual accuracy and clarity when viewed by those affected by CVD. The article reviews new color maps that convey useful and clear scientific information whether viewed by those with normal color perception or those with CVD. These color maps are available in open-source repositories like cmweather (https://github.com/openradar/cmweather) and pyart (http://arm-doe.github.io/pyart/). The article and the open-source CVD-friendly color maps are excellent examples of the greater inclusivity fostered when open science is practiced.
      Read the paper at: https://journals.ametsoc.org/view/journals/bams/aop/BAMS-D-23-0056.1/BAMS-D-23-0056.1.xml.

      View the full article
    • By European Space Agency
      For the first time, a phenomenon astronomers have long hoped to image directly has been captured by the NASA/ESA/CSA James Webb Space Telescope’s Near-InfraRed Camera (NIRCam). In this stunning image of the Serpens Nebula, the discovery lies in the northern area of this young, nearby star-forming region.
      View the full article
    • By NASA
      Christopher Schultz (ST11) led a team consisting of Phillip Bitzer (UAH), Michael Antia (Jacobs), Jonathan Case (Ensco), and Christopher Hain (MSFC) to examine 26-years of lightning-initiated wildfires (LIW) to understand the types of lightning that were producing wildfire events within the United States. Twenty-six years of lightning data were paired with over 68,000 LIW reports to understand lightning flash characteristics responsible for ignition in between 1995 and 2020. Results indicate that 92% of LIW were started by negative cloud-to-ground (CG) lightning flashes and 57% were single stroke flashes. Moreover, 62% of LIW reports did not have a positive CG within 10 km of the start location, contrary to the science literature’s suggestion that positive CG flashes are a dominant fire-starting mechanism. Nearly 1/3rd of wildfire events were holdovers, meaning one or more days elapsed between lightning occurrence and fire report. However, fires that were reported less than a day after lightning occurrence statistically burned more acreage. Peak current was not found to be a statistically significant delineator between fire starters and non-fire starters for -CGs but was for positive CGs. Results highlighted the need for reassessing the role of positive CG lightning and subsequently long continuing current in wildfire ignition started by lightning. One outcome of this study’s results is the development of real-time tools to identify ignition potential during lightning events to aid in fire mitigation efforts. Furthermore, the findings of this study should lead to new science in defining the continuing current duration needed to ignite a fire as a function of the underlying land surface.
      View the full article
  • Check out these Videos

×
×
  • Create New...