Jump to content

Seminar Preentation Given at the University of New Hampshire (UNH)


Recommended Posts

  • Publishers
Posted

Alphonse Sterling (ST13) gave an invited seminar presentation to the Space Science group at UNH, on 4/26/24. Sterling, who obtained his PhD from UNH, also had round table discussions with some of the current UNH students interested in careers in space science.

unh-logo.png?w=1000

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      13 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Getty Images University Student Research Challenge (USRC) seeks to challenge students to propose new ideas/concepts that are relevant to NASA Aeronautics. USRC will provide students, from accredited U.S. colleges or universities, with grants for their projects and with the challenge of raising cost share funds through a crowdfunding campaign. The process of creating and implementing a crowdfunding campaign acts as a teaching accelerator – requiring students to act like entrepreneurs and raise awareness about their research among the public.
      The solicitation goal can be accomplished through project ideas such as advancing the design, developing technology or capabilities in support of aviation, by demonstrating a novel concept, or enabling advancement of aeronautics-related technologies.
      Eligibility: NASA funding is available to all accredited U.S. institutions of higher education (e.g. universities, four-year colleges, community colleges, or other two-year institutions). Students must be currently enrolled (part-time or full-time) at the institution. NASA has no set expectations as to the team size. The number of students participating in the investigation is to be determined by the scope of the project and the student Team Leader.
      The USRC solicitation is currently Closed with Proposals next due June 26, 2025. Please visit NSPIRES to receive alerts when more information is available.
      A USRC Q&A/Info Session and Proposal Workshop will be held May 12, 2025, at 2pm ET ahead of the USRC Submission deadline in June 2025. Join the Q&A
      Please email us at HQ-USRC@mail.nasa.gov if you have any questions or to schedule a 1 on 1.
      USRC Awards
      Context-Aware Cybersecurity for UAS Traffic Management (Texas A&M University)
      Developing, testing, and pursuing transition of an aviation-context-aware network authentication and segmentation function, which holistically manages cyber threats in future UAS traffic control systems.
      Student Team: Vishwam Raval (Team Lead), Michael Ades, Garett Haynes, Sarah Lee, Kevin Lei, Oscar Leon, McKenna Smith, Nhan Nick Truong
      Faculty Mentors: Jaewon Kim and Sandip Roy
      Selected: 2025
      Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (North Carolina State University)
      Developing and deploying advanced unmanned aerial systems designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters.
      Student Team: Tobias Hullette (Team Lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, Hadie Sabbah
      Faculty Mentor: Felix Ewere
      Selected: 2025
      Design and Prototyping of a 9-phase Dual-Rotor Motor for Supersonic Electric Turbofan (Colorado School of Mines)
      Designing and prototyping a scaled-down 9-phase dual-rotor motor (DRM) for a supersonic electric turbofan.
      Student Team: Mahzad Gholamian (Team Lead), Garret Reader, Mykola Mazur, Mirali Seyedrezaei
      Faculty Mentor: Omid Beik
      Selected: 2024
      Project F.I.R.E (Fire Intervention Retardant Expeller) (Cerritos Community College)
      Mitigating wildfires with drone released fire retardant pellets.
      Student Team: Angel Ortega Barrera (Team Lead), Larisa Mayoral, Paola Mayoral Jimenez, Jenny Rodriguez, Logan Stahl, Juan Villa
      Faculty Mentor: Janet McLarty-Schroeder
      Selected: 2024
      Learning cooperative policies for adaptive human-drone teaming in shared airspace (Cornell University)
      Enabling new coordination and communication models for smoother, more efficient, and robust air traffic flow.
      Student Team: Mehrnaz Sabet (Team Lead), Aaron Babu, Marcus Lee, Joshua Park, Francis Pham, Owen Sorber, Roopak Srinivasan, Austin Zhao
      Faculty Mentor: Sanjiban Choudhury, Susan Fussell
      Selected: 2024
      Crowdfunding Website
      Investigation on Cryogenic Fluid Chill-Down Time for Supersonic Transport Usage (University of Washington, Seattle)
      Investigating reducing the boil-off of cryogenic fluids in pipes using vortex generators.
      Student Team: Ryan Fidelis (Team Lead), Alexander Ala, Kaleb Shaw
      Faculty Mentor: Fiona Spencer, Robert Breidenthal
      Selected: 2024
      Crowdfunding Website

      Web Article: “Students win NASA grant to develop AI for safer aerial traffic“
      Clean Forever-Flying Drones: Utilizing Ocean Water for Hydrogen Extraction in Climate Monitoring (Purdue University)
      An ocean-based fueling station and a survey drone that can refuel in remote areas.
      Student Team: Holman Lau (Team Lead), Nikolai Baranov, Andrej Damjanov, Chloe Hardesty, Smit Kapadia
      Faculty Mentor: Li Qiao
      Selected: 2023
      Crowdfunding Website
      Intelligent drone for detection of people during emergency response operation (Louisiana State University and A&M College)
      Using machine learning algorithms for images and audio data, integrated with gas sensing for real-time detection of people on UAS.
      Student Team: Jones Essuman (Team Lead), Tonmoy Sarker, Samer Tahboub
      Faculty Mentor: Xiangyu Meng
      Selected: 2023
      Crowdfunding Website
      Advancing Aerospace Materials Design through High-Fidelity Computational Peridynamic Modeling and Modified SVET Validation of Corrosion Damage (California State University, Channel Islands)
      Modeling electrochemical corrosion nonlocally and combining efforts from bond-based and state-based theory.
      Student Team: Trent Ruiz (Team Lead), Isaac Cisneros, Curtis Hauck
      Faculty Mentor: Cynthia Flores
      Selected: 2023
      Crowdfunding Website
      Swarm Micro UAVs for Area Mapping in GPS-denied Areas (Embry-Riddle Aeronautical University)
      Using swarm robotics to map complex environments and harsh terrain with Micro Aerial Vehicles (MAVs)
      Student Team: Daniel Golan (Team Lead), Stanlie Cerda-Cruz, Kyle Fox, Bryan Gonzalez, Ethan Thomas
      Faculty Mentor: Sergey V. Drakunov
      Selected: 2023
      Crowdfunding Website

      Web Article: “Student Research on Drone Swarm Mapping Selected to Compete at NASA Challenge“
      AeroFeathers—Feathered Airfoils Inspired by the Quiet Flight of Owls (Michigan Tech University)
      Creating new propeller blades and fixed wing design concepts that mimic the features of an
      owl feather and provide substantial noise reduction benefits.
      Student Team: William Johnston (Team Lead), Pulitha Godakawela Kankanamalage, Amulya Lomte, Maria Jose Carrillo Munoz, Brittany Wojciechowski, Laura Paige Nobles, Gabrielle Mathews
      Faculty Mentor: Bhisham Sharma
      Selected: 2023
      Crowdfunding Website
      Laser Energized Aerial Drone System (LEADS) for Sustained Sensing Applications (Michigan State University)
      Laser based, high-efficiency optical power transfer for UAV charging for sustained flight and monitoring.
      Student Team: Gavin Gardner (Team Lead), Ryan Atkinson, Brady Berg, Ross Davis, Gryson Gardner, Malachi Keener, Nicholas Michaels
      Faculty Mentor: Woongkul Lee
      Selected: 2023
      Crowdfunding Website

      LEADS team Website
      UAM Contingency Diagnosis Toolkit (Ohio State University)
      A UAM contingency diagnosis toolkit which that includes cognitive work requirements (CWRs) for human operators, information sharing requirements, and representational designs.
      Student Team: Connor Kannally (Team Lead), Izzy Furl, Luke McSherry, Abhinay Paladugu
      Faculty Mentor: Martijn IJtsma
      Selected: 2023
      Crowdfunding Website

      Project Website

      Web Article: “NASA Awards $80K to Ohio State students through University Research Challenge“
      Hybrid Quadplane Search and Rescue Missions (NC A&T University)
      An autonomous search and rescue quadplane UAS supported by an unmanned mobile landing platform/recharge station ground vehicle.
      Student Team: Luis Landivar Olmos (Team Lead), Dakota Price, Amilia Schimmel, Sean Tisdale
      Faculty Mentor: A. Homaifar
      Selected: 2023
      Crowdfunding Website
      Drone Based Water Sampling and Quality Testing – Special Application in the Raritan River (Rutgers University, New Brunswick)
      An autonomous water sampling drone system.
      Student Team: Michael Leitner (Team Lead), Xavier Garay, Mohamed Haroun, Ruchit Jathania, Caleb Lippe, Zachary Smolder, Chi Hin Tam
      Faculty Mentor: Onur Bilgen
      Selected: 2023
      Crowdfunding Website

      Project Website
      Development of a Low-Cost Open-Source Wire Arc Additive Manufacturing Machine – Arc One (Case Western Reserve University)
      A small-scale, modular, low-cost, and open-source Wire Arc Additive Manufacturing (WAAM) platform.
      Student Team: Vishnushankar Viraliyur Ramasamy (Team Lead), Robert Carlstrom, Bathlomew Ebika, Jonathan Fu, Anthony Lino, Garrett Tieng
      Faculty Mentor: John Lewandowski
      Selected: 2023
      Crowdfunding Website

      Web Article: “PhD student wins funding from NASA and develops multidisciplinary team of undergraduate students to build novel machine“
      Low Cost and Efficient eVTOL Platform Leveraging Opensource for Accessibility (University of Nevada, Las Vegas)
      Lowering the barrier of entry into eVTOL deployment and development with a low cost, efficient, and open source eVTOL platform
      Student Team: Martin Arguelles-Perez (Team Lead), Benjamin Bishop, Isabella Laurito, Genaro Marcial Lorza, Eman Yonis
      Faculty Mentor: Venkatesan Muthukumar
      Selected: 2022
      Applying Space-Based Estimation Techniques to Drones in GPS-Denied Environments (University Of Texas, Austin)
      Taking real-time inputs from flying drones and outputting an accurate state estimation with 3-D error ellipsoid visualization
      Student Team: James Mitchell Roberts (Team Lead), Lauren Byram, Melissa Pires
      Faculty Mentor: Adam Nokes
      Selected: 2022
      Crowdfunding Website

      Project Website

      Web Article: “GPS-free Drone Tech Proposal Lands Undergrads Spot in NASA Challenge“
      Underwing Distributed Ducted Fan ‘FanFoil’ Concept for Transformational Aerodynamic and Aeroacoustic Performance (Texas Tech University, Lubbock)
      Novel highly under-cambered airfoils with electric ducted fans featuring ’samara’ maple seed inspired blades for eVTOL application
      Student Team: Jack Hicks (Team Lead), Harrison Childre, Guilherme Fernandes, David Gould, Lorne Greene, Muhammad Waleed Saleem, Nathan Shapiro
      Faculty Mentor: Victor Maldonado 
      Selected: 2022
      Crowdfunding Website

      Web Articles: “Improving Ducted-Fan eVTOL Efficiency” (AvWeek), “Sky Taxies“
      Urban Cargo Delivery Using eVTOL Aircrafts (University Of Illinois, Chicago)
      A bi-objective optimization formulation minimizing total run costs of a two-leg cargo delivery system and community noise exposure to eVTOL operations
      Student Team: Nahid Parvez Farazi (Team Lead), Amy Hofstra, Son Nguyen
      Faculty Mentor: Bo Zou
      Selected: 2022
      Crowdfunding Website

      Web Article: “PhD student awarded NASA grant to investigate urban cargo delivery systems“
      Congestion Aware Path Planning for Optimal UAS Traffic Management (University Of Illinois, Urbana-Champaign)
      A feasible, provably safe, and quantifiably optimal path planning framework considering fully autonomous UAVs in urban environments
      Student Team: Minjun Sung (Team Lead), Christoph Aoun, Ivy Fei, Christophe Hiltebrandt-McIntosh, Sambhu Harimanas Karumanchi, Ran Tao
      Faculty Mentor: Naira Hovakimyan
      Selected: 2022
      Crowdfunding Website

      Web Article: “NASA funds UAV traffic management research“
      AeroZepp: Aerostat Enabled Drone Glider Delivery System / Whisper Ascent: Quiet Drone Delivery (University of Delaware)
      An aerostat enabled low-energy UAV payload delivery system
      Student Team: Wesley Connor (Team Lead), Abubakarr Bah, Karlens Senatus
      Faculty Mentor: Suresh Advani
      Selected: 2022
      Crowdfunding Website
      Sustainable Transport Research Aircraft for Test Operation (STRATO) (Rutgers University, New Brunswick)
      An open source, efficiently driven, optimized Active Flow Control (AFC) enhanced control surface for UAV research platforms
      Student Team: Daulton James (Team Lead), Jean Alvarez, Frederick Diaz, Michael Ferrell, Shriya Khera, Connor Magee, Roy Monge Hidalgo, Bertrand Smith
      Faculty Mentor: Edward DeMauro
      Selected: 2022
      Crowdfunding Website

      Web Articles: “SoE Students Eligible for NASA University Student Research Challenge Award“, “Senior Design Team Captures NASA Research Challenge“

      A recorded STRATO USRC Tech Talk
      Dronehook: A Novel Fixed-Wing Package Retrieval System (University Of Notre Dame)
      Envisioning a world where items can be retrieved from remote locations in a simple fashion from efficient fixed-wing UAVs
      Student Team: Konrad Rozanski (Team Lead), Dillon Coffey, Bruce Smith, Nicholas Orr
      Faculty Mentor: Jane Cleland-Huang
      Selected: 2021
      Crowdfunding Website

      Web Article: “Notre Dame student team wins NASA research award for drone scoop and grab technology“
      Aerial Intra-city Delivery Electric Drones (AIDED) with High Payload Capacity (Michigan State University)
      A high-payload capacity delivery drone capable of safely latching and charging on electrified public transportation systems
      Student Team: Yuchen Wang (Team Lead), Hunter Carmack, Kindred Griffis, Luke Lewallen, Scott Newhard, Caroline Nicholas, Shukai Wang, Kyle White
      Faculty Mentor: Woongkul Lee
      Selected: 2021
      AIDED Crowdfunding Website

      AIDED Project Website or Team Website

      Web Articles: “Spartan Engineers win NASA research award” and “NASA Aeronautics amplification“; “Ross Davis & Gavin Gardner on The Guy Gordon Show“; “MSU Students Create Delivery Drone for NASA“; “Student drone project flying high with help from NASA“

      A recorded USRC Tech Talk
      Robotic Fabrication Work Cell for Customizable Unmanned Aerial Systems (Virginia Polytechnic Institute & State University)
      A robotic, multi-process work cell to autonomously fabricate topologically optimized UASs tailored for immediate application needs
      Student Team: Tadeusz Kosmal (Team Lead), Kieran Beaumont, Om Bhavsar, Eric Link, James Lowe
      Faculty Mentor: Christopher Williams
      Selected: 2021
      Crowdfunding Website

      RAV-FAB Project Website

      Web Articles: “Drones that fly away from a 3D printer: Undergraduates create science nonfiction” and “3D printing breaks out of the box / VTx / Virginia Tech“

      NASA VT USRC Web Article: “USRC Students Sees Success with Crowdfunding, NASA Grants“

      Publication: Hybrid additive robotic workcell for autonomous fabrication of mechatronic systems – A case study of drone fabrication – ScienceDirect

      Team Social Media: Instagram: @ravfab_vt; LinkedIn: @rav-fab; YouTube

      View RAV-FAB USRC Tech Talk #1 or USRC Tech Talk #2
      Real Time Quality Control in Additive Manufacturing Using In-Process Sensing and Machine Learning (Cornell University)
      A high-precision and low-cost intelligent sensor-based quality control technology for Additive Manufacturing
      Student Team: Adrita Dass (Team Lead), Talia Turnham, Benjamin Steeper, Chenxi Tian, Siddharth Patel, Akula Sai Pratyush, Selina Kirubakar
      Faculty Mentor: Atieh Moridi
      Selected: 2021
      Crowdfunding Website

      AMAS Project Website

      Web Article: “Students win NASA challenge with 3D-printer smart sensor“

      A recorded USRC Tech Talk on this topic
      AVIATA: Autonomous Vehicle Infinite Time Apparatus (University of California, Los Angeles)
      A drone swarm system capable of carrying a payload in the air indefinitely
      Student Team: Chirag Singh (Team Lead), Ziyi Peng, Bhrugu Mallajosyula, Willy Teav, David Thorne, James Tseng, Eric Wong, Axel Malahieude, Ryan Nemiroff, Yuchen Yao, Lisa Foo
      Faculty Mentor: Jeff Eldredge
      Selected: 2020
      Crowdfunding Website

      AVIATA Project Website

      A recorded USRC Tech Talk on AVIATA

      The recorded poster session at the TACP Showcase 2021
      Redundant Flight Control System for BVLOS UAV Operations (Embry-Riddle Aeronautical University)
      A redundant flight control system as a “back-up” to the primary flight computer to enhance safety of sUAS
      Student Team: Robert Moore (Team Lead), Joseph Ayd, and Todd Martin
      Faculty Mentor: John Robbins
      Selected: 2020
      Crowdfunding Website

      Web Articles: “NASA Web Article“; “Drone Innovation Top Embry-Riddle Entrepreneurship Competition“

      Follow the team’s progress at: https://www.facebook.com/Assured Autonomy

      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      Multi-Mode Hybrid Unmanned Delivery System: Combining Fixed-Wing and Multi-Rotor Aircraft with Ground Vehicles (Rutgers University)
      Extending drone delivery distance with a multi-mode hybrid delivery system
      Student Team: Paul Wang (Team Lead), Nolan Angelia, Muhammet Ali Gungor
      Faculty Mentor: Onur Bilgen
      Selected: 2020
      Crowdfunding Website

      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      AVIS: Active Vortex Inducing System for Flow Separation Control to Improve Airframe Efficiency (Georgia Institute of Technology)
      Use an array of vortex generators that can be adjusted throughout flight to increase wing efficiency
      Student Team: Michael Gamarnik (Team Lead), Shiva Khanna Yamamoto, Noah Mammen, Tommy Schrager, Bethe Newgent
      Faculty Mentor: Kelly Griendling
      Selected: 2020
      Go to AVIS team site

      A recorded USRC Tech Talk on AVIS

      The recorded poster session at the TACP Showcase 2021

      NASA Web Article
      Hybrid Airplanes – An Optimum and Modular Approach (California Polytechnic State University, San Luis Obispo)
      Model and test powertrain to maximize the efficiency of hybrid airplanes
      Student Team: Nicholas Ogden (Team Lead), Joseph Shy, Brandon Bartlett, Ryker Bullis, Chino Cruz, Sara Entezar, Aaron Li, Zach Yamauchi
      Faculty Mentor: Paulo Iscold
      Selected: 2019
      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      ATLAS Air Transportation (South Dakota State University)
      A multipurpose, automated drone capable of comfortably lifting the weight of an average person
      Student Team: Isaac Smithee (Team Lead), Wade Olson, Nicolas Runge, Ryan Twedt, Anthony Bachmeier, Matthew Berg, Sterling Berg
      Faculty Mentors: Marco Ciarcia, Todd Letcher
      Selected: 2019
      A recorded USRC Tech Talk #1 and USRC Tech Talk #2 on ATLAS

      The recorded poster session at the TACP Showcase 2021
      Software-Defined GPS Augmentation Network for UAS Navigation (University Of Oklahoma, Norman)
      A novel solution of enhanced GPS navigation for unmanned aerial vehicles
      Student Team: Robert Rucker (Team Lead), Alex Zhang, Jakob Fusselman, Matthew GilliamMentors: Dr. Yan (Rockee) Zhang (Faculty Mentor), Dr Hernan Suarez (Team Technical Mentor)
      Faculty Mentors: Marco Ciarcia, Todd Letcher
      Selected: 2019
      Crowdfunding Website

      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      UAV Traffic Information Exchange Network (Purdue University)
      A blockchain-inspired secure, scalable, distributed, and efficient communication framework to support large scale UAV operations
      Student Team: Hsun Chao (Team Lead) and Apoorv Maheshwari
      Faculty Mentors: Daniel DeLaurentis (Faculty Mentor), Shashank Tamaskar
      Selected: 2018
      Web Article: “Student-developed communication network for UAVs interests NASA“
      The recorded poster session at the TACP Showcase 2021
      University Student Research Challenge
      University Leadership Initiative
      University Innovation Project
      Transformative Aeronautics Concepts Program
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      4 min read NASA University Research Program Makes First Award to a Community College Project
      Article 1 month ago 3 min read NASA Selects New Round of Student-Led Aviation Research Awards
      Article 1 month ago 4 min read NASA Selects University Teams to Explore Innovative Aeronautical Research
      Article 1 year ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Solar System Exploration
      Follow Us on Social Media
      Explore NASA’s History
      Share
      Details
      Last Updated Apr 03, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      University Student Research Challenge View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 5 Min Read 20-Year Hubble Study of Uranus Yields New Atmospheric Insights
      The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region darkened going into winter shadow while the north polar region brightened as northern summer approaches. Credits:
      NASA, ESA, Erich Karkoschka (LPL) The ice-giant planet Uranus, which travels around the Sun tipped on its side, is a weird and mysterious world. Now, in an unprecedented study spanning two decades, researchers using NASA’s Hubble Space Telescope have uncovered new insights into the planet’s atmospheric composition and dynamics. This was possible only because of Hubble’s sharp resolution, spectral capabilities, and longevity. 
      The team’s results will help astronomers to better understand how the atmosphere of Uranus works and responds to changing sunlight. These long-term observations provide valuable data for understanding the atmospheric dynamics of this distant ice giant, which can serve as a proxy for studying exoplanets of similar size and composition.
      When Voyager 2 flew past Uranus in 1986, it provided a close-up snapshot of the sideways planet. What it saw resembled a bland, blue-green billiard ball. By comparison, Hubble chronicled a 20-year story of seasonal changes from 2002 to 2022. Over that period, a team led by Erich Karkoschka of the University of Arizona, and Larry Sromovsky and Pat Fry from the University of Wisconsin used the same Hubble instrument, STIS (the Space Telescope Imaging Spectrograph), to paint an accurate picture of the atmospheric structure of Uranus. 
      Uranus’ atmosphere is mostly hydrogen and helium, with a small amount of methane and traces of water and ammonia. The methane gives Uranus its cyan color by absorbing the red wavelengths of sunlight.
      The Hubble team observed Uranus four times in the 20-year period: in 2002, 2012, 2015, and 2022. They found that, unlike conditions on the gas giants Saturn and Jupiter, methane is not uniformly distributed across Uranus. Instead, it is strongly depleted near the poles. This depletion remained relatively constant over the two decades. However, the aerosol and haze structure changed dramatically, brightening significantly in the northern polar region as the planet approaches its northern summer solstice in 2030.
      The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region darkened going into winter shadow while the north polar region brightened as northern summer approaches. NASA, ESA, Erich Karkoschka (LPL) Uranus takes a little over 84 Earth years to complete a single orbit of the Sun. So, over two decades, the Hubble team has only seen mostly northern spring as the Sun moves from shining directly over Uranus’ equator toward shining almost directly over its north pole in 2030. Hubble observations suggest complex atmospheric circulation patterns on Uranus during this period. The data that are most sensitive to the methane distribution indicate a downwelling in the polar regions and upwelling in other regions. 
      The team analyzed their results in several ways. The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region (left) darkened going into winter shadow while the north polar region (right) brightened as it began to come into a more direct view as northern summer approaches.
      The top row, in visible light, shows how the color of Uranus appears to the human eye as seen through even an amateur telescope. 
      In the second row, the false-color image of the planet is assembled from visible and near-infrared light observations. The color and brightness correspond to the amounts of methane and aerosols. Both of these quantities could not be distinguished before Hubble’s STIS was first aimed at Uranus in 2002. Generally, green areas indicate less methane than blue areas, and red areas show no methane. The red areas are at the limb, where the stratosphere of Uranus is almost completely devoid of methane. 
      The two bottom rows show the latitude structure of aerosols and methane inferred from 1,000 different wavelengths (colors) from visible to near infrared. In the third row, bright areas indicate cloudier conditions, while the dark areas represent clearer conditions. In the fourth row, bright areas indicate depleted methane, while dark areas show the full amount of methane. 
      At middle and low latitudes, aerosols and methane depletion have their own latitudinal structure that mostly did not change much over the two decades of observation.  However, in the polar regions, aerosols and methane depletion behave very differently. 
      In the third row, the aerosols near the north pole display a dramatic increase, showing up as very dark during early northern spring, turning very bright in recent years. Aerosols also seem to disappear at the left limb as the solar radiation disappeared. This is evidence that solar radiation changes the aerosol haze in the atmosphere of Uranus. On the other hand, methane depletion seems to stay quite high in both polar regions throughout the observing period. 
      Astronomers will continue to observe Uranus as the planet approaches northern summer.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      20 Years of Uranus Observations





      Share








      Details
      Last Updated Mar 31, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center
      Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Ann Jenkins
      Space Telescope Science Institute, Baltimore, Maryland
      Ray Villard
      Space Telescope Science Institute, Baltimore, Maryland

      Related Terms
      Hubble Space Telescope Astrophysics Division Goddard Space Flight Center Planetary Environments & Atmospheres Planetary Science Planets The Solar System Uranus
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This team from University High School in Irvine, California, won the 2025 regional Oceans Science Bowl, hosted by NASA’s Jet Propulsion Laboratory. From left: Nethra Iyer, Joanne Chen, Matthew Feng, Avery Hexun, Angelina Yan, and coach David Knight.NASA/JPL-Caltech The annual regional event puts students’ knowledge of ocean-related science to the test in a fast-paced academic competition.
      A team of students from University High School in Irvine earned first place at a fast-paced regional academic competition focused on ocean science disciplines and hosted by NASA’S Jet Propulsion Laboratory in Southern California.
      Eight teams from Los Angeles and Orange counties competed at the March 29 event, dubbed the Los Angeles Surf Bowl. It was the last of about 20 regional competitions held across the U.S. this year in the lead-up to the virtual National Ocean Sciences Bowl finals event in mid-May.
      Santa Monica High School earned second place; Francisco Bravo Medical Magnet High School in Los Angeles came in third. With its victory, University repeated its winning performance from last year. The school also won the JPL-hosted regional Science Bowl earlier this month.
      Teams from all eight schools that participated in the JPL-hosted 2025 regional Ocean Sciences Bowl pose alongside volunteers and coaches.NASA/JPL-Caltech For the Ocean Sciences Bowl, teams are composed of four to five students and a coach. To prepare for the event, team members spend months answering multiple-choice questions with a “Jeopardy!”-style buzzer in just five seconds. Questions come in several categories, including biology, chemistry, geology, and physics along with related geography, technology, history, policy, and current events topics.
      A question in the chemistry category might be “What chemical is the principal source of energy at many of Earth’s hydrothermal vent systems?” (It’s hydrogen sulfide.) Other questions can be considerably more challenging.
      When a team member buzzes in and gives the correct answer to a multiple-choice question, the team earns a bonus question, which allows teammates to consult with one another to come up with an answer. More complicated “team challenge questions” prompt students to work together for a longer period. The theme of this year’s competition is “Sounding the Depths: Understanding Ocean Acoustics.”
      University High junior Matthew Feng, a return competitor, said the team’s success felt like a payoff for hours of studying together, including on weekends. He keeps coming back to the competition partly for the sense of community and also for the personal challenge, he said. “It’s nice to compete and meet people, see people who were here last year,” Matthew added. “Pushing yourself mentally — the first year I was shaking so hard because I wasn’t used to that much adrenaline.”
      Since 2000, JPL’s Public Services Office has coordinated the Los Angeles regional contest with the help of volunteers from laboratory staff and former Ocean Sciences Bowl participants in the local community. JPL is managed for NASA by Caltech.
      The National Ocean Sciences Bowl is a program of the Center for Ocean Leadership at the University Corporation for Atmospheric Research, a nonprofit consortium of colleges and universities focused in part on Earth science-related education.
      News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2025-044
      Share
      Details
      Last Updated Mar 31, 2025 Related Terms
      Jet Propulsion Laboratory STEM Engagement at NASA Explore More
      6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on…
      Article 7 days ago 5 min read NASA Takes to the Air to Study Wildflowers
      Article 1 week ago 6 min read Next-Generation Water Satellite Maps Seafloor From Space
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Advanced Capabilities for Emergency Response Operations (ACERO) researchers Lynne Martin, left, and Connie Brasil use the Portable Airspace Management System (PAMS) to view a simulated fire zone and set a drone flight plan during a flight test the week of March 17, 2025.NASA/Brandon Torres-Navarrete NASA researchers conducted initial validation of a new airspace management system designed to enable crews to use aircraft fight and monitor wildland fires 24 hours a day, even during low-visibility conditions.  
      From March 17-28, NASA’s Advanced Capabilities for Emergency Response Operations (ACERO) project stationed researchers at multiple strategic locations across the foothills of the Sierra de Salinas mountains in Monterey County, California. Their mission: to test and validate a new, portable system that can provide reliable airspace management under poor visual conditions, one of the biggest barriers for aerial wildland firefighting support. 
      The mission was a success. 
      “At NASA, we have decades of experience leveraging our aviation expertise in ways that improve everyday life for Americans,” said Carol Carroll, deputy associate administrator for NASA’s Aeronautics Research Mission Directorate at agency headquarters in Washington. “We need every advantage possible when it comes to saving lives and property when wildfires affect our communities, and ACERO technology will give responders critical new tools to monitor and fight fires.” 
      NASA ACERO researchers Samuel Zuniga,left, and Jonathan La Plain prepare for a drone flight test using the PAMS in Salinas on March 19, 2025.NASA/Brandon Torres-Navarrete One of the barriers for continued monitoring, suppression, and logistics support in wildland fire situations is a lack of tools for managing airspace and air traffic that can support operations under all visibility conditions. Current aerial firefighting operations are limited to times with clear visibility when a Tactical Air Group Supervisor or “air boss” in a piloted aircraft can provide direction. Otherwise, pilots may risk collisions. 
      The ACERO technology will provide that air boss capability for remotely piloted aircraft operations – and users will be able to do it from the ground. The project’s Portable Airspace Management System (PAMS) is a suitcase-sized solution that builds on decades of NASA air traffic and airspace management research. The PAMS units will allow pilots to view the locations and operational intents of other aircraft, even in thick smoke or at night. 
      During the testing in Salinas, researchers evaluated the PAMS’ core airspace management functions, including strategic coordination and the ability to automatically alert pilots once their aircrafts exit their preapproved paths or the simulated preapproved fire operation zone.  
      Using the PAMS prototype, researchers were able to safely conduct  flight operations of a vertical takeoff and landing aircraft operated by Overwatch Aero, LLC, of Solvang, California, and two small NASA drones. 
      Flying as if responding to a wildfire scenario, the Overwatch aircraft connected with two PAMS units in different locations. Though the systems were separated by mountains and valleys with weak cellular service, the PAMS units were able to successfully share and display a simulated fire zone, aircraft location, flight plans, and flight intent, thanks to a radio communications relay established by the Overwatch aircraft.  
      Operating in a rural mountain range validated that PAMS could work successfully in an actual wildland fire environment.   
      “Testing in real mountainous environments presents numerous challenges, but it offers significantly more value than lab-based testing,” said Dr. Min Xue, ACERO project manager at NASA’s Ames Research Center in California’s Silicon Valley. “The tests were successful, providing valuable insights and highlighting areas for future improvement.”
      NASA ACERO researchers fly a drone to test the PAMS during a flight test on March 19, 2025.NASA/Brandon Torres-Navarrete Pilots on the ground used PAMS to coordinate the drones, which performed flights simulating aerial ignition – the practice of setting controlled, intentional fires to manage vegetation, helping to control fires and reduce wildland fire risk. 
      As a part of the testing, Joby Aviation of Santa Cruz, California, flew its remotely piloted aircraft, similar in size to a Cessna Grand Caravan, over the testing site. The PAMS system successfully exchanged aircraft location and flight intent with Joby’s mission management system. The test marked the first successful interaction between PAMS and an optionally piloted aircraft. 
      Fire chiefs from the California Department of Forestry and Fire Protection (CAL FIRE) attended the testing and provided feedback on the system’s functionality, features that could improve wildland fire air traffic coordination, and potential for integration into operations. 
      “We appreciate the work being done by the NASA ACERO program in relation to portable airspace management capabilities,” said Marcus Hernandez, deputy chief for CAL FIRE’s Office of Wildfire Technology. “It’s great to see federal, state, and local agencies, as it is important to address safety and regulatory challenges alongside technological advancements.” 
      ACERO chief engineer Joey Mercer, right, shows the Portable Airspace Management System (PAMS) to Cal Fire representatives Scott Eckman, center, and Pete York, left, in preparation for the launch of the Overwatch Aero FVR90 Vertical Take Off and Landing (VTOL) test “fire” information sharing, airspace management, communication relay, and aircraft deconfliction capabilities during the Advanced Capabilities for Emergency Response Operations (ACERO) test in Salinas, California.NASA/Brandon Torres-Navarrete These latest flights build on successful PAMS testing in Watsonville, California, in November 2024. ACERO will use flight test data and feedback from wildland fire agencies to continue building out PAMS capabilities and will showcase more robust information-sharing capabilities in the coming years.  
      NASA’s goal for ACERO is to validate this technology, so it can be developed for wildland fire crews to use in the field, saving lives and property. The project is managed by NASA’s Airspace Operations and Safety Program and supports the agency’s  Advanced Air Mobility mission. 
      ACERO’s PAMS unit shown during a flight test on March 19, 2025NASA/Brandon Torres-Navarrette Share
      Details
      Last Updated Mar 25, 2025 Related Terms
      General Aeronautics Air Traffic Solutions Drones & You Natural Disasters Wildfires Wildland Fire Management Explore More
      3 min read New Aircraft Wing Undergoes Crucial NASA Icing Testing
      Article 3 hours ago 3 min read Engineering Reality: Lee Bingham Leads Lunar Surface Simulation Support for Artemis Campaign
      Article 21 hours ago 3 min read Career Transition Assistance Plan (CTAP) Services
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Thomas Ozoroski, a researcher at NASA’s Glenn Research Center in Cleveland, takes icing accretion measurements in October 2024 as part of transonic truss-braced wing concept research. Researchers at NASA Glenn conducted another test campaign in March 2025.Credit: NASA/Jordan Cochran In the future, aircraft with long, thin wings supported by aerodynamic braces could help airlines save on fuel costs. But those same wings could be susceptible to ice buildup. NASA researchers are currently working to determine if such an issue exists, and how it could be addressed.
      In the historic Icing Research Tunnel at NASA’s Glenn Research Center in Cleveland, scientists and engineers are testing a concept for a transonic truss-braced wing. Their goal: to collect important data to inform the design of these potential efficient aircraft of the future.
      This artist’s concept shows the transonic truss-braced wing concept. NASA’s Advanced Air Transport Technology project is exploring the design, which involves a longer, thinner wing structure with struts to enhance aerodynamic efficiency and reduce fuel consumption.Credit: NASA A transonic truss-braced wing generates less drag in flight compared to today’s aircraft wings, requiring an aircraft to burn less fuel. This revolutionary design could make the wing more prone to ice buildup, so it must undergo a series of rigorous tests to predict its safety and performance. The data the research team has collected so far suggests large sections of the frontmost part of the wing (also known as the leading edge) will require an ice protection system, similar to those found on some commercial aircraft.
      NASA Glenn can simulate icing conditions in its Icing Research Tunnel to identify potential challenges for new aircraft designs. These tests provide important information about how ice builds up on wings and can help identify the most critical icing conditions for safety. All commercial aircraft must be approved by the Federal Aviation Administration to operate in all kinds of weather.
      Because of the thinness of transonic truss-braced wing design, ice tends to build up during cold conditions, as seen during a test in October 2024. Researchers at NASA’s Glenn Research Center in Cleveland conducted another test campaign in March 2025, collecting important data to ensure safety. Credit: NASA/Jordan Cochran This research is part of NASA’s work to mature transonic truss-braced technology by looking at issues including safety and how future aircraft could be integrated into U.S. aviation infrastructure. Boeing is also working with NASA to build, test, and fly the X-66, a full-sized demonstrator aircraft with transonic truss-braced wings. Because the experimental aircraft will not be flown in icy conditions, tests in the Icing Research Tunnel are providing answers to questions about ice buildup.
      This work advances NASA’s role in developing ultra-efficient airliner technologies that are economically, operationally, and environmentally sustainable. For about two decades, NASA has invested in research aimed at advancing transonic truss-braced wing technology to the point where private sector aeronautics companies can integrate it into commercial aircraft configurations. NASA invests in this research through initiatives including its Advanced Air Transport Technology project, which investigates specific performance aspects of transonic truss-braced wing concepts, such as icing. The Advanced Air Transport Technology project is part of NASA’s Advanced Air Vehicles Program.
      Explore More
      3 min read Finalists Selected in NASA Aeronautics Agriculture-Themed Competition 
      Article 2 weeks ago 5 min read NASA’s Chevron Technology Quiets the Skies
      Article 2 weeks ago 3 min read NASA Selects Three University Teams to Participate in Flight Research 
      Article 2 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...