Jump to content

Artemis II Core Stage Arrives at Kennedy


Recommended Posts

  • Publishers
Posted
The Artemis II rocket core stage, a long orange cylinder with four red boosters) is on its side as it rolls into the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center while employees watch. The VAB is a tall rectangular building with the American flag and NASA "meatball" logo painted on its left and right side, respectively. There is also an Artemis logo on a lower portion of the building.
NASA/Kim Shiflett

Teams transport NASA’s SLS (Space Launch System) core stage into the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida on July 24, 2024. Tugboats and towing vessels moved the Pegasus barge and 212-foot-long core stage 900-miles to the Florida spaceport from NASA’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.

In the coming months, teams will integrate the rocket core stage atop the mobile launcher with the additional Artemis II flight hardware, including the twin solid rocket boosters, launch vehicle stage adapter, and the Orion spacecraft.

The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.

Follow the next steps in this journey on NASA’s Artemis blog.

Text credit: Jason Costa

Image credit: NASA/Kim Shiflett

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Engineers and technicians with NASA’s Exploration Ground Systems Program integrate the right forward center segment onto mobile launcher 1 inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Wednesday, Jan. 22, 2025. The boosters will help support the remaining rocket components and the Orion spacecraft during final assembly of the Artemis II Moon rocket and provide more than 75 percent of the total SLS (Space Launch System) thrust during liftoff from NASA Kennedy’s Launch Pad 39BNASA/Kim Shiflett Teams with NASA’s Exploration Ground Systems Program continue stacking the SLS (Space Launch System) rocket’s twin solid rocket booster motor segments for the agency’s Artemis II mission, inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida.
      Currently, six of the 10 segments are secured atop mobile launcher 1 with the right forward center segment as the latest addition. Teams will continue integrating the booster stack – the left center center segment adorned with the NASA “worm” insignia is the next segment to be integrated.
      The right and left forward assemblies were brought to the VAB from the spaceport’s Booster Fabrication Facility on Jan. 14. The forward assemblies are comprised of three parts: the nose cone which serves as the aerodynamic fairing; a forward skirt, which house avionics; and the frustum which houses motors that separates the boosters from the SLS core stage during flight. The remaining booster segments will be transported from the Rotation, Processing, and Surge Facility to the VAB when engineers are ready to integrate them. The forward assemblies will be the last segments integrated to complete the booster configuration, ahead of integration with the core stage.
      Image Credit: NASA/Kim Shiflett
      View the full article
    • By NASA
      Artist’s rendering of astronauts managing logistics on the lunar surface. Credit: NASA NASA awarded new study contracts Thursday to help support life and work on the lunar surface. As part of the agency’s blueprint for deep space exploration to support the Artemis campaign, nine American companies in seven states are receiving awards.
      The Next Space Technologies for Exploration Partnerships Appendix R contracts will advance learning in managing everyday challenges in the lunar environment identified in the agency’s Moon to Mars architecture. 
      “These contract awards are the catalyst for developing critical capabilities for the Artemis missions and the everyday needs of astronauts for long-term exploration on the lunar surface,” said Nujoud Merancy, deputy associate administrator, Strategy and Architecture Office at NASA Headquarters in Washington. “The strong response to our request for proposals is a testament to the interest in human exploration and the growing deep-space economy. This is an important step to a sustainable return to the Moon that, along with our commercial partners, will lead to innovation and expand our knowledge for future lunar missions, looking toward Mars.”
      The selected proposals have a combined value of $24 million, spread across multiple companies, and propose innovative strategies and concepts for logistics and mobility solutions including advanced robotics and autonomous capabilities:
      Blue Origin, Merritt Island, Florida – logistical carriers; logistics handling and offloading; logistics transfer; staging, storage, and tracking; surface cargo and mobility; and integrated strategies Intuitive Machines, Houston, Texas – logistics handling and offloading; and surface cargo and mobility Leidos, Reston, Virginia – logistical carriers; logistics transfer; staging, storage, and tracking; trash management; and integrated strategies Lockheed Martin, Littleton, Colorado – logistical carriers; logistics transfer; and surface cargo and mobility MDA Space, Houston – surface cargo and mobility Moonprint, Dover, Delaware – logistical carriers Pratt Miller Defense, New Hudson, Michigan – surface cargo and mobility Sierra Space, Louisville, Colorado – logistical carriers; logistics transfer; staging, storage, and tracking; trash management; and integrated strategies Special Aerospace Services, Huntsville, Alabama – logistical carriers; logistics handling and offloading; logistics transfer; staging, storage, and tracking; trash management; surface cargo and mobility; and integrated strategies NASA is working with industry, academia, and the international community to continuously evolve the blueprint for crewed exploration and taking a methodical approach to investigating solutions that set humanity on a path to the Moon, Mars, and beyond.
      For more on NASA’s mission to return to the Moon, visit:
      https://www.nasa.gov/humans-in-space/artemis
      -end-
      Cindy Anderson / James Gannon
      Headquarters, Washington
      202-358-1600
      cindy.a.anderson@nasa.gov / james.h.gannon@nasa.gov 
      Share
      Details
      Last Updated Jan 23, 2025 LocationNASA Headquarters Related Terms
      Artemis Exploration Systems Development Mission Directorate Humans in Space NASA Headquarters View the full article
    • By NASA
      Jon Carabello has spent his entire career at TURBOCAM, which produces 10 core stage main engine turbomachinery components for the RS-25 main engine on NASA’s SLS (Space Launch System) heavy lift exploration rocket.Photo: TURBOCAM Jon Carabello did not begin his career journey with an eye on space, but when NASA’s Artemis lunar exploration campaign came calling, he was all in.
      Born, raised, and college-educated in New Hampshire, Carabello has spent his entire professional career at TURBOCAM – a turbomachinery development and manufacturing company – in the southeast corner of the Granite State. 
      That’s a long way from the southern and western states commonly associated with U.S. human spaceflight activities.
      Asked about his early memories of America’s space program, Carabello mentions movies like Apollo 13, and notes that Christa McAulliffe, the teacher-astronaut who died in the 1986 Space Shuttle Challenger accident, taught high school in New Hampshire.
      Little did he know that his future employer, a maker of complex machined hardware for a variety of industrial applications, has long been a component supplier to programs including the Space Shuttle and the International Space Station.
      There was never much question that Carabello, who started tinkering with engines and other machinery at a young age, would make a career of mechanical engineering. “I like to solve problems – that’s my big thing,” he says. 
      He learned about TURBOCAM when company representatives made a presentation to his University of New Hampshire engineering class. “That’s how I figured out I knew wanted to work at TURBOCAM and work with 5-axis machining,” he says. “Machining amazes me.”
      Five axis machine tools can machine metal blanks from multiple angles to create geometrically complex parts for industrial hardware. TURBOCAM produces 10 core stage main engine turbomachinery components for the RS-25 main engine on NASA’s SLS (Space Launch System) heavy lift exploration rocket. L3Harris Technologies is the prime contractor for the RS-25 engines.
      It was his fascination with machining rather than the opportunity to work on rocket engines that drew Carabello to TURBOCAM, where he initially worked on machinery for the oil and gas industry, heating and air conditioning systems, and aerospace. 
      But then one day, a supervisor asked him to take over the company’s RS-25 portfolio. He remembers the conversion quite clearly.
      “It was a Thursday afternoon,” he says. “I was sitting in my office and my manager came in and said, ‘we have somebody leaving and need someone to take over project management and ownership of the RS-25.’ I said, ‘yes’ and he said, ‘you have a call with the program tomorrow.’ That was about five years ago.”
      It was a significant change, but Carabello knew the company needed his problem-solving skills on the RS-25 program. “I know how to bring a team together to deliver a quality product. It’s rewarding to know I’m helping return humans to the Moon and paving the way to Mars with the Artemis campaign.”
      Self-confidence notwithstanding, Carabello admits to being a bit nervous given that NASA astronauts will be relying on his work. That point was driven home when NASA and L3Harris representatives visited TURBOCAM in the spring of 2024 for a series of presentations on Artemis. The remark that resonated with him the most was by NASA astronaut Dr. Lee Morin, who said the most important part of any human spaceflight mission is bringing astronauts safely home. 
      “That meant a lot to me,” says Carabello, whose team is responsible for all aspects of TURBOCAM’S RS-25 effort, including quality control, inspection, and resource allocation. He is constantly reminding his team of what’s really at stake for astronauts bound for space: “We’re helping them to return home,” he says. 
      Read other I am Artemis features.
      View the full article
    • By NASA
      Credit: NASA With Finland’s signing of the Artemis Accords on Tuesday, NASA celebrates the 53rd nation committing to the safe and responsible exploration of space that benefits humanity. The signing ceremony took place on the margins of the Aalto University’s Winter Satellite Workshop 2025 in Espoo, Finland.
      “Today, Finland is joining a community of nations that want to share scientific data freely, operate safely, and preserve the space environment for the Artemis Generation,” said NASA Associate Administrator Jim Free, who provided pre-recorded virtual remarks for the ceremony. “By signing the Artemis Accords, Finland builds on its rich history in space, excelling in science, navigation, and Earth observation. Forging strong partnerships between our nations and among the international community is critical for advancing our shared space exploration goals.”
      Wille Rydman, Finland’s minister of economic affairs, signed the Artemis Accords in front of an audience of Finnish space officials and workshop attendees.
      “Finland has been part of the space exploration community for decades with innovations and technology produced by Finnish companies and research institutions,” said Rydman. “The signing of the Artemis Accords is in line with Finland’s newly updated space strategy that highlights the importance of international cooperation and of strengthening partnerships with the Unites States and other allies. We aim for this cooperation to open great opportunities for the Finnish space sector in the new era of space exploration and in the Artemis program.”
      NASA and Finland have a long history of collaboration, and most recently, Finland is contributing to the upcoming Intuitive Machines-2 delivery to the Moon under NASA’s Artemis campaign and CLPS (Commercial Lunar Payload Services) initiative. Intuitive Machines will deliver a lunar LTE/4G communications system developed by Finnish company, Nokia. Its U.S. subsidiary, Nokia of America, was selected as part of NASA’s Tipping Point opportunity through the agency’s Space Technology Mission Directorate, to advance a lunar surface communications system that could help humans and robots explore more of the Moon than ever before.
      The Finnish Meteorological Institute also provided the pressure and humidity measurement instruments for the Environmental Monitoring Station instrument suite aboard the Curiosity Rover, operating on Mars now.
      In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, a set of principles promoting the beneficial use of space for humanity.
      The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Kathryn Hambleton / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      kathryn.a.hambleton@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Jan 21, 2025 LocationNASA Headquarters Related Terms
      artemis accords NASA Headquarters Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      Teams with NASA are gaining momentum as work progresses toward future lunar missions for the benefit of humanity as numerous flight hardware shipments from across the world arrived at the agency’s Kennedy Space Center in Florida for the first crewed Artemis flight test and follow-on lunar missions. The skyline at Kennedy will soon see added structures as teams build up the ground systems needed to support them.
      Crews are well underway with parallel preparations for the Artemis II flight, as well as buildup of NASA’s mobile launcher 2 tower for use during the launch of the SLS (Space Launch System) Block 1B rocket, beginning with the Artemis IV mission. This version of NASA’s rocket will use a more powerful upper stage to launch with crew and more cargo on lunar missions. Technicians have begun upper stage umbilical connections testing that will help supply fuel and other commodities to the rocket while at the launch pad.
      In summer 2024, technicians from NASA and contractor Bechtel National, Inc. completed a milestone called jack and set, where the center’s mega-mover, the crawler transporter, repositioned the initial steel base assembly for mobile launcher 2 from temporary construction shoring to its six permanent pedestals near the Kennedy’s Vehicle Assembly Building.   
      Teams at Bechtel National, Inc. use a crane to lift Module 4 into place atop the mobile launcher 2 tower chair at its park site on Jan. 3, 2025, at Kennedy Space Center in Florida. Module 4 is the first of seven modules that will be stacked vertically to make up the almost 400-foot launch tower that will be used beginning with the Artemis IV mission.Betchel National Inc./Allison Sijgers “The NASA Bechtel mobile launcher 2 team is ahead of schedule and gaining momentum by the day,” stated Darrell Foster, ground systems integration manager, NASA’s Exploration Ground Systems Program at NASA Kennedy. “In parallel to all of the progress at our main build site, the remaining tower modules are assembled and outfitted at a second construction site on center.”
      As construction of the mobile launcher 2’s base continues, the assembly operations shift into integration of the modules that will make up the tower. In mid-October 2024, crews completed installation of the chair, named for its resemblance to a giant seat. The chair serves as the interface between the base deck and the vertical modules which are the components that will make up the tower, and stands at 80-feet-tall.
      In December 2024, teams completed the rig and set Module 4 operation where the first of a total of seven 40-foot-tall modules was stacked on top of the chair. Becthel crews rigged the module to a heavy lift crane, raised the module more than 150-feet, and secured the four corners to the tower chair. Once complete, the entire mobile launcher structure will reach a height of nearly 400 feet – approximately the length of four Olympic-sized swimming pools placed end-to-end.
      On the opposite side of the center, test teams at the Launch Equipment Test Facility are testing the new umbilical interfaces, which will be located on mobile launcher 2, that will be needed to support the new SLS Block 1B Exploration Upper Stage. The umbilicals are connecting lines that provide fuel, oxidizer, pneumatic pressure, instrumentation, and electrical connections from the mobile launcher to the upper stage and other elements of SLS and NASA’s Orion spacecraft.
      “All ambient temperature testing has been successfully completed and the team is now beginning cryogenic testing, where liquid nitrogen and liquid hydrogen will flow through the umbilicals to verify acceptable performance,” stated Kevin Jumper, lab manager, NASA Launch Equipment Test Facility at Kennedy. “The Exploration Upper Stage umbilical team has made significant progress on check-out and verification testing of the mobile launcher 2 umbilicals.”
      https://www.nasa.gov/wp-content/uploads/2025/01/eusu-test-3-5b-run-1.mp4 Exploration Upper Stage Umbilical retract testing is underway at the Launch Equipment Test Facility at Kennedy Space Center in Florida on Oct. 22, 2024. The new umbilical interface will be used beginning with the Artemis IV mission. Credit: LASSO Contract LETF Video Group The testing includes extension and retraction of the Exploration Upper Stage umbilical arms that will be installed on mobile launcher 2. The test team remotely triggers the umbilical arms to retract, ensuring the ground and flight umbilical plates separate as expected, simulating the operation that will be performed at lift off.
      View the full article
  • Check out these Videos

×
×
  • Create New...