Jump to content

Lunar Vehicle Active Charge Control System (LVACCS) PICASSO Proposal Awarded


Recommended Posts

  • Publishers
Posted

Linda Krause and Heidi Haviland (ST13) along with Jeff Apple, Miguel Rodriguez-Otero (ES11), Kurt Dietz (ES52), and Gary Thornton (ES21) contributed to the Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) proposal LVACCS that was selected for funding. Omar Leon (University of Michigan) is the instrument suite PI. Electric charge accumulates on the lunar rovers and landers from ambient plasma, ionizing radiation, suprathermal charged particles, dust, and surface regolith. LVACCS will measure both the positive and negative charge, acts to discharge negative charge buildup, and actively charges the vehicle to a known positive potential. This increases the accuracy and precision of related instruments including dust, plasma, and electric fields. LVACCS builds from heritage systems in geosynchronous orbit but with a much smaller size, weight, and power. LVACCS has two main components: a collimated photoelectron gun (CPEG, led by MSFC), and a spacecraft charge detector (led by the University of Michigan). Within the two years of the award, the instrument will mature from TRL 2 to 5. LVACCS solves the important and timely problem of charge build up at the lunar surface for future lander and rover missions.

moon-small.jpg?w=640

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Webb Watches Carbon-Rich Dust Shells Form, Expand in Star System
      A portion of Webb’s 2023 observation of Wolf-Rayet 140. Credits:
      Image: NASA, ESA, CSA, STScI; Science: Emma Lieb (University of Denver), Ryan Lau (NSF NOIRLab), Jennifer Hoffman (University of Denver) Astronomers have long tried to track down how elements like carbon, which is essential for life, become widely distributed across the universe. Now, NASA’s James Webb Space Telescope has examined one ongoing source of carbon-rich dust in our own Milky Way galaxy in greater detail: Wolf-Rayet 140, a system of two massive stars that follow a tight, elongated orbit.
      As they swing past one another (within the central white dot in the Webb images), the stellar winds from each star slam together, the material compresses, and carbon-rich dust forms. Webb’s latest observations show 17 dust shells shining in mid-infrared light that are expanding at regular intervals into the surrounding space.
      Image A: Compare Observations of Wolf-Rayet 140 (MIRI Images)
      Two mid-infrared images from NASA’s James Webb Space Telescope of Wolf-Rayet 140 show carbon-rich dust moving in space. At right, the two triangles from the main images are matched up to show how much difference 14 months makes: The dust is racing away from the central stars at almost 1% the speed of light. These stars are 5,000 light-years away in our own Milky Way galaxy. Image: NASA, ESA, CSA, STScI; Science: Emma Lieb (University of Denver), Ryan Lau (NSF NOIRLab), Jennifer Hoffman (University of Denver) “The telescope not only confirmed that these dust shells are real, its data also showed that the dust shells are moving outward at consistent velocities, revealing visible changes over incredibly short periods of time,” said Emma Lieb, the lead author of the new paper and a doctoral student at the University of Denver in Colorado.
      Every shell is racing away from the stars at more than 1,600 miles per second (2,600 kilometers per second), almost 1% the speed of light. “We are used to thinking about events in space taking place slowly, over millions or billions of years,” added Jennifer Hoffman, a co-author and a professor at the University of Denver. “In this system, the observatory is showing that the dust shells are expanding from one year to the next.”
      Like clockwork, the stars’ winds generate dust for several months every eight years, as the pair make their closest approach during a wide, elongated orbit. Webb also shows how dust formation varies — look for the darker region at top left in both images.
      Video A: Fade Between 2022 and 2023 Observations of Wolf-Rayet 140
      This video alternates between two mid-infrared light observations from NASA’s James Webb Space Telescope of Wolf-Rayet 140. Over only 14 months, Webb showed the dust in the system has expanded. This two-star system has sent out more than 17 shells of dust over 130 years. Video: NASA, ESA, CSA, STScI.; Science: Emma Lieb (University of Denver), Ryan Lau (NSF NOIRLab), Jennifer Hoffman (University of Denver) Video B: Stars’ Orbits in Wolf-Rayet 140 (Visualization)
      When the two massive stars in Wolf-Rayet 140 swing past one another, their winds collide, material compresses, and carbon-rich dust forms. The stronger winds of the hotter star in the Wolf-Rayet system blow behind its slightly cooler (but still hot) companion. The stars create dust for several months in every eight-year orbit.
      Video: NASA, ESA, CSA, Joseph Olmsted (STScI). The telescope’s mid-infrared images detected shells that have persisted for more than 130 years. (Older shells have dissipated enough that they are now too dim to detect.) The researchers speculate that the stars will ultimately generate tens of thousands of dust shells over hundreds of thousands of years.
      “Mid-infrared observations are absolutely crucial for this analysis, since the dust in this system is fairly cool. Near-infrared and visible light would only show the shells that are closest to the star,” explained Ryan Lau, a co-author and astronomer at NSF NOIRLab in Tuscon, Arizona, who led the initial research about this system. “With these incredible new details, the telescope is also allowing us to study exactly when the stars are forming dust — almost to the day.”
      The dust’s distribution isn’t uniform. Though this isn’t obvious at first glance, zooming in on the shells in Webb’s images reveals that some of the dust has “piled up,” forming amorphous, delicate clouds that are as large as our entire solar system. Many other individual dust particles float freely. Every speck is as small as one-hundredth the width of a human hair. Clumpy or not, all of the dust moves at the same speed and is carbon rich.
      The Future of This System
      What will happen to these stars over millions or billions of years, after they are finished “spraying” their surroundings with dust? The Wolf-Rayet star in this system is 10 times more massive than the Sun and nearing the end of its life. In its final “act,” this star will either explode as a supernova — possibly blasting away some or all of the dust shells — or collapse into a black hole, which would leave the dust shells intact.
      Though no one can predict with any certainty what will happen, researchers are rooting for the black hole scenario. “A major question in astronomy is, where does all the dust in the universe come from?” Lau said. “If carbon-rich dust like this survives, it could help us begin to answer that question.”
      “We know carbon is necessary for the formation of rocky planets and solar systems like ours,” Hoffman added. “It’s exciting to get a glimpse into how binary star systems not only create carbon-rich dust, but also propel it into our galactic neighborhood.”
      These results have been published in the Astrophysical Journal Letters and were presented in a press conference at the 245th meeting of the American Astronomical Society in National Harbor, Maryland.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the Astrophysical Journal Letters.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Science – Emma Lieb (University of Denver)
      Related Information
      Webb Blog: Learn more about WR 140
      Infographic: Choose your path: Destiny of Dust
      SVS Graphic: Periodic Table of the Elements: Origins of the Elements
      3D Resource for WR140
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated Jan 13, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Binary Stars Goddard Space Flight Center James Webb Space Telescope (JWST) Nebulae Science & Research Stars The Milky Way The Universe View the full article
    • By NASA
      International teams of astronomers monitoring a supermassive black hole in the heart of a distant galaxy have detected features never seen before using data from NASA missions and other facilities. The features include the launch of a plasma jet moving at nearly one-third the speed of light and unusual, rapid X-ray fluctuations likely arising from near the very edge of the black hole.
      Radio images of 1ES 1927+654 reveal emerging structures that appear to be jets of plasma erupting from both sides of the galaxy’s central black hole following a strong radio flare. The first image, taken in June 2023, shows no sign of the jet, possibly because hot gas screened it from view. Then, starting in February 2024, the features emerge and expand away from the galaxy’s center, covering a total distance of about half a light-year as measured from the center of each structure. NSF/AUI/NSF NRAO/Meyer at al. 2025 The source is 1ES 1927+654, a galaxy located about 270 million light-years away in the constellation Draco. It harbors a central black hole with a mass equivalent to about 1.4 million Suns.
      “In 2018, the black hole began changing its properties right before our eyes, with a major optical, ultraviolet, and X-ray outburst,” said Eileen Meyer, an associate professor at UMBC (University of Maryland Baltimore County). “Many teams have been keeping a close eye on it ever since.”
      She presented her team’s findings at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. A paper led by Meyer describing the radio results was published Jan. 13 in The Astrophysical Journal Letters.
      After the outburst, the black hole appeared to return to a quiet state, with a lull in activity for nearly a year. But by April 2023, a team led by Sibasish Laha at UMBC and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, had noted a steady, months-long increase in low-energy X-rays in measurements by NASA’s Neil Gehrels Swift Observatory and NICER (Neutron star Interior Composition Explorer) telescope on the International Space Station. This monitoring program, which also includes observations from NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) and ESA’s (European Space Agency) XMM-Newton mission, continues.
      The increase in X-rays triggered the UMBC team to make new radio observations, which indicated a strong and highly unusual radio flare was underway. The scientists then began intensive observations using the NRAO’s (National Radio Astronomy Observatory) VLBA (Very Long Baseline Array) and other facilities. The VLBA, a network of radio telescopes spread across the U.S., combines signals from individual dishes to create what amounts to a powerful, high-resolution radio camera. This allows the VLBA to detect features less than a light-year across at 1ES 1927+654’s distance.
      Active galaxy 1ES 1927+654, circled, has exhibited extraordinary changes since 2018, when a major outburst occurred in visible, ultraviolet, and X-ray light. The galaxy harbors a central black hole weighing about 1.4 million solar masses and is located 270 million light-years away. Pan-STARRS Radio data from February, April, and May 2024 reveals what appear to be jets of ionized gas, or plasma, extending from either side of the black hole, with a total size of about half a light-year. Astronomers have long puzzled over why only a fraction of monster black holes produce powerful plasma jets, and these observations may provide critical clues.
      “The launch of a black hole jet has never been observed before in real time,” Meyer noted. “We think the outflow began earlier, when the X-rays increased prior to the radio flare, and the jet was screened from our view by hot gas until it broke out early last year.”
      A paper exploring that possibility, led by Laha, is under review at The Astrophysical Journal. Both Meyer and Megan Masterson, a doctoral candidate at the Massachusetts Institute of Technology in Cambridge who also presented at the meeting, are co-authors.
      Using XMM-Newton observations, Masterson found that the black hole exhibited extremely rapid X-ray variations between July 2022 and March 2024. During this period, the X-ray brightness repeatedly rose and fell by 10% every few minutes. Such changes, called millihertz quasiperiodic oscillations, are difficult to detect around supermassive black holes and have been observed in only a handful of systems to date. 
      “One way to produce these oscillations is with an object orbiting within the black hole’s accretion disk. In this scenario, each rise and fall of the X-rays represents one orbital cycle,” Masterson said.  
      If the fluctuations were caused by an orbiting mass, then the period would shorten as the object fell ever closer to the black hole’s event horizon, the point of no return. Orbiting masses generate ripples in space-time called gravitational waves. These waves drain away orbital energy, bringing the object closer to the black hole, increasing its speed, and shortening its orbital period.
      Over two years, the fluctuation period dropped from 18 minutes to just 7 — the first-ever measurement of its kind around a supermassive black hole. If this represented an orbiting object, it was now moving at half the speed of light. Then something unexpected happened — the fluctuation period stabilized.
      In this artist’s concept, matter is stripped from a white dwarf (sphere at lower right) orbiting within the innermost accretion disk surrounding 1ES 1927+654’s supermassive black hole. Astronomers developed this scenario to explain the evolution of rapid X-ray oscillations detected by ESA’s (European Space Agency) XMM-Newton satellite. ESA’s LISA (Laser Interferometer Space Antenna) mission, due to launch in the next decade, should be able to confirm the presence of an orbiting white dwarf by detecting the gravitational waves it produces. NASA/Aurore Simonnet, Sonoma State University “We were shocked by this at first,” Masterson explained. “But we realized that as the object moved closer to the black hole, its strong gravitational pull could begin to strip matter from the companion. This mass loss could offset the energy removed by gravitational waves, halting the companion’s inward motion.”
      So what could this companion be? A small black hole would plunge straight in, and a normal star would quickly be torn apart by the tidal forces near the monster black hole. But the team found that a low-mass white dwarf — a stellar remnant about as large as Earth — could remain intact close to the black hole’s event horizon while shedding some of its matter. A paper led by Masterson summarizing these results will appear in the Feb. 13 edition of the journal Nature.
      This model makes a key prediction, Masterson notes. If the black hole does have a white dwarf companion, the gravitational waves it produces will be detectable by LISA (Laser Interferometer Space Antenna), an ESA mission in partnership with NASA that is expected to launch in the next decade.

      Download high-resolution images from NASA’s Scientific Visualization Studio

      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contacts:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Jill Malusky
      304-456-2236
      jmalusky@nrao.edu
      National Radio Astronomy Observatory, Charlottesville, Va.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Jan 13, 2025 Related Terms
      Active Galaxies Astrophysics Black Holes Galaxies, Stars, & Black Holes Goddard Space Flight Center Jet Propulsion Laboratory Neil Gehrels Swift Observatory NICER (Neutron star Interior Composition Explorer) NuSTAR (Nuclear Spectroscopic Telescope Array) Radio Astronomy Supermassive Black Holes The Universe White Dwarfs X-ray Astronomy XMM-Newton (X-ray Multi-Mirror Newton) View the full article
    • By NASA
      5 Min Read NASA and Italian Space Agency Test Future Lunar Navigation Technology
      The potentially record-breaking Lunar GNSS Receiver Experiment (LuGRE) payload will be the first known demonstration of GNSS signal reception on and around the lunar surface. Credits: NASA/Dave Ryan As NASA celebrates 55 years since the historic Apollo 11 crewed lunar landing, the agency also is preparing new navigation and positioning technology for the Artemis campaign, the agency’s modern lunar exploration program.
      A technology demonstration helping pave the way for these developments is the Lunar GNSS Receiver Experiment (LuGRE) payload, a joint effort between NASA and the Italian Space Agency to demonstrate the viability of using existing GNSS (Global Navigation Satellite System) signals for positioning, navigation, and timing on the Moon.
      During its voyage on an upcoming delivery to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative, LuGRE would demonstrate acquiring and tracking signals from both the U.S. GPS and European Union Galileo GNSS constellations during transit to the Moon, during lunar orbit, and finally for up to two weeks on the lunar surface itself.
      The Lunar GNSS Receiver Experiment (LuGRE) will investigate whether signals from two Global Navigation Satellite System (GNSS) constellations, the U.S. Global Positioning System (GPS) and European Union’s Galileo, can be tracked at the Moon and used for positioning, navigation, and timing (PNT). The LuGRE payload is one of the first demonstrations of GNSS signal reception and navigation on and around the lunar surface, an important milestone for how lunar missions will access navigation and positioning technology. If successful, LuGRE would demonstrate that spacecraft can use signals from existing GNSS satellites at lunar distances, reducing their reliance on ground-based stations on the Earth for lunar navigation.
      Today, GNSS constellations support essential services like navigation, banking, power grid synchronization, cellular networks, and telecommunications. Near-Earth space missions use these signals in flight to determine critical operational information like location, velocity, and time.
      NASA and the Italian Space Agency want to expand the boundaries of GNSS use cases. In 2019, the Magnetospheric Multiscale (MMS) mission broke the world record for farthest GPS signal acquisition 116,300 miles from the Earth’s surface — nearly half of the 238,900 miles between Earth and the Moon. Now, LuGRE could double that distance.
      “GPS makes our lives safer and more viable here on Earth,” said Kevin Coggins, NASA deputy associate administrator and SCaN (Space Communications and Navigation) Program manager at NASA Headquarters in Washington. “As we seek to extend humanity beyond our home planet, LuGRE should confirm that this extraordinary technology can do the same for us on the Moon.”
      NASA, Firefly, Qascom, and Italian Space Agency team members examine LuGRE hardware in a clean room.Firefly Aerospace Reliable space communication and navigation systems play a vital role in all NASA missions, providing crucial connections from space to Earth for crewed and uncrewed missions alike. Using a blend of government and commercial assets, NASA’s Near Space and Deep Space Networks support science, technology demonstrations, and human spaceflight missions across the solar system.
      “This mission is more than a technological milestone,” said Joel Parker, policy lead for positioning, navigation, and timing at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We want to enable more and better missions to the Moon for the benefit of everyone, and we want to do it together with our international partners.”
      This mission is more than a technological milestone. We want to enable more and better missions to the Moon for the benefit of everyone…
      JOEL PARKER
      PNT Policy Lead at NASA's Goddard Space Flight Center
      The data-gathering LuGRE payload combines NASA-led systems engineering and mission management with receiver software and hardware developed by the Italian Space Agency and their industry partner Qascom — the first Italian-built hardware to operate on the lunar surface.
      Any data LuGRE collects is intended to open the door for use of GNSS to all lunar missions, not just those by NASA or the Italian Space Agency. Approximately six months after LuGRE completes its operations, the agencies will release its mission data to broaden public and commercial access to lunar GNSS research.
      Firefly Aerospace’s Blue Ghost Mission One lander is carrying 10 NASA science and technology instruments to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Firefly Aerospace “A project like LuGRE isn’t about NASA alone,” said NASA Goddard navigation and mission design engineer Lauren Konitzer. “It’s something we’re doing for the benefit of humanity. We’re working to prove that lunar GNSS can work, and we’re sharing our discoveries with the world.”
      The LuGRE payload is one of 10 NASA-funded science experiments launching to the lunar surface on this delivery through NASA’s CLPS initiative. Through CLPS, NASA works with American companies to provide delivery and quantity contracts for commercial deliveries to further lunar exploration and the development of a sustainable lunar economy. As of 2024, the agency has 14 private partners on contract for current and future CLPS missions.
      Demonstrations like LuGRE could lay the groundwork for GNSS-based navigation systems on the lunar surface. Bridging these existing systems with emerging lunar-specific navigation solutions has the potential to define how all spacecraft navigate lunar terrain in the Artemis era.
      Artist’s concept rendering of LuGRE aboard the Blue Ghost lunar lander receiving signals from Earth’s GNSS constellations.NASA/Dave Ryan The payload is a collaborative effort between NASA’s Goddard Space Flight Center and the Italian Space Agency. Funding and oversight for the LuGRE payload comes from the agency’s SCaN Program office. It was chosen by NASA as one of 10 funded research and technology demonstrations for delivery to the lunar surface by Firefly Aerospace Inc, a flight under the agency’s CLPS initiative.
      About the Author
      Korine Powers
      Senior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more.
      Share
      Details
      Last Updated Jan 09, 2025 EditorGoddard Digital TeamContactKorine Powerskorine.powers@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Artemis Blue Ghost (lander) Commercial Lunar Payload Services (CLPS) Communicating and Navigating with Missions Earth's Moon Near Space Network Space Communications & Navigation Program View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      LMS instrument aboard the Blue Ghost Lander heading to Mare Crisium in mid-January
      As part of its Artemis campaign, NASA is developing a series of increasingly complex lunar deliveries and missions to ultimately build a sustained human presence at the Moon for decades to come. Through the agency’s CLPS (Commercial Lunar Payload Services) initiative, commercial provider Firefly’s Blue Ghost lander will head to the Moon’s Mare Crisium for a 14-day lunar lander mission, carrying NASA science and technology that will help understand the lunar subsurface in a previously unexplored location.
      From within the Mare Crisium impact basin, the SwRI-led Lunar Magnetotelluric Sounder (LMS) may provide the first geophysical measurements representative of the bulk of the Moon. Most of the Apollo missions landed in the region of linked maria to the west (left image), whose crust was later shown to be compositionally distinct (right image) as exemplified by the concentration of the element thorium. Mare Crisium provides a smooth landing site on the near side of the Moon outside of this anomalous region. NASA Developed by the Southwest Research Institute (SwRI), NASA’s Lunar Magnetotelluric Sounder (LMS) will probe the interior of the Moon to depths of up to 700 miles, two-thirds of the way to the lunar center. The measurements will shed light on the differentiation and thermal history of our Moon, a cornerstone to understanding the evolution of solid worlds.
      Magnetotellurics uses natural variations in surface electric and magnetic fields to calculate how easily electricity flows in subsurface materials, which can reveal their composition and structure.
      “For more than 50 years, scientists have used magnetotellurics on Earth for a wide variety of purposes, including to find oil, water, and geothermal and mineral resources, as well as to understand geologic processes such as the growth of continents,” said SwRI’s Dr. Robert Grimm, principal investigator of LMS. “The LMS instrument will be the first extraterrestrial application of magnetotellurics.”
      Mare Crisium is an ancient, 350-mile-diameter impact basin that subsequently filled with lava, creating a dark spot visible on the Moon from Earth. Early astronomers who dubbed dark spots on the moon “maria,” Latin for seas, mistook them for actual seas.
      Mare Crisium stands apart from the large, connected areas of dark lava to the west where most of the Apollo missions landed. These vast, linked lava plains are now thought to be compositionally and structurally different from the rest of the Moon. From this separate vantage point, LMS may provide the first geophysical measurements representative of most of the Moon.
      The Lunar Magnetotelluric Sounder (LMS) will probe the interior of the Moon to depths of up to 700 miles or two-thirds of the lunar radius. The measurements will shed light on the differentiation and thermal history of our Moon, a cornerstone to understanding the evolution of solid worlds.
      NASA’s Goddard Space Flight Center The LMS instrument ejects cables with electrodes at 90-degree angles to each other and distances up to 60 feet. The instrument measures voltages across opposite pairs of electrodes, much like the probes of a conventional voltmeter. The magnetometer is deployed via an extendable mast to reduce interference from the lander. The magnetotelluric method reveals a vertical profile of the electrical conductivity, providing insight into the temperature and composition of the penetrated materials in the lunar interior.
      “The five individual subsystems of LMS, together with connecting cables, weigh about 14 pounds and consume about 11 Watts of power,” Grimm said. “While stowed, each electrode is surrounded by a ‘yarn ball’ of cable, so the assembly is roughly spherical and the size of a softball.”
      The LMS payload was funded and will be delivered to the lunar surface through NASA’s CLPS initiative. Southwest Research Institute based in San Antonio built the central electronics and leads the science investigation. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provided the LMS magnetometer to measure the magnetic fields, and Heliospace Corp. provided the electrodes used to measure the electrical fields.
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Media Contact: Rani Gran
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      Share
      Details
      Last Updated Jan 10, 2025 EditorRob GarnerContactRani GranLocationGoddard Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Earth's Moon Goddard Space Flight Center View the full article
    • By NASA
      Official portrait of Adam Schlesinger.NASA/Bill Stafford NASA has selected Adam Schlesinger as manager for CLPS (Commercial Lunar Payload Services). Schlesinger previously served as the Gateway Program habitation and logistics outpost project lead engineer at Johnson Space Center.

      “I am honored and tremendously excited to take on this new role as NASA continues to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry,” Schlesinger said.

      Schlesinger brings more than 20 years’ experience to NASA human space flight programs. Prior to supporting Gateway, Mr. Schlesinger managed the Advanced Exploration Systems Avionics and Software Project, leading a multi-center team to develop and advance several innovative technologies that were targeted for future NASA exploration missions. Mr. Schlesinger also established and led a variety of key public/private partnerships with commercial providers as part of the Next Space Technologies for Exploration Partnerships-2 activities.

      Mr. Schlesinger began his NASA career as a co-op in the Avionic Systems Division and has served in multiple positions within the Engineering and Exploration Architecture, Integration, and Science Directorates, each with increasing technical leadership responsibilities. Mr. Schlesinger earned his bachelor’s degree in electrical engineering from the University of Michigan and a master’s degree in electrical and computer engineering from the Georgia Institute of Technology.

      “Adam is an outstanding leader and engineer, and I am extremely pleased to announce his selection for this position,” said Vanessa Wyche, director of NASA’s Johnson Space Center. “His wealth of experience in human spaceflight, commercial partnerships, and the development and operations of deep-space spacecraft will be a huge asset to CLPS.”

      Throughout his career, Schlesinger has been recognized for outstanding technical achievements and leadership, including multiple NASA Exceptional Achievement Medals, Rotary National Award for Space Achievement Early Career Stellar Award and Middle Career Stellar Award nominee, JSC Director’s Commendation Award, Advanced Exploration Systems Innovation Award, and NASA Early Career Achievement Medal.
      View the full article
  • Check out these Videos

×
×
  • Create New...