Members Can Post Anonymously On This Site
Lecture on Solar Physics Given to Students in Poland
-
Similar Topics
-
By NASA
Twelve-year-old, Aadya Karthik of Seattle, Washington; nine-year-old, Rainie Lin of Lexington, Kentucky; and eighteen-year-old, Thomas Lui, winners of the 2023-2024 Power to Explore Student Writing Challenge observe testing at a NASA Glenn cleanroom during their prize trip to Cleveland. Credit: NASA NASA’s fourth annual Power to Explore Student Challenge kicked off November 7, 2024. The science, engineering, technology, and mathematics (STEM) writing challenge invites kindergarten through 12th grade students in the United States to learn about radioisotope power systems, a type of nuclear battery integral to many of NASA’s far-reaching space missions.
Students are invited to write an essay about a new nuclear-powered mission to any moon in the solar system they choose. Submissions are due Jan. 31, 2025.
With freezing temperatures, long nights, and deep craters that never see sunlight on many of these moons, including our own, missions to them could use a special kind of power: radioisotope power systems. These power systems have helped NASA explore the harshest, darkest, and dustiest parts of our solar system and enabled spacecraft to study its many moons.
“Sending spacecraft into space is hard, and it’s even harder sending them to the extreme environments surrounding the diverse moons in our solar system,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “NASA’s Power to Explore Student Challenge provides the incredible opportunity for our next generation – our future explorers – to design their own daring missions using science, technology, engineering, and mathematics to explore space and discover new science for the benefit of all, while also revealing incredible creative power within themselves. We cannot wait to see what the students dream up!”
Entries should detail where students would go, what they would explore, and how they would use radioisotope power systems to achieve mission success in a dusty, dark, or far away moon destination.
Judges will review entries in three grade-level categories: K-4, 5-8, and 9-12. Student entries are limited to 275 words and should address the mission destination, mission goals, and describe one of the student’s unique powers that will help the mission.
One grand prize winner from each grade category will receive a trip for two to NASA’s Glenn Research Center in Cleveland to learn about the people and technologies that enable NASA missions. Every student who submits an entry will receive a digital certificate and an invitation to a virtual event with NASA experts where they’ll learn about what powers the NASA workforce to dream big and explore.
Judges Needed
NASA and Future Engineers are seeking volunteers to help judge the thousands of contest entries anticipated submitted from around the country. Interested U.S. residents older than 18 can offer to volunteer approximately three hours to review submissions should register to judge at the Future Engineers website.
The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
To learn more about the challenge, visit:
https://www.nasa.gov/power-to-explore
-end-
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Kristin Jansen
Glenn Research Center, Cleveland
216-296-2203
kristin.m.jansen@nasa.gov
Share
Details
Last Updated Nov 07, 2024 LocationNASA Headquarters Related Terms
Opportunities For Students to Get Involved Science Mission Directorate STEM Engagement at NASA View the full article
-
By NASA
Learn Home Bundling the Best of… For Educators Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
Bundling the Best of Heliophysics Education: DigiKits for Physics and Astronomy Teachers
For nearly a decade, the American Association of Physics Teachers (AAPT) has been working to bring together resources through its DigiKits–multimedia collections of vetted high-quality resources for teachers and their students. These resources are toolkits, allowing teachers to pick and choose interesting content to support their instruction. As a partner with the NASA Heliophysics Education Activation Team (HEAT), this work has directly supported the bundling of digital content around heliophysics lessons created by the AAPT team.
As an example, AAPT’s most recent DigiKit publication, Auroral Currents Science (Figure 1), was developed for educators of advanced high school students and university physics/astronomy majors. DigiKits materials are collected by digital content specialist, Caroline Hall, who searches for high-quality, open digital content and checks it for accuracy and accessibility. The Auroral Currents DigiKit centers around a lecture tutorial that gives students the opportunity to practice and extend their knowledge of magnetic fields produced by current-carrying wires, and relating those understandings to auroral currents – the primary phenomenon underlying the dramatic auroral light shows seen in the sky over the past months.
The corresponding DigiKit includes a collection of relevant simulations, videos/animations, and other teacher resources for background that can help to teach the content in the primary lesson. The DigiKit highlights NASA’s forthcoming Electrojet Zeeman Imaging Explorer (EZIE) mission, including an animation of the relationship between the Earth and space, an explanation of Earth’s electrojets and a visualization of the spacecraft. It also includes links to NASA’s ongoing Magnetospheric Multiscale spacecraft video explanation of magnetic reconnection, among many other useful resources that can be shown in the classroom or explored individually by students. Unique to this DigiKit are recent science news articles covering 2024’s spectacular auroral displays.
The light in the aurora comes from atoms in the ionosphere that have been excited by collisions with electrons that were accelerated between 6000 km and 20000 km above Earth’s surface. Those electrons carry electric currents from space along the magnetic field, but the currents flow horizontally some distance through the ionosphere at about 100-150 km in altitude before returning to space. We call those currents the ionospheric electrojets, and we can see the magnetic effects of the electrojets because electric currents are the source of magnetic fields. The AAPT digikit allows students to explore the magnetic signature of the electrojets and determine the size and location of the currents.
As a result of participation in NASA HEAT, AAPT has produced ten DigiKits, all linked below and available alongside the collection of other tutorials/core resources on the AAPT NASA HEAT page. Although the DigiKits are directed toward teachers, and the lessons are intended for standard classroom contexts, the resources can also be a great introduction to NASA-related concepts and modern science ideas for the general public.
Mechanics
Sunspots DigiKit Coronal Mass Ejections DigiKit Solar Energetic Particles DigiKit Light and Optics
Star Spectra DigiKit Exoplanet Atmospheres DigiKit Habitable Zone Planets DigiKit Magnetism
Planetary Magnetism DigiKit Energy of a Magnetic Field and Solar Flares DigiKit Auroral Currents DigiKit Eclipses
Eclipse Science DigiKit Are you an educator curious to learn more? Register for AAPT’s monthly mini webinar series, with the next event on November 9, 2024, featuring the Auroral Currents DigiKit core activity.
NASA HEAT is part of the NASA Science Activation Program portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Figure 1: Cover image of Auroral Currents DigiKit. Caroline Hall/AAPT NASA-HEAT Share
Details
Last Updated Nov 05, 2024 Editor NASA Science Editorial Team Related Terms
For Educators For Kids and Students Heliophysics Science Activation Explore More
3 min read Professional Learning: Using Children’s Books to Build STEM Habits of Mind
Article
1 day ago
4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass
Article
1 day ago
2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow
Article
1 day ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
4 min read
Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass
On Wednesday, Nov. 6, 2024, NASA’s Parker Solar Probe will complete its final Venus gravity assist maneuver, passing within 233 miles (376 km) of Venus’ surface. The flyby will adjust Parker’s trajectory into its final orbital configuration, bringing the spacecraft to within an unprecedented 3.86 million miles of the solar surface on Dec. 24, 2024. It will be the closest any human made object has been to the Sun.
Parker’s Venus flybys have become boons for new Venus science thanks to a chance discovery from its Wide-Field Imager for Parker Solar Probe, or WISPR. The instrument peers out from Parker and away from the Sun to see fine details in the solar wind. But on July 11, 2020, during Parker’s third Venus flyby, scientists turned WISPR toward Venus in hopes of tracking changes in the planet’s thick cloud cover. The images revealed a surprise: A portion of WISPR’s data, which captures visible and near infrared light, seemed to see all the way through the clouds to the Venusian surface below.
“The WISPR cameras can see through the clouds to the surface of Venus, which glows in the near-infrared because it’s so hot,” said Noam Izenberg, a space scientist at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.
Venus, sizzling at approximately 869 degrees Fahrenheit (about 465 C), was radiating through the clouds.
The WISPR images from the 2020 flyby, as well as the next flyby in 2021, revealed Venus’ surface in a new light. But they also raised puzzling questions, and scientists have devised the Nov. 6 flyby to help answer them.
Left: A series of WISPR images of the nightside of Venus from Parker Solar Probe’s fourth flyby showing near infrared emissions from the surface. In these images, lighter shades represent warmer temperatures and darker shades represent cooler. Right: A combined mosaic of radar images of Venus’ surface from NASA’s Magellan mission, where the brightness indicates radar properties from smooth (dark) to rough (light), and the colors indicate elevation from low (blue) to high (red). The Venus images correspond well with data from the Magellan spacecraft, showing dark and light patterns that line up with surface regions Magellan captured when it mapped Venus’ surface using radar from 1990 to 1994. Yet some parts of the WISPR images appear brighter than expected, hinting at extra information captured by WISPR’s data. Is WISPR picking up on chemical differences on the surface, where the ground is made of different material? Perhaps it’s seeing variations in age, where more recent lava flows added a fresh coat to the Venusian surface.
“Because it flies over a number of similar and different landforms than the previous Venus flybys, the Nov. 6 flyby will give us more context to evaluate whether WISPR can help us distinguish physical or even chemical properties of Venus’ surface,” Izenberg said.
After the Nov. 6 flyby, Parker will be on course to swoop within 3.8 million miles of the solar surface, the final objective of the historic mission first conceived over 65 years ago. No human-made object has ever passed this close to a star, so Parker’s data will be charting as-yet uncharted territory. In this hyper-close regime, Parker will cut through plumes of plasma still connected to the Sun. It is close enough to pass inside a solar eruption, like a surfer diving under a crashing ocean wave.
“This is a major engineering accomplishment,” said Adam Szabo, project scientist for Parker Solar Probe at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
The closest approach to the Sun, or perihelion, will occur on Dec. 24, 2024, during which mission control will be out of contact with the spacecraft. Parker will send a beacon tone on Dec. 27, 2024, to confirm its success and the spacecraft’s health. Parker will remain in this orbit for the remainder of its mission, completing two more perihelia at the same distance.
Parker Solar Probe is part of NASA’s Living with a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living with a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, manages the Parker Solar Probe mission for NASA and designed, built, and operates the spacecraft.
By Miles Hatfield
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Nov 04, 2024 Related Terms
Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Solar Wind The Sun Venus Keep Exploring Discover More Topics From NASA
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Sun
Parker Solar Probe Stories
Sun: Exploration
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Perseverance rover captured the silhouette of the Martian moon Phobos as it passed in front of the Sun on Sept. 30, 2024. The video shows the transit speeded up by four times, followed by the eclipse in real time. NASA/JPL-Caltech/ASU/MSSS/SSI The tiny, potato-shaped moon Phobos, one of two Martian moons, cast a silhouette as it passed in front of the Sun, creating an eye in Mars’ sky.
From its perch on the western wall of Mars’ Jezero Crater, NASA’s Perseverance rover recently spied a “googly eye” peering down from space. The pupil in this celestial gaze is the Martian moon Phobos, and the iris is our Sun.
Captured by the rover’s Mastcam-Z on Sept. 30, the 1,285th Martian day of Perseverance’s mission, the event took place when the potato-shaped moon passed directly between the Sun and a point on the surface of Mars, obscuring a large part of the Sun’s disc. At the same time that Phobos appeared as a large black disc rapidly moving across the face of the Sun, its shadow, or antumbra, moved across the planet’s surface.
Astronomer Asaph Hall named the potato-shaped moon in 1877, after the god of fear and panic in Greek mythology; the word “phobia” comes from Phobos. (And the word for fear of potatoes, and perhaps potato-shaped moons, is potnonomicaphobia.) He named Mars’ other moon Deimos, after Phobos’ mythological twin brother.
Roughly 157 times smaller in diameter than Earth’s Moon, Phobos is only about 17 miles (27 kilometers) at its widest point. Deimos is even smaller.
Rapid Transit
Because Phobos’ orbit is almost perfectly in line with the Martian equator and relatively close to the planet’s surface, transits of the moon occur on most days of the Martian year. Due to its quick orbit (about 7.6 hours to do a full loop around Mars), a transit of Phobos usually lasts only 30 seconds or so.
This is not the first time that a NASA rover has witnessed Phobos blocking the Sun’s rays. Perseverance has captured several Phobos transits since landing at Mars’ Jezero Crater in February 2021. Curiosity captured a video in 2019. And Opportunity captured an image in 2004.
By comparing the various images, scientists can refine their understanding of the moon’s orbit to learn how it’s changing. Phobos is getting closer to Mars and is predicted to collide with it in about 50 million years.
More About Perseverance
Arizona State University leads the operations of the Mastcam-Z instrument, working in collaboration with Malin Space Science Systems in San Diego, on the design, fabrication, testing, and operation of the cameras, and in collaboration with the Niels Bohr Institute of the University of Copenhagen on the design, fabrication, and testing of the calibration targets.
A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).
Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
Space Science Institute produced this video.
For more about Perseverance:
https://mars.nasa.gov/mars2020
News Media Contacts
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
2024-150
Share
Details
Last Updated Oct 30, 2024 Related Terms
Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Explore More
2 min read NASA Brings Drone and Space Rover to Air Show
Article 47 mins ago 3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo
Article 48 mins ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
Article 2 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 min read
NASA to Launch Innovative Solar Coronagraph to Space Station
NASA’s Coronal Diagnostic Experiment (CODEX) is ready to launch to the International Space Station to reveal new details about the solar wind including its origin and its evolution.
Launching in November 2024 aboard SpaceX’s 31st commercial resupply services mission, CODEX will be robotically installed on the exterior of the space station. As a solar coronagraph, CODEX will block out the bright light from the Sun’s surface to better see details in the Sun’s outer atmosphere, or corona.
In this animation, the CODEX instrument can be seen mounted on the exterior of the International Space Station. For more CODEX imagery, visit https://svs.gsfc.nasa.gov/14647. CODEX Team/NASA “The CODEX instrument is a new generation solar coronagraph,” said Jeffrey Newmark, principal investigator for the instrument and scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It has a dual use — it’s both a technology demonstration and will conduct science.”
This coronagraph is different from prior coronagraphs that NASA has used because it has special filters that can provide details of the temperature and speed of the solar wind. Typically, a solar coronagraph captures images of the density of the plasma flowing away from the Sun. By combining the temperature and speed of the solar wind with the traditional density measurement, CODEX can give scientists a fuller picture of the wind itself.
“This isn’t just a snapshot,” said Nicholeen Viall, co-investigator of CODEX and heliophysicist at NASA Goddard. “You’re going to get to see the evolution of structures in the solar wind, from when they form from the Sun’s corona until they flow outwards and become the solar wind.”
The CODEX instrument will give scientists more information to understand what heats the solar wind to around 1.8 million degrees Fahrenheit — around 175 times hotter than the Sun’s surface — and sends it streaming out from the Sun at almost a million miles per hour.
Team members for CODEX pose with the instrument in a clean facility during initial integration of the coronagraph with the pointing system. CODEX Team/NASA This launch is just the latest step in a long history for the instrument. In the early 2000s and in August 2017, NASA scientists ran ground-based experiments similar to CODEX during total solar eclipses. A coronagraph mimics what happens during a total solar eclipse, so this naturally occurring phenomena provided a good opportunity to test instruments that measure the temperature and speed of the solar wind.
In 2019, NASA scientists launched the Balloon-borne Investigation of Temperature and Speed of Electrons in the corona (BITSE) experiment. A balloon the size of a football field carried the CODEX prototype 22 miles above Earth’s surface, where the atmosphere is much thinner and the sky is dimmer than it is from the ground, enabling better observations. However, this region of Earth’s atmosphere is still brighter than outer space itself.
“We saw enough from BITSE to see that the technique worked, but not enough to achieve the long-term science objectives,” said Newmark.
Now, by installing CODEX on the space station, scientists will be able to view the Sun’s corona without fighting the brightness of Earth’s atmosphere. This is also a beneficial time for the instrument to launch because the Sun has reached its solar maximum phase, a period of high activity during its 11-year cycle.
“The types of solar wind that we get during solar maximum are different than some of the types of wind we get during solar minimum,” said Viall. “There are different coronal structures during this time that lead to different types of solar wind.”
The CODEX coronagraph is shown during optical alignment and assembly. CODEX Team//NASA This coronagraph will be looking at two types of solar wind. In one, the solar wind travels directly outward from our star, pulling the magnetic field from the Sun into the heliosphere, the bubble that surrounds our solar system. The other type of solar wind forms from magnetic field lines that are initially closed, like a loop, but then open up.
These closed field lines contain hot, dense plasma. When the loops open, this hot plasma gets propelled into the solar wind. While these “blobs” of plasma are present throughout all of the solar cycle, scientists expect their location to change because of the magnetic complexity of the corona during solar maximum. The CODEX instrument is designed to see how hot these blobs are for the first time.
The coronagraph will also build upon research from ongoing space missions, such as the joint ESA (European Space Agency) and NASA mission Solar Orbiter, which also carries a coronagraph, and NASA’s Parker Solar Probe. For example, CODEX will look at the solar wind much closer to the solar surface, while Parker Solar Probe samples it a little farther out. Launching in 2025, NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission will make 3D observations of the Sun’s corona to learn how the mass and energy there become solar wind.
By comparing these findings, scientists can better understand how the solar wind is formed and how the solar wind changes as it travels farther from the Sun. This research advances our understanding of space weather, the conditions in space that may interact with Earth and spacecraft.
“Just like understanding hurricanes, you want to understand the atmosphere the storm is flowing through,” said Newmark. “CODEX’s observations will contribute to our understanding of the region that space weather travels through, helping improve predictions.”
The CODEX instrument is a collaboration between NASA’s Goddard Space Flight Center and the Korea Astronomy and Space Science Institute with additional contribution from Italy’s National Institute for Astrophysics.
By Abbey Interrante
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Oct 30, 2024 Related Terms
Coronal Diagnostic Experiment (CODEX) Goddard Space Flight Center Heliophysics Heliophysics Division International Space Station (ISS) Science Mission Directorate Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
4 min read New NASA Instrument for Studying Snowpack Completes Airborne Testing
Article
1 day ago
2 min read New Project Invites You To Do Martian Cloud Science with NASA
Article
1 day ago
2 min read Watch How Students Help NASA Grow Plants in Space: Growing Beyond Earth
Article
2 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.