Jump to content

Imaging X-ray Polarimetery Explorer (IXPE) Conference Presentation at the 244th Meeting of the American Astronomical Society


NASA

Recommended Posts

  • Publishers

Phil Kaaret (ST12) gave a talk on “Particle acceleration and magnetic field geometry in the eastern jet of the microquasar SS 433” at the session on Black Holes on 6/12/24. At the end of his talk, Kaaret promoted the upcoming IXPE GO cycle 2 and the NICER/IXPE workshop that will be a hybrid meeting held 7/29-8/1/24 and the International X-ray POlarimetry Symposium being organized by USRA that will be held in Huntsville on 9/16-19/24.

ixpe-new-image.png?w=1780

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A NASA MITTIC participant during the competition’s on-site experience and Space Tank at NASA’s Johnson Space Center in Houston on Dec. 7, 2022. (Credit: Riley McClenaghan) NASA will spotlight its program to engage underrepresented and underserved students in science, technology, engineering, and math at the 2024 National Historically Black Colleges and Universities (HBCU) Week Conference in Philadelphia, from Sunday, Sept. 15, to Thursday, Sept. 19.
      As part of the White House’s initiative to advance educational equity and economic opportunities through HBCUs, NASA’s Minority University Research and Education Project (MUREP) provides HBCU scholars access to NASA technology, networks, training, resources, and partners. During the conference, NASA will host a MUREP Innovation and Tech Transfer Idea Competition (MITTIC), featuring a hackathon challenging students to develop creative and innovative solutions for the benefit of humanity.
      “NASA’s MUREP is delighted to continue our collaboration with the White House initiative on HBCU’s to elevate students’ learning experience,” said Keya Briscoe, manager, MUREP, NASA Headquarters in Washington. “We are enthusiastic about the fresh insights and innovative solutions that the scholars will develop at the MITTIC hackathon, which provides an opportunity to showcase the depth and breadth of their academic and professional excellence.”
      The MITTIC HBCU hackathon concentrates on using NASA technologies to address various challenges common to HBCU campuses. The scholars will be divided into teams which will utilize NASA technology to address the challenge they select. Each team will pitch their concepts to a panel of subject matter experts.
      The winning team will receive a cash prize provided by MITTIC’s partner, JP Morgan Chase (JPMC), in collaboration with the JPMC Chief Technology Office, Career and Skills Development Office, and Advancing Black Pathways Group. The remaining HBCU hackathon teams will be able to submit their proposals to the fall or spring MITTIC Space2Pitch Competitions taking place at NASA’s Johnson Space Center in Houston.
      To further NASA’s initiative of promoting engagement and inclusion, the scholars will have the opportunity to interact with NASA exhibits to learn more about different career paths with NASA. In addition, a viewing of the Color of Space will show, highlighting the life stories of seven current and former Black astronauts.
      Through the HBCU Scholar Recognition Program, the White House Initiative annually recognizes students from HBCUs for their accomplishments in academics, leadership, and civic engagement. Over the course of an academic school year, HBCU scholars participate in professional development through monthly classes and have access to a network of public and private partners.
      “NASA’s unwavering commitment to provide our nation’s HBCUs with opportunity to participate in the space enterprise is invaluable to our institutions and our nation,” said Dietra Trent, executive director of the White House Initiative on HBCUs. “The initiative proudly solutes NASA for their relentless support and we look forward to having them again as a valued partner for the 2024 HBCU Week Conference and HBCU Scholar Recognition Program. By fostering innovation and expanding opportunities in STEM, NASA is empowering the next generation of diverse leaders to reach for the stars and beyond.”
      Through their relationships with NASA, community-based organizations, and other public and private partners, HBCU scholars have the opportunity to strive for their education and career potentials.  
      To learn more about NASA and agency programs, visit:
      https://www.nasa.gov
      View the full article
    • By NASA
      The American flag pictured inside the window of Boeing’s Starliner spacecraft at the International Space Station.Credit: NASA NASA will provide live coverage of the upcoming activities for Boeing’s Starliner spacecraft departure from the International Space Station and return to Earth. The uncrewed spacecraft will depart from the orbiting laboratory for a landing at White Sands Space Harbor in New Mexico.
      Starliner is scheduled to autonomously undock from the space station at approximately 6:04 p.m. EDT Friday, Sept. 6, to begin the journey home, weather conditions permitting. NASA and Boeing are targeting approximately 12:03 a.m., Saturday, Sept. 7, for the landing and conclusion of the flight test.
      NASA’s live coverage of return and related activities will stream on NASA+, the NASA app, and the agency’s website. Learn how to stream NASA programming through a variety of platforms including social media.
      Ahead of Starliner’s return, NASA will host a pre-departure news conference at 12 p.m., Wednesday, Sept. 4, from the agency’s Johnson Space Center in Houston. NASA’s Commercial Crew and International Space Station Program managers and a flight director will participate.
      To attend the pre-departure news conference in person, U.S. media must contact the NASA Johnson newsroom by 5 p.m., Tuesday, Sept. 3, at jsccommu@mail.nasa.gov or 281-483-5111. To join the pre-departure news conference by phone, media must contact the NASA newsroom no later than two hours prior to the start of the call.
      NASA astronauts Butch Wilmore and Suni Williams launched aboard Boeing’s Starliner spacecraft on June 5 for its first crewed flight, arriving at the space station on June 6. As Starliner approached the orbiting laboratory, NASA and Boeing identified helium leaks and experienced issues with the spacecraft reaction control thrusters. For the safety of the astronauts, NASA announced on Aug. 24 that Starliner will return to Earth from the station without a crew. Wilmore and Williams will remain aboard the station and return home in February 2025 aboard the SpaceX Dragon spacecraft with two other crew members assigned to NASA’s SpaceX Crew-9 mission.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 4
      12 p.m. – Starliner pre-departure news conference from NASA’s Johnson Space Center on NASA+, the NASA app, YouTube, and the agency’s website.
      Friday, Sept. 6
      5:45 p.m. – Undocking coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      6:04 p.m. – Undocking
      10:50 p.m. – Coverage resumes for deorbit burn, entry, and landing on NASA+, the NASA app, YouTube, and the agency’s website.
      Saturday, Sept. 7
      12:03 a.m. – Targeted landing
      1:30 a.m. – Post-landing news conference with the following participants:
      Joel Montalbano, deputy associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington Steve Stich, manager, Commercial Crew Program, NASA Kennedy Space Center in Florida Dana Weigel, manager, International Space Station, NASA Johnson John Shannon, vice president, Boeing Exploration Systems Mark Nappi, vice president and program manager, Boeing Commercial Crew Program Coverage of the post-landing news conference will stream live on NASA+, the NASA app, YouTube, and the agency’s website.
      To attend the post-landing news conference in person, U.S. media must contact the NASA Johnson newsroom by 12 p.m., Sept. 6. To join the post-landing news conference by phone, media must contact the NASA Johnson newsroom no later than one hour prior to the start of the event.
      See full mission coverage, NASA’s commercial crew blog, and more information about the mission at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Steve Siceloff
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.sieceloff@nasa.gov
      Share
      Details
      Last Updated Aug 30, 2024 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Perseverance Rover Science Team meets in person and online during the July 2024 team meeting in Pasadena, CA. Credits: R. Hogg and J. Maki. The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis
      It has become a fun tradition for me to write a summary of our yearly in-person Science Team Meetings (2022 meeting and 2023 meeting). I’ve been particularly looking forward to this year’s update given the recent excitement on the team and in the public about Perseverance’s discovery of a potential biosignature, a feature that may have a biological origin but needs more data or further study before reaching a conclusion about the absence or presence of life.
      This past July, ~160 members of the Mars 2020 Science Team met in-person in Pasadena—with another ~50 team members dialed in on-line—for three days of presentations, meetings, and team discussion. For a team that spends most of the year working remotely from around the world, we make the most of these rare opportunities for in-person discussion and synthesis of the rover’s latest science results.
      We spent time discussing Perseverance’s most recent science campaign in the Margin unit, an exposure of carbonate-bearing rocks that occurs along the inner rim of Jezero crater. As part of an effort to synthesize what we’ve learned about the Margin unit over the past year, we heard presentations describing surface and subsurface observations collected from the rover’s entire payload. This was followed by a thought-provoking series of presentations that tackled the three hypotheses we’re carrying for the origin of this unit: sedimentary, volcanic (pyroclastic), or crystalline igneous.
      Some of our liveliest discussion occurred during presentations about Neretva Vallis, Jezero’s inlet valley that once fed the sedimentary fan and lake system within the crater. Data from the RIMFAX instrument took center stage as we debated the origin and age relationship of the Bright Angel outcrop to other units we’ve studied in the crater.
      This context is especially important because the Bright Angel outcrop is home to the Cheyava Falls rock, which contains intriguing features we’ve been calling “leopard spots,” small white spots with dark rims observed in red bedrock of Bright Angel. On the last day of the team meeting, data from our recent “Apollo Temple” abrasion at Cheyava Falls was just starting to arrive on Earth, and team members from the PIXL and SHERLOC teams were huddled in the hallway and at the back of the conference room trying to digest these new results in real time. We had special “pop-up” presentations during which SHERLOC reported compelling evidence for organics in the new abrasion, and PIXL showed interesting new data about the light-toned veins that crosscut this rock.
      Between debates about the Margin unit, updates on recently published studies of the Jezero sedimentary fan sequence, and discussion of the newest rocks at Bright Angel, this team meeting was one of our most exciting yet. It also marked an important transition for the Mars 2020 science mission as we prepare to ascend the Jezero crater rim, leaving behind—at least for now—the rocks inside the crater. I can only imagine the interesting new discoveries we’ll make during the upcoming year, and I can’t wait to report back next summer!
      Written by Katie Stack Morgan, Mars 2020 Deputy Project Scientist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Aug 30, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4289-4290: From Discovery Pinnacle to Kings Canyon and Back Again


      Article


      1 day ago
      3 min read Sols 4287-4288: Back on the Road


      Article


      2 days ago
      3 min read Perseverance Kicks off the Crater Rim Campaign!
      Perseverance is officially headed into a new phase of scientific investigation on the Jezero Crater…


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA’s Boeing Crew Flight Test Status News Conference
    • By NASA
      5 min read
      How Students Learn to Fly NASA’s IXPE Spacecraft
      Amelia “Mia” De Herrera-Schnering is an undergraduate student at the University of Colorado, Boulder, and command controller for NASA’s IXPE mission at LASP. The large wall monitor displaying a countdown shows 17 seconds when Amelia “Mia” De Herrera-Schnering tells her teammates “We have AOS,” meaning “acquisition of signal.”
      “Copy that, thank you,” Alexander Pichler replies. The two are now in contact with NASA’s IXPE (Imaging X-Ray Polarimeter Explorer) spacecraft, transmitting science data from IXPE to a ground station and making sure the download goes smoothly. That data will then go to the science team for further analysis.
      At LASP, the Laboratory for Atmospheric and Space Physics, students at the University of Colorado, Boulder, can train to become command controllers, working directly with spacecraft on pointing the satellites, calibrating instruments, and collecting data. De Herrera-Schnering recently completed her sophomore year, while Pichler had trained as a student and now, having graduated, works as a full-time professional at LASP.
      “The students are a key part in what we do,” said Stephanie Ruswick, IXPE flight director at LASP. “We professionals monitor the health and safety of the spacecraft, but so do the students, and they do a lot of analysis for us.”
      Students also put into motion IXPE’s instrument activity plans, which are provided by the Science Operations Center at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The LASP student team schedules contacts with ground stations to downlink data, schedules observations of scientific and calibration targets, and generates the files necessary to translate the scientific operations into spacecraft actions. If IXPE experiences an anomaly, the LASP team will implement plans to remediate and resume normal operations as soon as possible.
      Exploring the high-energy universe
      The students take part in IXPE’s exploration of a wide variety of celestial targets. In October, for example, students monitored the transmission of data from IXPE’s observations of Swift J1727.8-1613, a bright black hole X-ray binary system. This cosmic object had been recently discovered in September 2023, when NASA’s Neil Gehrels Swift Observatory detected a gamma-ray burst. IXPE’s specialized instruments allow scientists to measure the polarization of X-rays, which contains information about the source of the X-rays as well as the organization of surrounding magnetic fields. IXPE’s follow-up of the Swift object exemplifies how multiple space missions often combine their individual strengths to paint a fuller scientific picture of distant phenomena.
      Team members also conduct individual projects. For example, students analyzed how IXPE would fare during both the annular eclipse on Oct. 14, 2023, and the total eclipse that moved across North America on April 8, to make sure that the spacecraft would have adequate power while the Moon partially blocked the Sun.
      While most of the students working on IXPE at LASP are engineering majors, some are physics or astrophysics majors. Some didn’t initially start their careers in STEM such as flight controller Kacie Davis, who previously studied art.
      Prospective command controllers go through a rigorous 12-week summer training program working 40 hours per week, learning “everything there is to know about mission operations and how to fly a spacecraft,” Ruswick said.
      Cole Writer, an aerospace engineering student, remembers this training as “nerve-wracking” because he felt intimidated by the flight controllers. But after practicing procedures on his own laptop, he felt more confident, and completed the program to become a command controller.
      “It’s nice to be trained by other students who are in the same boat as you and have gone through the same process,” said Adrienne Pickerill, a flight controller who started with the team as a student and earned a Master’s in aerospace engineering at the university in May .
      Sam Lippincott, right, a graduate student lead at LASP, trained as a command controller for NASA’s IXPE spacecraft as an undergraduate. In the background are flight controllers Adrienne Pickerill, left, and Alexander Pichler, who also trained as students. How they got here
      As a teenager Writer’s interests focused on flying planes, and he saved money to train for a pilot’s license, earning it the summer after high school graduation. Surprisingly, he has found many overlaps in skills for both activities – following checklists and preventing mistakes. “Definitely high stakes in both cases,” he said.
      Sam Lippincott, now a graduate student lead after serving as a command controller as an undergraduate, has been a lifelong sci-fi fan, but took a career in space more seriously his sophomore year of college. “For people that want to go into the aerospace or space operations industry, it’s always important to remember that you’ll never stop learning, and it’s important to remain humble in your abilities, and always be excited to learn more,” he said.
      De Herrera-Schnering got hooked on the idea of becoming a scientist the first time she saw the Milky Way. On a camping trip when she was 10 years old, she spotted the galaxy as she went to use the outhouse in the middle of the night. “I woke up my parents, and we just laid outside and we were just stargazing,” she said. “After that I knew I was set on what I wanted to do.”
      Rithik Gangopadhyay, who trained as an undergraduate command controller and continued at LASP as a graduate student lead, had been interested in puzzles and problem-solving as a kid and had a book about planets that fascinated him.. “There’s so much out there and so much we don’t know, and I think that’s what really pushed me to do aerospace and do this opportunity of being a command controller,” he said.
      Coding is key to mission operations, and much of it is done in the Python language. Sometimes the work of flying a spacecraft feels like any other kind of programming — but occasionally, team members step back and consider that they are part of the grand mission of exploring the universe.
      “If it’s your job for a couple of years, it starts to be like, ‘oh, let’s go ahead and do that, it’s just another Tuesday.’ But if you step back and think about it on a high-level basis, it’s really something special,” Pichler said. “It’s definitely profound.”
      Media Contact
      Elizabeth Landau
      Headquarters, Washington
      202-358-0845
      elandau@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...