Jump to content

Hubble Spies a Diminutive Galaxy


NASA

Recommended Posts

  • Publishers

2 min read

Hubble Spies a Diminutive Galaxy

A relatively small, oval-shaped galaxy, tilted diagonally. Its center glows brightly and dims gradually to its edge. Its center also holds a few small, blue, glowing spots where stars are forming and dark wisps of dust that cross the galaxy. The image has a black background on which many background galaxies and foreground stars are visible.
This NASA/ESA Hubble Space Telescope image reveals the dwarf elliptical galaxy named IC 3430.

This NASA/ESA Hubble Space Telescope image reveals the subtle glow of the galaxy named IC 3430, located 45 million light-years from Earth in the constellation Virgo. This dwarf elliptical galaxy is part of the Virgo cluster, a rich collection of galaxies both large and small, many of which are very similar in type to this diminutive galaxy.

Like its larger elliptical cousins, IC 3430 has a smooth, oval shape lacking any recognizable features like arms or bars, and is missing much of the gas needed to form many new stars. Interestingly, IC 3430 does feature a core of hot, massive blue stars —an uncommon sight in elliptical galaxies — that indicates recent star-forming activity. Astronomers think that pressure from the galaxy ploughing through gas within the Virgo cluster ignited what gas IC 3430 had in its core to form the newer stars.

Dwarf galaxies are really just galaxies with fewer stars, usually less than a billion, but that is often enough for them to reproduce, in miniature, the same forms as larger galaxies. There are dwarf elliptical galaxies like IC 3430, dwarf irregular galaxies, dwarf spheroidal galaxies, and even dwarf spiral galaxies!

Explore More

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      X-ray: NASA/CXC/Xiamen Univ./C. Ge; Optical: DESI collaboration; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers using NASA’s Chandra X-ray Observatory have found a galaxy cluster has two streams of superheated gas crossing one another. This result shows that crossing the streams may lead to the creation of new structure.
      Researchers have discovered an enormous, comet-like tail of hot gas — spanning over 1.6 million light-years long — trailing behind a galaxy within the galaxy cluster called Zwicky 8338 (Z8338 for short). This tail, spawned as the galaxy had some of its gas stripped off by the hot gas it is hurtling through, has split into two streams.
      This is the second pair of tails trailing behind a galaxy in this system. Previously, astronomers discovered a shorter pair of tails from a different galaxy near this latest one. This newer and longer set of tails was only seen because of a deeper observation with Chandra that revealed the fainter X-rays.
      Researchers have discovered a second pair of tails trailing behind a galaxy in this cluster. Previously, astronomers discovered a shorter pair of tails from a different galaxy close to this latest one. This newer and longer set of tails was only seen because of a deeper observation with Chandra that revealed the fainter X-rays that have been shown in the optical data. These tails span for over a million light-years and help determine the evolution of the galaxy cluster.X-ray: NASA/CXC/Xiamen Univ./C. Ge; Optical: DESI collaboration; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers now have evidence that these streams trailing behind the speeding galaxies have crossed one another. Z8338 is a chaotic landscape of galaxies, superheated gas, and shock waves (akin to sonic booms created by supersonic jets) in one relatively small region of space. These galaxies are in motion because they were part of two galaxy clusters that collided with each other to create Z8338.
      This new composite image shows this spectacle. X-rays from Chandra (represented in purple) outline the multimillion-degree gas that outweighs all of the galaxies in the cluster. The Chandra data also shows where this gas has been jettisoned behind the moving galaxies. Meanwhile an optical image from the Dark Energy Survey from the Cerro Tololo Inter-American Observatory in Chile shows the individual galaxies peppered throughout the same field of view.
      The original gas tail discovered in Z8338 is about 800,000 light-years long and is seen as vertical in this image (see the labeled version). The researchers think the gas in this tail is being stripped away from a large galaxy as it travels through the galaxy cluster. The head of the tail is a cloud of relatively cool gas about 100,000 light-years away from the galaxy it was stripped from. This tail is also separated into two parts.
      The team proposes that the detachment of the tail from the large galaxy may have been caused by the passage of the other, longer tail. Under this scenario, the tail detached from the galaxy because of the crossing of the streams.
      The results give useful information about the detachment and destruction of clouds of cooler gas like those seen in the head of the detached tail. This work shows that the cloud can survive for at least 30 million years after it is detached. During that time, a new generation of stars and planets may form within it.
      The Z8338 galaxy cluster and its jumble of galactic streams are located about 670 million light-years from Earth. A paper describing these results appeared in the Aug. 8, 2023, issue of the Monthly Notices of the Royal Astronomical Society and is available online at: https://academic.oup.com/mnras/article/525/1/1365/7239302.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description:
      This release features a composite image of two pairs of hot gas tails found inside a single galaxy cluster. The image is presented both labeled and unlabeled, with color-coded ovals encircling the hot gas tails.
      In both the labeled and unlabeled versions of the image, mottled purple gas speckles a region of space dotted with distant flecks of red and white. Also present in this region of space are several glowing golden dots. These dots are individual galaxies that together form the cluster Zwicky 8338.
      To our right of center is a glowing golden galaxy with a mottled V shaped cloud of purple above it. Yellow labels identify the two arms of the V as tails trailing behind the hurtling galaxy below.
      To our left of center is another golden galaxy, this one surrounded by purple gas. Behind it, opening toward our right in the shape of a widening V lying on its side, are two more mottled purple clouds. Labeled in white, these newly-discovered gas tails are even larger than the previously discovered tails labeled in yellow. These tails, which overlap with the galaxy on our right, are over 1.6 million light-years long.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      ESA/Hubble & NASA, M. Koss, A, Barth This NASA/ESA Hubble Space Telescope image features the spiral galaxy IC 4709 located around 240 million light-years away in the southern constellation Telescopium. Hubble beautifully captures its faint halo and swirling disk filled with stars and dust bands. The compact region at its core might be the most remarkable sight. It holds an active galactic nucleus (AGN).
      If IC 4709’s core just held stars, it wouldn’t be nearly as bright. Instead, it hosts a gargantuan black hole, 65 million times more massive than our Sun. A disk of gas spirals around and eventually into this black hole, crashing together and heating up as it spins. It reaches such high temperatures that it emits vast quantities of electromagnetic radiation, from infrared to visible to ultraviolet light and X-rays. A lane of dark dust, just visible at the center of the galaxy in the image above, obscures the AGN in IC 4709. The dust lane blocks any visible light emission from the nucleus itself. Hubble’s spectacular resolution, however, gives astronomers a detailed view of the interaction between the quite small AGN and its host galaxy. This is essential to understanding supermassive black holes in galaxies much more distant than IC 4709, where resolving such fine details is not possible.
      This image incorporates data from two Hubble surveys of nearby AGNs originally identified by NASA’s Swift telescope. There are plans for Swift to collect new data on these galaxies. Swift houses three multiwavelength telescopes, collecting data in visible, ultraviolet, X-ray, and gamma-ray light. Its X-ray component will allow SWIFT to directly see the X-rays from IC 4709’s AGN breaking through the obscuring dust. ESA’s Euclid telescope — currently surveying the dark universe in optical and infrared light — will also image IC 4709 and other local AGNs. Their data, along with Hubble’s, provides astronomers with complementary views across the electromagnetic spectrum. Such views are key to fully research and better understand black holes and their influence on their host galaxies.
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds More… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   4 Min Read NASA’s Hubble Finds More Black Holes than Expected in the Early Universe
      The Hubble Ultra Deep Field of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. The image required 800 exposures taken over 400 Hubble orbits around Earth. The total amount of exposure time was 11.3 days, taken between Sept. 24, 2003 and Jan. 16, 2004. Credits:
      NASA, ESA, S. Beckwith (STScI) and the HUDF Team With the help of NASA’s Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      Currently, scientists do not have a complete picture of how the first black holes formed not long after the big bang. It is known that supermassive black holes, that can weigh more than a billion suns, exist at the center of several galaxies less than a billion years after the big bang.
      “Many of these objects seem to be more massive than we originally thought they could be at such early times — either they formed very massive or they grew extremely quickly,” said Alice Young, a PhD student from Stockholm University and co-author of the study  published in The Astrophysical Journal Letters.
      This is a new image of the Hubble Ultra Deep Field. The first deep imaging of the field was done with Hubble in 2004. The same survey field was observed again by Hubble several years later, and was then reimaged in 2023. By comparing Hubble Wide Field Camera 3 near-infrared exposures taken in 2009, 2012, and 2023, astronomers found evidence for flickering supermassive black holes in the hearts of early galaxies. One example is seen as a bright object in the inset. Some supermassive black holes do not swallow surrounding material constantly, but in fits and bursts, making their brightness flicker. This can be detected by comparing Hubble Ultra Deep Field frames taken at different epochs. The survey found more black holes than predicted. NASA, ESA, Matthew Hayes (Stockholm University); Acknowledgment: Steven V.W. Beckwith (UC Berkeley), Garth Illingworth (UC Santa Cruz), Richard Ellis (UCL); Image Processing: Joseph DePasquale (STScI)
      Download this image

      Black holes play an important role in the lifecycle of all galaxies, but there are major uncertainties in our understanding of how galaxies evolve. In order to gain a complete picture of the link between galaxy and black hole evolution, the researchers used Hubble to survey how many black holes exist among a population of faint galaxies when the universe was just a few percent of its current age.
      Initial observations of the survey region were re-photographed by Hubble after several years. This allowed the team to measure variations in the brightness of galaxies. These variations are a telltale sign of black holes. The team identified more black holes than previously found by other methods.
      The new observational results suggest that some black holes likely formed by the collapse of massive, pristine stars during the first billion years of cosmic time. These types of stars can only exist at very early times in the universe, because later-generation stars are polluted by the remnants of stars that have already lived and died. Other alternatives for black hole formation include collapsing gas clouds, mergers of stars in massive clusters, and “primordial” black holes that formed (by physically speculative mechanisms) in the first few seconds after the big bang. With this new information about black hole formation, more accurate models of galaxy formation can be constructed.
      “The formation mechanism of early black holes is an important part of the puzzle of galaxy evolution,” said Matthew Hayes from the Department of Astronomy at Stockholm University and lead author of the study. “Together with models for how black holes grow, galaxy evolution calculations can now be placed on a more physically motivated footing, with an accurate scheme for how black holes came into existence from collapsing massive stars.”
      Image Before/After Astronomers are also making observations with NASA’s James Webb Space Telescope to search for galactic black holes that formed soon after the big bang, to understand how massive they were and where they were located.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Matthew Hayes
      Stockholm University, Stockholm, Sweden
      Share








      Details
      Last Updated Sep 17, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Black Holes Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Online Activities



      Hubble Focus: Dark Universe


      View the full article
    • By European Space Agency
      With the help of the NASA/ESA Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early Universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      View the full article
    • By NASA
      Hubble Space Telescope Home Hubble Examines a Spiral Star… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Examines a Spiral Star Factory
      This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 5668. ESA/Hubble & NASA, C. Kilpatrick This NASA/ESA Hubble Space Telescope image features a spiral galaxy in the constellation Virgo named NGC 5668. It is relatively near to us at 90 million light-years from Earth and quite accessible for astronomers to study with both space- and ground-based telescopes. At first glance, it doesn’t seem like a remarkable galaxy. It is around 90,000 light-years across, similar in size and mass to our own Milky Way galaxy, and its nearly face-on orientation shows open spiral arms made of cloudy, irregular patches.
      One noticeable difference between the Milky Way galaxy and NGC 5668 is that this galaxy is forming new stars 60% more quickly. Astronomers have identified two main drivers of star formation in NGC 5668. Firstly, this high-quality Hubble view reveals a bar at the galaxy’s center, though it might look more like a slight oval shape than a real bar. The bar appears to have affected the galaxy’s star formation rate, as central bars do in many spiral galaxies. Secondly, astronomers tracked high-velocity clouds of hydrogen gas moving vertically between the disk of the galaxy and the spherical, faint halo which surrounds it. These movements may be the result of strong stellar winds from hot, massive stars, that would contribute gas to new star-forming regions.
      The enhanced star formation rate in NGC 5668 comes with a corresponding abundance of supernova explosions. Astronomers have spotted three in the galaxy, in 1952, 1954, and 2004. In this image, Hubble examined the surroundings of the Type II SN 2004G, seeking to study the kinds of stars that end their lives as this kind of supernova.

      Download this image

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Sep 12, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Focus: Galaxies through Space and Time


      Hubble Focus: Galaxies through Space and Time


      Hubble Science Highlights



      Name That Nebula


      View the full article
  • Check out these Videos

×
×
  • Create New...