Jump to content

Detecting nitrogen dioxide from power plants with Sentinel-2


Recommended Posts

Nitrogen dioxide plumes over Saudi Arabia

Atmospheric nitrogen dioxide is a harmful pollutant with significant impacts on air quality, climate and the biosphere. Although satellites have mapped nitrogen dioxide concentrations since the 1990s, their resolution was generally too coarse to pinpoint individual sources like power plants.

In a recent study, researchers used imagery from Copernicus Sentinel-2 to observe nitrogen dioxide plumes from power plants for the first time – marking a significant advancement in air pollution monitoring.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      Workers making way for NASA’s Stennis Space Center near Bay St. Louis, Mississippi, likely did not realize they were building something that would not only withstand the test of time but transcend it.
      Mosquitoes, snakes, hurricanes, and intense south Mississippi heat – early crews faced all with a spirit of resilience and adaptability that remains a hallmark characteristic of NASA Stennis six decades later.
      “From going to the Moon for the first time and now returning to the Moon, you can trace a straight line of propulsion testing at NASA Stennis,” said Maury Vander, chief of the NASA Stennis Test Operations Division. “We still stand on the front lines of support for this country’s space program.”
      For five decades and counting, the versatile NASA Stennis test stands have been used for stage, engine, and component testing on multiple NASA and commercial projects.
      A Sept. 25, 2012, aerial image shows the three propulsion test areas at NASA’s Stennis Space Center – the E Test Complex (with 12 active test cell positions capable of component, engine, and stage test activities) in the foreground, the A Test Complex (featuring the Fred Haise, A-2, and A-3 stands for large engine testing) in the middle, and the Thad Cochran Test Stand (B-1/B-2) that can support both engine and stage testing in the background.NASA/Stennis The Fred Haise Test Stand (formerly the A-1 Test Stand), pictured on Oct. 6, 2020, at NASA’s Stennis Space Center, tests RS-25 flight engines to help power NASA’s powerful SLS (Space Launch System). NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the A-2 Test Stand at NASA’s Stennis Space Center – then-Mississippi Test Facility – on April 17, 1966. Less than a week later, south Mississippi would be fully ushered into the Apollo era with the site’s first-ever hot fire test. NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the A-3 Test Stand at NASA’s Stennis Space Center on March 29, 2013. The test stand area now is under lease to Rocket Lab for commercial operations. NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center on Dec. 31, 2014, during buildout for testing the core stage of NASA’s SLS (Space Launch System) rocket. NASA/Stennis An aerial image shows the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center on Feb. 22, 2017, following core stage buildout of the test stand for future SLS (Space Launch System) testing. NASA/Stennis Three NASA Stennis stands – Fred Haise (formerly the A-1 Test Stand), A-2, and Thad Cochran (B-1/B-2) – date to the 1960s, when they were built to test Saturn V rocket stages for Apollo missions to the Moon. The Fred Haise and A-2 stand were single-position stands for testing one Saturn V second stage at a time. The Thad Cochran featured two positions – (B-1 and B-2) – that could each house a Saturn V first stage, although only the B-2 position was used during Apollo testing.
      When the Apollo Program ended, the Fred Haise, A-2, and Thad Cochran (B-1) stands were modified to test single engines rather than rocket stages. All three were used in subsequent years to test space shuttle main engines and others.
      Meanwhile, the Thad Cochran (B-2) stand was maintained for full stage testing. The space shuttle Main Propulsion Test Article was tested on the stand, as was the Common Core Booster for the Delta IV rocket. Most recently, the stand was used to test the first SLS (Space Launch System) stage that helped launch the Artemis I mission in 2022.
      In 2024, the Fred Haise Test Stand is dedicated to RS-25 engine testing for NASA’s Artemis initiative. Every RS-25 engine that will help launch an SLS rocket during Artemis will be tested on the stand. The A-2 stand has been leased to Relativity Space, which is modifying it to support stage testing for its new rocket. In 2023, the Thad Cochran (B-1) stand concluded more than 20 years of RS-68 testing for Aerojet Rocketdyne (now known as L3Harris) and now is open for commercial use. The Thad Cochran (B-2) stand is being prepared to test NASA’s new SLS exploration upper stage before it flies on a future Artemis mission.
      “When you think about the work at NASA Stennis, this is a place that helps write history,” Vander said. “And in a sense, these test stands are timeless, still operating as designed 60 years after they were built, so there is more history yet to come.”
      NASA Stennis also constructed a fourth large test structure in the 2010s. The A-3 Test Stand is uniquely designed to simulate high altitudes up to 100,000 feet for testing engines and stages that need to fire in space. Rocket Lab currently leases the A-3 Test Stand area for construction of its Archimedes Test Complex.
      Crews deliver the first RS-25 flight engine, engine No. 2059, to the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center on Nov. 4, 2015. The engine was tested to certify it for use on NASA’s powerful SLS (Space Launch System) rocket. NASA/Stennis An image shows a space shuttle main engine test on the A-2 Test Stand at NASA’s Stennis Space Center on July 21, 2003. NASA/Stennis The A-3 Test Stand, designed to test fire next-generation engines at simulated altitudes up to 100,000 feet, undergoes an activation test on Feb. 24, 2014.NASA/Stennis NASA Stennis also operates a smaller test area to conduct component, subsystem, and system level testing. The area is now known as the E Test Complex and features four facilities, all developed from the late 1980s to the early 1990s.
      Construction of the E-1 Test Stand, then known as the Component Test Facility, began to support a joint project involving NASA and the U.S. Air Force project. Although the project was canceled, a second joint endeavor allowed completion of the test facility.
      Development of the E-2 Test Stand, originally known as the High Heat Flux Facility, began to support the National Aerospace Plane project. Following cancelation of the project, the facility was completed to support testing for component and engine development efforts.
      An E-3 Test Facility was constructed to support various component and small/subscale engine and booster test projects. Relativity Space leased a partially developed E-4 test area in 2018 and has since completed construction to support its commercial testing.
      All in all, the E Test Complex stands feature 12 active cells capable of various component and engine testing. The versatility of the complex infrastructure and test team allows it to support test projects for a range of commercial aerospace companies, large and small. Currently, both E-2 cells 1 and 2 are leased to Relativity Space through 2028.
      An aerial image shows the E-1 Test Stand at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis An aerial image shows the E-3 test area at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis An aerial image shows the E-2 Test Stand (Cell 1) at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis “These facilities really do not exist anywhere else in the United States,” said Kevin Power, assistant director, Office of Project Management in the NASA Stennis Engineering and Test Directorate.  “Customers come to us with requirements for certain tests of an article, and we look at what is the best place to test it based on the facility infrastructure. We have completed component level testing, all the way up to full engines.”
      The list of companies who have conducted – or are now conducting – propulsion projects in the E Test Complex reads like a who’s who of commercial aerospace leaders.
      “The E Complex illustrates the NASA Stennis story,” Power said. “We have very valuable infrastructure and resources, chief of which is the test team, who adapt to benefit NASA and meet the needs of the growing commercial aerospace industry.”
      For information about NASA’s Stennis Space Center, visit:
      Stennis Space Center – NASA
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 13 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 14 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
    • By European Space Agency
      A new European Space Agency-backed study shows that the extreme heatwaves of 2023, which fuelled huge wildfires and severe droughts, also undermined the land’s capacity to soak up atmospheric carbon. This diminished carbon uptake drove atmospheric carbon dioxide levels to new highs, intensifying concerns about accelerating climate change.
      View the full article
    • By NASA
      Twelve-year-old, Aadya Karthik of Seattle, Washington; nine-year-old, Rainie Lin of Lexington, Kentucky; and eighteen-year-old, Thomas Lui, winners of the 2023-2024 Power to Explore Student Writing Challenge observe testing at a NASA Glenn cleanroom during their prize trip to Cleveland. Credit: NASA NASA’s fourth annual Power to Explore Student Challenge kicked off November 7, 2024. The science, engineering, technology, and mathematics (STEM) writing challenge invites kindergarten through 12th grade students in the United States to learn about radioisotope power systems, a type of nuclear battery integral to many of NASA’s far-reaching space missions.
      Students are invited to write an essay about a new nuclear-powered mission to any moon in the solar system they choose. Submissions are due Jan. 31, 2025.
      With freezing temperatures, long nights, and deep craters that never see sunlight on many of these moons, including our own, missions to them could use a special kind of power: radioisotope power systems. These power systems have helped NASA explore the harshest, darkest, and dustiest parts of our solar system and enabled spacecraft to study its many moons.
      “Sending spacecraft into space is hard, and it’s even harder sending them to the extreme environments surrounding the diverse moons in our solar system,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “NASA’s Power to Explore Student Challenge provides the incredible opportunity for our next generation – our future explorers – to design their own daring missions using science, technology, engineering, and mathematics to explore space and discover new science for the benefit of all, while also revealing incredible creative power within themselves. We cannot wait to see what the students dream up!”
      Entries should detail where students would go, what they would explore, and how they would use radioisotope power systems to achieve mission success in a dusty, dark, or far away moon destination.
      Judges will review entries in three grade-level categories: K-4, 5-8, and 9-12. Student entries are limited to 275 words and should address the mission destination, mission goals, and describe one of the student’s unique powers that will help the mission. 
      One grand prize winner from each grade category will receive a trip for two to NASA’s Glenn Research Center in Cleveland to learn about the people and technologies that enable NASA missions. Every student who submits an entry will receive a digital certificate and an invitation to a virtual event with NASA experts where they’ll learn about what powers the NASA workforce to dream big and explore.
      Judges Needed
      NASA and Future Engineers are seeking volunteers to help judge the thousands of contest entries anticipated submitted from around the country. Interested U.S. residents older than 18 can offer to volunteer approximately three hours to review submissions should register to judge at the Future Engineers website.
      The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
      To learn more about the challenge, visit:
      https://www.nasa.gov/power-to-explore
      -end-
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov


      Kristin Jansen
      Glenn Research Center, Cleveland
      216-296-2203
      kristin.m.jansen@nasa.gov
      Share
      Details
      Last Updated Nov 07, 2024 LocationNASA Headquarters Related Terms
      Opportunities For Students to Get Involved Science Mission Directorate STEM Engagement at NASA View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA employees plant an Artemis Moon Tree at NASA’s Stennis Space Center on Oct. 29 to celebrate NASA’s successful Artemis I mission as the agency prepares for a return around the Moon with astronauts on Artemis II. NASA/Danny Nowlin A tree-planting ceremony at NASA’s Stennis Space Center on Oct. 29 celebrated NASA’s successful Artemis I mission as the agency prepares for a return around the Moon with astronauts on Artemis II.
      “We already have a thriving Moon Tree from the Apollo years onsite,” NASA Stennis Director John Bailey said. “It is exciting to add trees for our new Artemis Generation as it continues the next great era of human space exploration.”
      NASA’s Office of STEM Engagement Next Gen STEM Project partnered with U.S. Department of Agriculture (USDA) Forest Service to fly five species of tree seeds aboard the Orion spacecraft during the successful uncrewed Artemis I test flight in 2022 as part of a national STEM Engagement and conservation education initiative. 
      The Artemis Moon Tree species included sweetgums, loblolly pines, sycamores, Douglas-firs, and giant sequoias. The seeds from the first Artemis mission have been nurtured by the USDA into seedlings to be a source of inspiration for the Artemis Generation.
      The Moon Tree education initiative is rooted in the legacy of Apollo 14 Moon Tree seeds flown in lunar orbit over 50 years ago by the late Stuart Roosa, a NASA astronaut and Mississippi Coast resident.
      NASA Stennis and the NASA Shared Services Center (NSSC), located at the site, planted companion trees during the Oct. 29 ceremony. Bailey and NSSC Executive Director Anita Harrell participated in a joint planting ceremony attended by a number of employees from each entity.
      The American sweetgum trees are the second and third Moon Trees at the south Mississippi site. In 2004, ASTRO CAMP participants planted a sycamore Moon Tree to honor the 35th anniversary of Apollo 11 and the first lunar landing on July 20, 1969.
      The road to space for both Apollo 14 and Artemis I went through Mississippi. Until 1970, NASA Stennis test fired first, and second stages of the Saturn V rockets used for Apollo.
      NASA Stennis now tests all the RS-25 engines powering Artemis missions to the Moon and beyond. Prior to Artemis I, NASA Stennis tested the SLS (Space Launch System) core stage and its four RS-25 engines.
      The Artemis Moon Trees have found new homes in over 150 communities and counting since last spring, and each of the 10 NASA centers also will plant one.
      As the tree grows at NASA Stennis, so, too, does anticipation for the first crewed mission with Artemis II. Four astronauts will venture around the Moon on NASA’s path to establishing a long-term presence at the Moon for science and exploration.
      The flight will test NASA’s foundational human deep space exploration capabilities – the SLS rocket and Orion spacecraft – for the first time with astronauts.
      Explore More NASA Stennis Image Articles View the full article
    • By NASA
      Learn Home Watch How Students Help NASA… Citizen Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      Watch How Students Help NASA Grow Plants in Space: Growing Beyond Earth
      Since 2015, students from across the USA have been partnering with scientists at NASA to advance research on growing plants in space, ultimately to feed astronauts on long-distance space missions, as part of Fairchild Tropical Botanic Garden’s Growing Beyond Earth project, which is now in its 9th year. This classroom-based citizen science project for 6th-12th grade students includes a series of plant experiments conducted by students in a Fairchild-designed plant habitat similar to the Vegetable Production System (VEGGIE) on the International Space Station.
      This year, 8000+ students from 400+ schools are testing new edible plant varieties, studying radiation effects on growth, exploring the perfect light spectrum for super-sized space radishes, and experimenting with cosmic soil alternatives.
      Watch these South Florida students show us how it’s done.
      NASA citizen science projects are open to everyone around the world, not limited to U.S. citizens or residents. They are collaborations between scientists and interested members of the public. Through these collaborations, volunteers (known as citizen scientists) have helped make thousands of important scientific discoveries. More than 450 NASA citizen scientists have been named as co-authors on refereed scientific publications. Explore opportunities for you to get involved and do NASA science: https://science.nasa.gov/citizen-science/
      The Growing Beyond Earth project is supported by NASA under cooperative agreement award number 80NSSC22MO125 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Niki Jose Share








      Details
      Last Updated Oct 28, 2024 Editor NASA Science Editorial Team Related Terms
      Citizen Science Opportunities For Students to Get Involved Plant Biology Science Activation Vegetable Production System (VEGGIE) Explore More
      3 min read Kites in the Classroom: Training Teachers to Conduct Remote Sensing Missions


      Article


      3 days ago
      2 min read Educator Night at the Museum of the North: Activating Science in Fairbanks Classrooms


      Article


      4 days ago
      3 min read Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...