Members Can Post Anonymously On This Site
NASA's MRO photographs suspected underground base at Mars crater edge
-
Similar Topics
-
By NASA
The Crew Health and Performance Exploration Analog (CHAPEA) team hosts a Media Day at NASA’s Johnson Space Center in Houston on April 11, 2023.Credit: NASA Media are invited to visit NASA’s simulated Mars habitat on Monday, March 10, at the agency’s Johnson Space Center in Houston. The simulation will help prepare humanity for future missions to the Red Planet.
This is the second of three missions as part of NASA’s CHAPEA (Crew Health and Performance Exploration Analog), set to begin in May 2025 when volunteer crew members enter the 3D printed habitat to live and work for a year.
During the mission, crew members will carry out different types of mission activities, including simulated “marswalks,” robotic operations, habitat maintenance, personal hygiene, exercise, and crop growth. Crew also will face planned environmental stressors such as resource limitations, isolation, and equipment failure.
The in-person media event includes an opportunity to speak with subject matter experts and capture b-roll and photos inside the habitat. Crew members will arrive for training at a later date and will not be available at this event.
To attend the event, U.S. media must request accreditation by 5 p.m. CDT Monday, March 3, and international media by 5 p.m., Monday, Feb. 24, via the NASA Johnson newsroom at: 281-483-5111 or jsccommu@nasa.gov. Media accreditation will be limited due to limited space inside the habitat. Confirmed media will receive additional details on how to participate.
For more information about CHAPEA, visit:
https://www.nasa.gov/humans-in-space/chapea
-end-
Cindy Anderson / James Gannon
Headquarters, Washington
202-358-1600
cindy.anderson@nasa.gov / james.h.gannon@nasa.gov
Kelsey Spivey
Johnson Space Center, Houston
281-483-5111
kelsey.m.spivey@nasa.gov
Victoria Segovia
Johnson Space Center, Houston
281-483-5111
victoria.segovia@nasa.gov
Share
Details
Last Updated Feb 20, 2025 LocationNASA Headquarters Related Terms
Humans in Space Analog Field Testing Crew Health and Performance Exploration Analog (CHAPEA) Johnson Space Center View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
During the Apollo program, when NASA sent humans to the Moon, those missions took several days to reach the Moon. The fastest of these was Apollo 8, which took just under three days to go from Earth orbit to orbit around the Moon.
Now it’s possible to save some fuel by flying different kinds of trajectories to the Moon that are shaped in such a way to save fuel. And those trajectories can take more time, potentially weeks or months, to reach the Moon, depending on how you do it.
Mars is further away, about 50 percent further away from the Sun than Earth is. And reaching Mars generally takes somewhere between seven to ten months, flying a relatively direct route.
NASA’s Mars Reconnaissance Orbiter mission took about seven and a half months to reach Mars. And NASA’s MAVEN mission took about ten months to reach Mars.
Jupiter is about five times further away from the Sun than the Earth is. And so in order to make those missions practical, we have to find ways to reduce the fuel requirements. And the way we do that is by having the spacecraft do some flybys of Earth and or Venus to help shape the spacecraft’s trajectory and change the spacecraft’s speed without using fuel. And using that sort of approach, it takes between about five to six years to reach Jupiter.
So NASA’s Galileo mission, the first mission to Jupiter, took just a little over six years. And then NASA’s second mission to Jupiter, which was called Juno, took just under five years.
So to get to the Moon takes several days. To get to Mars takes seven to ten months. And getting to Jupiter takes between five and six years.
[END VIDEO TRANSCRIPT]
Full Episode List
Full YouTube Playlist
Share
Details
Last Updated Feb 19, 2025 Related Terms
Science Mission Directorate Planetary Science Planetary Science Division The Solar System Explore More
3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
In 2023 and 2024, two eclipses crossed the United States, and the NASA Science Activation…
Article 18 hours ago 2 min read NASA Science: Being Responsive to Executive Orders
February 18, 2025 To the NASA Science Community – As the nation’s leader in Earth…
Article 19 hours ago 5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging
One of the ultimate goals in astrophysics is the discovery of Earth-like planets that are…
Article 22 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA’s Curiosity Mars rover captured these drifting noctilucent, or twilight, clouds in a 16-minute recording on Jan. 17. (This looping clip has been speeded up about 480 times.) The white plumes falling out of the clouds are carbon dioxide ice that would evaporate closer to the Martian surface.NASA/JPL-Caltech/MSSS/SSI While the Martian clouds may look like the kind seen in Earth’s skies, they include frozen carbon dioxide, or dry ice.
Red-and-green-tinted clouds drift through the Martian sky in a new set of images captured by NASA’s Curiosity rover using its Mastcam — its main set of “eyes.” Taken over 16 minutes on Jan. 17 (the 4,426th Martian day, or sol, of Curiosity’s mission), the images show the latest observations of what are called noctilucent (Latin for “night shining”), or twilight clouds, tinged with color by scattering light from the setting Sun.
Sometimes these clouds even create a rainbow of colors, producing iridescent, or “mother-of-pearl” clouds. Too faint to be seen in daylight, they’re only visible when the clouds are especially high and evening has fallen.
Martian clouds are made of either water ice or, at higher altitudes and lower temperatures, carbon dioxide ice. (Mars’ atmosphere is more than 95% carbon dioxide.) The latter are the only kind of clouds observed at Mars producing iridescence, and they can be seen near the top of the new images at an altitude of around 37 to 50 miles (60 to 80 kilometers). They’re also visible as white plumes falling through the atmosphere, traveling as low as 31 miles (50 kilometers) above the surface before evaporating because of rising temperatures. Appearing briefly at the bottom of the images are water-ice clouds traveling in the opposite direction roughly 31 miles (50 kilometers) above the rover.
Dawn of Twilight Clouds
Twilight clouds were first seen on Mars by NASA’s Pathfinder mission in 1997; Curiosity didn’t spot them until 2019, when it acquired its first-ever images of iridescence in the clouds. This is the fourth Mars year the rover has observed the phenomenon, which occurs during early fall in the southern hemisphere.
Mark Lemmon, an atmospheric scientist with the Space Science Institute in Boulder, Colorado, led a paper summarizing Curiosity’s first two seasons of twilight cloud observations, which published late last year in Geophysical Research Letters. “I’ll always remember the first time I saw those iridescent clouds and was sure at first it was some color artifact,” he said. “Now it’s become so predictable that we can plan our shots in advance; the clouds show up at exactly the same time of year.”
Each sighting is an opportunity to learn more about the particle size and growth rate in Martian clouds. That, in turn, provides more information about the planet’s atmosphere.
Cloud Mystery
One big mystery is why twilight clouds made of carbon dioxide ice haven’t been spotted in other locations on Mars. Curiosity, which landed in 2012, is on Mount Sharp in Gale Crater, just south of the Martian equator. Pathfinder landed in Ares Vallis, north of the equator. NASA’s Perseverance rover, located in the northern hemisphere’s Jezero Crater, hasn’t seen any carbon dioxide ice twilight clouds since its 2021 landing. Lemmon and others suspect that certain regions of Mars may be predisposed to forming them.
A possible source of the clouds could be gravity waves, he said, which can cool the atmosphere: “Carbon dioxide was not expected to be condensing into ice here, so something is cooling it to the point that it could happen. But Martian gravity waves are not fully understood and we’re not entirely sure what is causing twilight clouds to form in one place but not another.”
Mastcam’s Partial View
The new twilight clouds appear framed in a partially open circle. That’s because they were taken using one of Mastcam’s two color cameras: the left 34 mm focal length Mastcam, which has a filter wheel that is stuck between positions. Curiosity’s team at NASA’s Jet Propulsion Laboratory in Southern California remains able to use both this camera and the higher-resolution right 100 mm focal length camera for color imaging.
The rover recently wrapped an investigation of a place called Gediz Vallis channel and is on its way to a new location that includes boxwork — fractures formed by groundwater that look like giant spiderwebs when viewed from space.
More recently, Curiosity visited an impact crater nicknamed “Rustic Canyon,” capturing it in images and studying the composition of rocks around it. The crater, 67 feet (20 meters) in diameter, is shallow and has lost much of its rim to erosion, indicating that it likely formed many millions of years ago. One reason Curiosity’s science team studies craters is because the cratering process can unearth long-buried materials that may have better preserved organic molecules than rocks exposed to radiation at the surface. These molecules provide a window into the ancient Martian environment and how it could have supported microbial life billions of years ago, if any ever formed on the Red Planet.
More About Curiosity
Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington. Malin Space Science Systems in San Diego built and operates Mastcam.
For more about Curiosity, visit:
science.nasa.gov/mission/msl-curiosity
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-017
Share
Details
Last Updated Feb 11, 2025 Related Terms
Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Radioisotope Power Systems (RPS) Explore More
5 min read NASA-Led Study Pinpoints Areas Sinking, Rising Along California Coast
Article 1 day ago 5 min read Euclid Discovers Einstein Ring in Our Cosmic Backyard
Article 1 day ago 3 min read NASA Explores Earth Science with New Navigational System
Article 4 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Jesse Walsh helps to bring people together in his work with project formulation management. “I try to build trust between team members by understanding everyone’s incentives and making sure all team members understand the different incentives,” he said. “We may have different angles of approach, but we all have the same goal.”Credits: NASA’s Goddard Space Flight Center/William Hrybyk Name: Jesse Walsh
Formal Job Classification: Project Formulation Manager
Organization: Project Formulation and Development Office, Flight Projects Directorate (Code 401.0)
What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
As a formulation manager, I am the project manager in the room as we are designing science space flight missions. We develop proposals to be competed on the agency level against other NASA centers, and outside institutions.
I am also our office’s representative on the Earth science line of business.
“I help everyone negotiate a balance that fits within the cost and schedule,” said Walsh. “The diversity between and among scientists, engineers, and financial experts is what creates NASA’s innovative solutions.”Credits: NASA’s Goddard Space Flight Center/William Hrybyk What is your background?
In 2000, I graduated from the U.S. Naval Academy with a B.S. in mechanical engineering. In the Navy I went to flight school in Pensacola, Florida, and became a naval flight officer. I was the “Goose,” not “Maverick,” in the P-3 Orion, a four-engine prop plane that primarily hunts for submarines. I was then stationed in Hawaii as part of Patrol Squadron 9, that deployed to the Far East and Middle East. Next, I worked at the Naval Research Lab in Washington, D.C., as a project officer for science experiments on P-3s from Patuxent River Naval Air Station in Patuxent River, Maryland.
I developed migraines that disqualified me from flying. In 2007, I got a master’s in civil engineering project management from the University of Maryland. I then worked in Bethesda, Maryland, constructing buildings around the beltway, as a physics teacher at our local high school, and as a project manager of secure facilities with the Army Corps of Engineers.
In 2016, I became the assistant branch head for facilities planning at Goddard. I later entered the Flight Projects Development Program, a two-year project manager training program, during which time I worked at the Flight Projects Development Office and as the payload manager for Space Infrastructure Dexterous Robot (SPIDER), a payload on OSAM-1. I had a proposal selected for a second step, and I came back to PFDO to work proposals.
Why is this your dream job?
We are on the cutting edge of what will fly. We are designing the missions and figuring out what the world of possible will be in space in five to seven years. Scientists come to the table with ideas and engineers make those ideas reality. I make sure the whole team is working together and that all these ideas and solutions fit within our budget and schedule. We make ideas realities.
How do you translate between scientists and engineers?
It is primarily about understanding incentives. Everyone is thinking differently with different solutions, but we have the same goal. Some scientists have had an idea for years, but the idea still has to be workable. If the resulting instrument or spacecraft fails, technical issues are often the first to be examined. I help the engineers push what they are comfortable making and help the scientists understand the limits of technology.
Please talk about the competing pressures of your job.
We are responsible for taxpayer’s money. If one thing goes wrong, even on a smaller mission, the monetary loss can run into many millions. The missions we build have cost limits. We fit cutting edge science into a cost-limited opportunity.
NASA is extremely thorough. We safeguard taxpayer funds, but also push cutting-edge science.
We are on a seesaw. The engineers are more focused on technical solutions while the scientists are more focused on scientific results. I help everyone negotiate a balance that fits within the cost and schedule. The diversity between and among scientists, engineers, and financial experts is what creates NASA’s innovative solutions.
“We are on the cutting edge of what will fly,” said Jesse Walsh about his work as a project formulation manager. “We are designing the missions and figuring out what the world of possible will be in space in five to seven years.”Credits: NASA’s Goddard Space Flight Center/William Hrybyk What are some of your negotiating techniques?
I try to build trust between team members by understanding everyone’s incentives and making sure all team members understand the different incentives. We may have different angles of approach, but we all have the same goal. People are more likely to compromise the means if they know we will end up at the same place.
What is your proudest accomplishment?
I am proudest of our Dorado proposal because it was cutting edge science. We were trying to discover where heavy metals like gold are created in the universe. We were trying to prove that we could do fundamental science on a very lean budget, $35 million.
We did not win the final proposal, but I was extremely proud of our team, a very small, high-functioning team, that made us feel like we could discover the world.
You recently transferred to support the Geospace Dynamics Constellation (GDC) mission. What do you most enjoy about your new role?
I am still learning what I don’t know about GDC. I am finding is fascinating to see how the plans that are made in early stages of formulation change and adapt as they run into unforeseen obstacles during implementation. I am really enjoying being part of a small, high performing team, that is mission focused.
“We fit cutting-edge science into a cost-limited opportunity,” said Jesse Walsh of his work in project formulation management.”NASA is extremely thorough. We safeguard taxpayer funds, but also push cutting-edge science.”Credits: Courtesy of Jesse Walsh Who is your favorite author?
I married a librarian, and books and stories are fundamental parts of our life. I love Hemingway because he portrays extremely complex, emotional scenarios in very simplistic terms.
Who is your science hero?
My high school physics teacher, Mr. Finkbeiner, who taught me that you understand science in your gut, not your head. Science is not memorizing equations; it is understanding how the world around you works.
What are your hobbies?
I love flyfishing on the Chesapeake’s tidal rivers and also on fresh water for trout. Flyfishing involves actively engaging with nature; reading the water and the tides, figuring out nature’s puzzle and trying to crack the code.
What is your “six-word memoir”? A six-word memoir describes something in just six words.
I can’t wait for what’s next!
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.