Jump to content

System-Wide Safety Project Description


NASA

Recommended Posts

  • Publishers

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist concept showing various projects the SWS team works on, from developing new data solutions, new technology and the safety risks associated with it, from robotics to unmanned aircraft and more.

A new era of aviation is here, and NASA’s System-Wide Safety (SWS) project is developing innovative data solutions to assure safe, rapid, and repeatable access to a transformed National Airspace System (NAS). SWS was created in 2018 and is part of NASA Aeronautics’ Airspace Operations and Safety Program. SWS evaluates how the aerospace industry and aircraft modernization impacts safety by using technology to address future operational and design risks.  

SWS Goals

  1. To explore, discover, and understand the impact on safety of growing complexity introduced by modernization aimed at improving the efficiency of flight, the access to airspace, and the expansion of services provided by air vehicles 
  1. To develop and demonstrate innovative solutions that enable this modernization and the aviation transformation envisioned for global airspace system through proactive mitigation of risks in accordance with target levels of safety 

To transform the NAS, SWS employs high-risk research and development to understand how the modernization of industry and aircraft can affect overall safety. SWS is developing and demonstrating innovative solutions within several key research areas, referred to as technical challenges. 

Current Technical Challenges (TCs)

  • TC-2: In-Flight Safety Predictions for Emerging Operations  
  • TC-4: Complex Autonomous Systems Assurance 
  • TC-5: Safety Demonstrator Series for Operational In-Time Aviation Safety Management System 
  • TC-6: In-Time Aviation Safety Management System 

SWS is developing the concept and requirements for an assured In-Time Aviation Safety Management System to achieve the goals described above. It is an integrated set of services, functions, and capabilities to address operational risks and hazards of a transformed NAS. SWS catalyzes the discovery of the unknown and paves the path forward for aviation safety in the future airspace.

 

Back to main System-Wide Safety project page.

Keep Exploring

Discover More Topics From NASA

Share

Details

Last Updated
Jul 31, 2024
Editor
Jim Banke
Contact

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Urban air mobility means a safe and efficient system for vehicles, piloted or not, to move passengers and cargo within a city.NASA As the aviation industry evolves, new air vehicles and operators are entering the airspace. NASA is working to ensure these new diverse set of operations can be safely integrated into the current airspace. The agency is researching how traditional and emerging aircraft operations can efficiently operate in a shared airspace.
      NASA’s Air Traffic Management-eXploration (ATM-X) project is a holistic approach to advancing a digital aviation ecosystem through research, development and testing. To accommodate the growing complexity and scale of new operations in Advanced Air Mobility (AAM), ATM-X leverages technologies that contribute to transforming the national airspace, improving airspace access, and making operations safer and more efficient for all users.
      ATM-X fosters access to data by enhancing the availability of digital information and predictive services – including flight traffic predictions – for airspace operations.
      ATM-X works closely with the Federal Aviation Administration (FAA), commercial partners, industry experts, and stakeholders in evaluating the sustainable impacts of emerging mobility solutions. ATM-X is conducting research to augment current key stakeholders that enable safe operations today such as pilots and air traffic controllers. Through these cooperations, ATM-X researches and validates technological advances in computing, communications, and increasingly automated technologies to support the continued evolution of aviation operations.
      ATM-X supports the modernization of today’s air transportation system through a diverse portfolio of core capabilities, which include remotely supervised missions up through high-altitude operations. The four research subprojects under ATM-X work collaboratively to enable a robust transformation of the National Airspace System (NAS).
      NASA/Maria Werries Unmanned Aircraft System Traffic Management Beyond-Visual-Line-of Sight (UTM-BVLOS) 

      UTM BVLOS is supporting the future of aviation by operationalizing UTM for safe use of drones in our everyday lives. UTM BVLOS is part of a new traffic management paradigm called Extensible Traffic Management (xTM) that will use digital information exchange, cooperative operating practices, and automation to provide air traffic management for remotely piloted operations for small UAS beyond an operator’s visual line of sight. This project focuses on enabling operations in a low- altitude airspace, including drone package delivery and public safety operations. 
      As the FAA works to authorize these types of flights, NASA’s UTM BVLOS team is working with industry to ensure these operations can be routine, safe, and efficient. One such effort is the industry-driven “Key Site Operational Evaluation” out of North Texas, where UTM BVLOS is helping to test UTM tools and services in an operational context.  
      Digital Information Platform (DIP)
      DIP is focused on increasing access to digital information to enable increasingly sustainable and efficient operations for today and future airspace systems. DIP is prototyping a digital service-oriented framework that uses machine learning to provide information, including traffic predictions, weather information, and in-time flight trajectory updates. DIP tests and validates key services for end-to-end trajectory planning and surface operations. 
      DIP is engaging with the FAA, industry, flight operators, and relevant stakeholders, in a series of Sustainable Flight National Partnership – Operations demonstrations to support the United States Climate Action Plan objective of net-zero emissions by 2050. Through these types of collaborations, DIP tests and validates key services and capabilities for end-to-end trajectory planning and surface operations.
      Pathfinding for Airspace with Autonomous Vehicles (PAAV)  
      PAAV is focused on enabling remotely piloted operations in today’s airspace, which includes assessing increasingly automated capabilities to allow safe operations across all phases of flight.
      PAAV is working with key stakeholders, including the FAA, industry standards organizations, and industry partners to develop an ecosystem which helps validate standards, concepts, procedures, and technology. This research will help test and validate a broad range of tools and services that could provide critical information and functions necessary for remotely piloted operations at lower complexity airspace shared with conventional aircrafts. This includes ground-based surveillance to detect and avoid hazards, command and control communications, and relevant weather information, which is critical for safe, seamless, and scalable UAS cargo operations.  
      NAS Exploratory Concepts & Technologies (NExCT)
      Advancements in aircraft design, power, and propulsion systems are enabling high-altitude long-endurance vehicles, such as balloons, airships, and solar aircraft to operate at altitudes of 60,000 feet and above. This airspace is referred to as “Upper Class E” airspace in the United States, or ETM. These advancements open doors to benefits ranging from increased internet coverage, improved disaster response, expanded scientific missions, to even supersonic flight. To accommodate and foster this growth, NExCT is developing a new traffic management concept in this airspace.  
      NExCT is working with the FAA and industry partners to extend a new concept for safely integrating and scaling air traffic across UTM, UAM, and ETM, collectively referenced as the Extensible Traffic Management (xTM) domain. Together, this research project will enable, test, and validate a common xTM framework that is efficient and safe.  
      ATM-X
      AOSP
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      4 min read Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 
      Article 1 week ago 2 min read NASA Develops Pod to Help Autonomous Aircraft Operators 
      Article 2 weeks ago 2 min read NASA Composite Manufacturing Initiative Gains Two New Members
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Solar System Exploration
      Solar System Overview The solar system has one star, eight planets, five officially named dwarf planets, hundreds of moons, thousands…
      Explore NASA’s History
      Share
      Details
      Last Updated Sep 11, 2024 EditorJim BankeContactHillary Smithhillary.smith@nasa.gov Related Terms
      Aeronautics Research Mission Directorate Air Traffic Management – Exploration View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A National Advisory Committee for Aeronautics researcher notes the conditions on the P-39L after its first test run in the Icing Research Tunnel on Sept. 13, 1944. The aircraft was too large to fit in the test section, so it was installed downstream in a larger area of the tunnel. The initial tests analyzed ice buildup on the nose, propeller blades, and antennae. In the summer of 1945, the P-39L was used to demonstrate the effectiveness of a thermal pneumatic boot ice-prevention system and heated propeller blades.Credit: NASA On Sept. 13, 1944, researchers subjected a Bell P-39L Airacobra to frigid temperatures and a freezing water spray in the National Advisory Committee for Aeronautics (NACA)’s new Icing Research Tunnel (IRT) to study inflight ice buildup. Since that first run at the Aircraft Engine Research Laboratory (now NASA’s Glenn Research Center) in Cleveland, the facility has operated on a regular basis for 80 years and remains the oldest and one of the largest icing tunnels in the world.
      Water droplets in clouds can freeze on aircraft surfaces in certain atmospheric conditions. Ice buildup on the forward edges of wings and tails causes significant decreases in lift and rapid increases in drag. Ice can also block engine intakes and add weight. NASA has a long tradition of working to understand the conditions that cause icing and developing systems that prevent and remove ice buildup.
      The NACA decided to build its new icing tunnel adjacent to the lab’s Altitude Wind Tunnel to take advantage of its powerful cooling equipment and unprecedented refrigeration system. The system, which can reduce air temperature to around –30 degrees Fahrenheit, produces realistic and repeatable icing conditions using a spray nozzle system that creates small, very cold droplets and a drive fan that generates airspeeds up to 374 miles per hour.
      View upstream of the Icing Research Tunnel’s 25-foot-diameter drive fan in 1944. The original 12-bladed wooden fan and its 4,100-horsepower motor could produce air speeds up to 300 miles per hour. The motor and fan were replaced in 1987 and 1993, respectively.Credit: NASA Two rudimentary icing tunnels had briefly operated at the NACA’s Langley Memorial Aeronautical Laboratory in Hampton, Virginia, but icing research primarily relied on flight testing. The sophisticated new tunnel in Cleveland offered a safer way to study icing physics, test de-icing systems, and develop icing instrumentation.
      During World War II, inlet icing was a key contributor to the heavy losses suffered by C-46s flying supply missions to allied troops in China. In February 1945, a large air scoop from the C-46 Commando was installed in the tunnel, where researchers determined the cause of the issue and redesigned the scoop to prevent freezing water droplets entering. The modifications were later incorporated into the C–46 and Convair C–40.
      A National Advisory Committee for Aeronautics engineer experiments with an Icing Research Tunnel water spray system design in September 1949. Researchers used data taken from research flights to determine the proper droplet sizes. The atomizing spray system was perfected in 1950.Credit: NASA Despite these early successes, NACA engineers struggled to improve the facility’s droplet spray system because of a lack of small nozzles able to produce sufficiently small droplets. After years of dogged trial and error, the breakthrough came in 1950 with an 80-nozzle system that produced the uniform microscopic droplets needed to properly simulate a natural icing cloud. 
      Usage of the IRT increased in the 1950s, and the controlled conditions produced by the facility helped researchers define specific atmospheric conditions that produce icing. The Civil Aeronautics Authority (the precursor to the Federal Aviation Administration) used this data to establish regulations for all-weather aircraft. The facility also contributed to new icing protections for antennae and jet engines and the development of cyclical heating de-icing systems.
      The success of the NACA’s icing program, along with the increased use of jet engines – which permitted cruising above the weather – reduced the need for additional icing research. In early 1957, just before the NACA transitioned to NASA, the center’s icing program was terminated. Nonetheless, the IRT remained active throughout the 1960s and 1970s supporting industry testing.
      The Icing Research Tunnel is highlighted in this 1973 aerial photograph. The larger Altitude Wind Tunnel (AWT) is located behind it, and the Refrigeration Building that supported both tunnels is immediately to the left of the AWT.Credit: NASA By the mid-1970s, new icing issues were arising due to the increased use of helicopters, regional airliners, and general aviation aircraft. The center held an icing workshop in July 1978 where over 100 icing experts from across the world converged and lobbied for a reinstatement of NASA’s icing research program.
      The agency agreed to provide funding to support a small team of researchers and increase operation of the icing facility. In 1982, a deadly icing-related airline crash spurred NASA to bring back a full-fledged icing research program.
      Nearly all the tunnel’s major components were subsequently upgraded. Use of the IRT skyrocketed, and there was at least a one-year wait for new tests during this period. In 1988, the facility operated more hours than any year since 1950.
      This model was installed in the Icing Research Tunnel in 2023 as part of the Advanced Air Mobility Rotor Icing Evaluation Study, which sought to refine testing of rotating models in the tunnel, validate 3D computational models, and study propeller icing issues.Credit: NASA The facility was used in a complementary way with the Twin Otter aircraft and computer simulation to improve de-icing systems, predictive tools, and instrumentation. IRT testing also accelerated the all-weather certification of the OH-60 Black Hawk helicopter. In the 1990s, the icing program turned its attention to combatting super-cooled large droplets, which can cause ice buildup in areas not protected by leading edge de-icing systems, and tailplane icing, which can cause commuter aircraft to pitch forward.
      The IRT was one of the busiest facilities at the center in the 2000s and continues to maintain a steady test schedule today, investigating icing on turbofan engines and propellers, refining testing of rotating models, validating 3D models, and much more. The IRT been used to develop nearly every modern ice protection system, provided key icing environment data to regulatory agencies, and validated leading ice prediction software. After 80 years, it remains a critical tool for sustaining NASA’s leadership in the icing field.
      More Resources:
      “We Freeze to Please”: A History of NASA’s Icing Research Tunnel and the Quest for Flight Safety Icing Research Tunnel Website International Historic Mechanical Engineering Landmark NASA Glenn’s Aeronautics Research NASA’s Aeronautics Research Mission Directorate Explore More
      4 min read Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 
      Article 1 day ago 8 min read 40 Years Ago: STS-41D – First Flight of Space Shuttle Discovery
      Article 2 days ago 6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus
      Article 7 days ago View the full article
    • By NASA
      7 Min Read NASA Project in Puerto Rico Trains Students in Marine Biology
      A forested green peninsula of Culebra Island juts into the blue waters of the Caribbean as a rain storm hits in the distance. The teal blue surrounding the island indicates shallow waters, home to the island's famous coral reefs. Credits: NASA Ames/Milan Loiacono Tainaliz Marie Rodríguez Lugo took a deep breath, adjusted her snorkel mask, and plunged into the ocean, fins first. Three weeks earlier, Rodríguez Lugo couldn’t swim. Now the college student was gathering data on water quality and coral reefs for a NASA-led marine biology project in Puerto Rico, where she lives.  

      “There is so much life down there that I never knew about,” Rodríguez Lugo said. “And it’s beautiful.”  

      “There is so much life down there that I never knew about, and it’s beautiful.”
      Tainaliz Marie Rodríguez Lugo
      OCEANOS 2024 Intern
      The sea whip and purple sea fans in the photo above are found off the coast of Playa Melones, Culebra, a small island off the east cost of Puerto Rico and a popular destination for snorkelers.

      Puerto Rico is home to more than 1,300 square miles of coral reefs, which play a vital role in protecting the island from storms, waves, and hurricanes. Reef-related tourism provides nearly $2 billion in annual income for the island.
      But coral reefs in Puerto Rico and around the world are experiencing more frequent and severe bleaching events. High ocean temperatures in regions around the globe have led to coral bleaching, which is when corals expel zooxanthellae – the colorful, symbiotic microscopic algae that live inside coral tissues and provide 80-90% of its nutrients. When stressors persist, the corals eventually starve and turn bone-white.

      In April 2024, NOAA (National Oceanic and Atmospheric Administration) announced that the world was experiencing a global bleaching event, the fourth on record. You can see bleached spots in the lobed star coral pictured above, which is also colonized by Ramicrusta, an invasive, burnt orange algae that poses an additional threat to reefs. 

      Students Are Given Ocean Research Tools

      Beginning in June, the month-long program that Rodriguez and 29 other local students participated in is called the Ocean Community Engagement and Awareness using NASA Earth Observations and Science for Hispanic/Latino Students (OCEANOS).  The goal of OCEANOS is twofold: to teach Puerto Rican students about marine ecology and conservation, and to train students through hands-on fieldwork how to use marine science tools to monitor the health of coral reefs.

      The course included classroom instruction, scientific fieldwork, collecting and analyzing ocean data from La Parguera and Culebra Island, and a final presentation. 

      In the photo, OCEANOS instructor Samuel Suleiman shows a 3D-printed clump of staghorn coral to a group of students off the coast of Culebra. In areas where coral habitats have been damaged, conservationists use 3D-printed corals to attract and protect fish, algae, and other wildlife. 


      To practice coral surveying techniques and evaluate biodiversity,students used compact cameras to snap a photo every half second, recording seven-meter by seven-meter quadrants of the ocean floor. Back on land, the students stitched these images – roughly 600 images per quadrant – into high-resolution mosaics, which they then used to catalog the types and distributions of various coral species.  


      Low Light, Poor Water Quality, and Invasive Species Threaten Coral Reefs
      Students also built their own low-cost instruments, with sensors on each end to measure temperature and light, to help assess water quality and characteristics.  

      The ideal temperature range for coral falls between 77- 82 degrees Fahrenheit (25-28 degrees Celsius). Water above or below this range is considered a potential stressor for coral and can impair growth. It can also increase the risk of disease, bleaching, and reproductive issues.    

      Coral relies on light for growth. Less light means less photosynthesis for the zooxanthellae that live inside the coral, which in turn means less food for the coral itself. Cloudy water due to excessive sediment or phytoplankton can dim or block sunlight.


      Additional threats to coral include fishing equipment, boat groundings, chemical runoff, and invasive species.  

      In the photo above, OCEANOS instructor Juan Torres-Pérez holds two clumps of cyanobacteria, a type of bacteria that has choked a section of reef near Playa Melones. The exact cause of this excessive cyanobacteria growth is unclear, but it is likely due to land-based pollution leaching into nearby waters, he said. In the background, dark brown piles of cyanobacteria littering the ocean floor are visible. 

      Students Help Grow and Plant New Coral

      Suleiman walked students through the process of planting new coral, which involved tying loose staghorn and elkhorn corals into a square frame. Each frame holds about 100 individual pieces of coral.  Suleiman leads a group called Sociedad Ambiente Marino (SAM), which has been working for more than 20 years to cultivate and plant more than 160,000 corals around Puerto Rico.

      Divers anchored these frames to the ocean floor. Under ideal conditions, branching species like elkhorn and staghorn coral grow one centimeter per month, or about 12-13 centimeters per year, making them ideal candidates for coral reef restoration. By comparison, mountainous and boulder coral, also prevalent in the Caribbean Sea, grow an average of just one centimeter per year. 

      The frames will remain on the ocean floor for 10 to 14 months, until the corals have quadrupled in size. At any given time, SAM has about 45 of these frames in coral ‘farms’ around Culebra, totaling almost 4,500 corals. 

      Once the corals are ready to be planted, they will be added to various reefs to replace damaged or bleached corals, and shore up vulnerable habitats.

      In the photo above, Suleiman gathers loose corals to place around an endangered coral species Dendrogyra cylindrus, more commonly referred to as Pillar Coral (front left). This underwater “garden,” as he called it, should attract fish and wildlife such as sea urchins, which will give the endangered coral — and the other species in this small reef — a better chance of survival.

      A New Generation of Marine Scientists

      From the 2023 OCEANOS class, roughly half of the undergraduate students went on to pursue marine science degrees, and many hope to continue with a post-graduate program. For a scientific field historically lacking diverse voices, this is a promising step.

      Among the high school students in the 2023 class, three went on to change their degree plans to oceanography after participating in the OCEANOS program, while others are finding ways to incorporate marine science into their studies.

      Francisco Méndez Negrón, a 2023 OCEANOS graduate, is now a computer science student at the University of Puerto Rico at Rio Piedras and wants to apply robotics to marine ecology. “My goal is to integrate computer science and oceanography to make something that can contribute to the problems marine ecosystems are facing, mostly originated by us humans,” Méndez Negrón said. He returned to the OCEANOS program to serve as a mentor for the 2024 class. 

      As for Tainaliz Marie Rodriguez Lugo, she managed to overcome her swim anxiety while discovering a love of the ocean. She credited the instructors who were patient, encouraging, and never left her side in the water. 

      “I was really scared going into this internship,” Rodríguez Lugo said. “I didn’t know how to swim, and I was starting a program literally called ‘Oceans.’ But now I love it: I could spend all day in the ocean.”

      I was really scared going into this internship. I didn’t know how to swim, and I was starting a program literally called ‘Oceans.’ But now I love it: I could spend all day in the ocean.
      Tainaliz Marie Rodríguez Lugo
      OCEANOS 2024 Intern
      When asked how she would describe coral to someone who has never seen one, Rodríguez Lugo just laughed. “I can’t. There are no words for it. I would just take them to the reefs.” 


      For more information about OCEANOS, visit:
      https://www.nasa.gov/oceanos
      The OCEANOS program’s final session will take place next year. Applications for the 2025 OCEANOS program will open in March. To apply, visit:
      https://nasa.gov/oceanos-application


      Photographs and story by Milan Loiacono, NASA’s Ames Research Center

      About the Author
      Milan Loiacono
      Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
      Share
      Details
      Last Updated Aug 28, 2024 Related Terms
      General Ames Research Center Ames Research Center's Science Directorate Climate Change Earth Earth Science Division Opportunities For Students to Get Involved Science Activation Science Mission Directorate Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      On Aug. 27, 1984, President Ronald W. Reagan announced the Teacher in Space project as part of NASA’s Space Flight Participant Program to expand the space shuttle experience to a wider set of private citizens who would communicate the experience to the public. From 11,000 teacher applicants, each of the 50 states and territories selected two nominees for a total of 114. After meeting with each candidate, a review panel narrowed the field down to 10 finalists. These 10 underwent interviews and medical examinations. A senior review panel recommended S. Christa McAuliffe as the prime Teacher in Space to fly with the STS-51L crew, with Barbara R. Morgan as her backup. Tragically, the Jan. 28, 1986, Challenger accident prevented McAuliffe from realizing her dreams of teaching from space.

      Left: President Ronald W. Reagan announces the Teacher in Space project in 1984.Middle: NASA Administrator James M. Beggs. Right: Official emblem of the Teacher in Space project.
      During a ceremony at the Department of Education recognizing outstanding public secondary schools, President Reagan announced the Teacher in Space project, saying,
      It’s long been a goal of our space shuttle to someday carry private citizens in space. Until now, we hadn’t decided who the first citizen passenger would be. But today, I’m directing NASA to begin a search in all of our elementary and secondary schools, and to choose as the first citizen passenger in the history of our space program, one of America’s finest – a teacher. When that shuttle takes off, all of America will be reminded of the crucial role that teachers and education play in the life of our nation.
      Later that day, NASA Administrator James M. Beggs held a news conference at NASA Headquarters in Washington, D.C., and provided more details, saying that although a teacher would lead off the Space Flight Participant Program, future selections would include journalists, poets, and artists. NASA released an Announcement of Opportunity on Nov. 8 detailing the requirements for teacher applicants and setting the target launch date of early 1986. From the approximately 11,000 applications received by the Feb. 1, 1985, deadline, the Council of Chief State School Officers coordinated the selection process, working with state, territorial, and agency review panels. On May 3, they announced the 114 nominees, two from each U.S. state, the District of Columbia, Puerto Rico, the U.S. Virgin Islands, Guam, Departments of Defense and State overseas schools, and Bureau of Indian Affairs schools. The nominees attended a workshop in Washington, D.C., June 22-27 focused on space education, because even those not selected planned to serve as space ambassadors for NASA. Each nominee met with the National Review Panel that selected the 10 finalists, announced on July 1.

      Left: The 10 Teacher in Space finalists during their visit to NASA’s Johnson Space Center (JSC) in Houston in July 1985. Middle: As part of their orientation, the 10 finalists toured JSC’s space shuttle mockups. Right: The 10 finalists experienced brief periods of weightlessness aboard NASA’s KC-135 aircraft.
      The 10 finalists spent the week of July 7 at NASA’s Johnson Space Center (JSC) in Houston. During the week, the finalists underwent medical and psychological examinations, toured JSC’s facilities, and experienced episodes of weightlessness on the KC-135 aircraft. Following a brief stop at NASA’s Marshall Space Flight Center in Huntsville, Alabama, the finalists spent July 15-17 in Washington, D.C., undergoing a series of interviews with the NASA Space Flight Participant Committee, who recommended the Teacher in Space candidate and a backup to NASA Administrator Beggs.

      Left: Vice President George H.W. Bush announces the prime, S. Christa McAuliffe, and backup, Barbara R. Morgan, Teacher in Space candidates. Right: McAuliffe addresses the assembled crowd.
      On July 19, the 10 finalists assembled in the Roosevelt Room at the White House. Following Administrator Beggs’ introductory remarks, Vice President George H.W. Bush announced the Teacher in Space winners – S. Christa McAuliffe, a high school social studies teacher from Concord, New Hampshire, and her backup, Barbara R. Morgan, a second-grade teacher from McCall, Idaho. The other eight finalists continued to participate in the project by helping to develop McAuliffe’s lesson plans.

      Left: Barbara R. Morgan, second from left, and S. Christa McAuliffe, fourth from left, meet the STS-51L crew at NASA’s Johnson Space Center in Houston. Middle: McAuliffe, left, and Morgan get their first taste of space food. Right: Morgan, left, and McAuliffe receive a briefing on the space shuttle galley.
      McAuliffe and Morgan reported to JSC on Sept. 9, 1985, to begin training for their space shuttle mission. Assigned to STS-51L scheduled for January 1986, they met their fellow crewmates Commander Francis R. “Dick” Scobee, Pilot Michael J. Smith, and Mission Specialists Ellison S. Onizuka, Judith A. Resnik, and Ronald E. McNair. Gregory B. Jarvis, a Hughes Aircraft engineer, joined the crew as a second payload specialist in October. Their first week, McAuliffe and Morgan received basic orientation, including fitting for their flight suits and tasting space food. For the next four months, they trained with the rest of the crew on shuttle systems, emergency evacuation drills, and completed flights aboard T-38 jets and the KC-135 weightless aircraft.

      Left: The STS-51L crew receives a briefing on crew escape procedures. Middle: The STS-51L crew receives a briefing on water evacuation. Right: Barbara R. Morgan, left, and S. Christa McAuliffe pose in front of the space shuttle crew compartment trainer.

      Left: At Houston’s Ellington Air Force Base, Barbara R. Morgan, Michael J. Smith, a photographer, S. Christa McAuliffe, and Francis R. “Dick” Scobee walk onto the tarmac toward T-38 jet trainers. Right: McAuliffe in the backseat of a T-38 prior to takeoff.

      Left: Teacher in Space designee S. Christa McAuliffe in the backseat of a T-38 jet trainer during a right turn, with part of Galveston Island visible at left. Right: Michael J. Smith, left, Barbara R. Morgan, McAuliffe, and Francis R. “Dick” Scobee following training flights aboard T-38 jets.

      Left: Backup Teacher in Space Barbara R. Morgan, left, prime Teacher in Space S. Christa McAuliffe, Payload Specialist Gregory B. Jarvis, and Mission Specialist Ronald E. McNair in the middeck of the Shuttle Mission Simulator. Right: Teacher in Space McAuliffe, second from left, and her backup Morgan, get a taste of weightlessness aboard NASA’s KC-135, along with STS-61C Payload Specialist Congressman C. William “Bill” Nelson, now serving as NASA’s 14th administrator.

      Training aboard the KC-135 for Teacher in Space demonstrations. Left: Hydroponics in Microgravity. Middle left: Molecular Mixing Experiment. Middle right: Magnetic Effects. Right: Leapfrog in Microgravity – not an actual experiment.
      During her flight, McAuliffe planned to conduct two live lessons from space and record film for six demonstrations. The first lesson, “The Ultimate Field Trip,” sought to allow students to compare daily life aboard the shuttle versus on Earth. The second lesson, “Where We’ve Been, Where We’re Going, Why?” would explain the reasons for exploring space and making use of its unique environment for manufacturing certain products. The six filmed demonstrations included topics such as magnetism, Newton’s Laws, effervescence, simple machines and tools, hydroponics, and chromatographic separation, and how each of these behaves in weightlessness. Since McAuliffe could not complete these activities, many years later astronauts aboard the space station completed her mission by filming the demonstrations and preparing classroom lessons.

      Left: At NASA’s Kennedy Space Center in Florida, Teacher in Space S. Christa McAuliffe watches the launch of space shuttle Challenger on the STS-61A Spacelab D1 mission. Middle: The STS-51L crew answer reporters’ questions following the Terminal Countdown Demonstration Test (TCDT). Right: During the TCDT, the crew practices emergency evacuation procedures.
      To prepare for the upcoming launch, McAuliffe and Morgan traveled to NASA’s Kennedy Space Center (KSC) in Florida to witness the liftoff of the STS-61A Spacelab D1 mission, the last flight of space shuttle Challenger before STS-51L, on Oct. 30. The entire STS-51L crew returned to Florida for the Jan. 8, 1986, Terminal Countdown Demonstration Test (TCDT), essentially a dress rehearsal for the actual countdown to launch, planned for two weeks later. As part of the TCDT, the astronauts practiced evacuations drills from the shuttle in case of a fire or other emergency. After the test, they returned to Houston to complete last-minute training.

      Left: The STS-51L crew arrives at NASA’s Kennedy Space Center in Florida a few days before launch. Middle: The STS-51L crew at the traditional prelaunch breakfast. Right: The STS-51L astronauts leave crew quarters on their way to Launch Pad 39B.
      On Jan. 23, the STS-51L crew arrived at KSC for the launch set for Jan. 26. Bad weather caused a one-day delay, and the crew suited up, rode out to the pad, and boarded Challenger. A problem closing the hatch followed by poor weather caused a scrub of the launch attempt. On Jan. 28, the crew went back out to the pad in unusually cold weather for Florida and took their places aboard Challenger. This time, the launch took place on time.

      Left: The official photograph of the STS-51L crew. Right: The STS-51L crew patch, with an apple representing S. Christa McAuliffe and the Teacher in Space project.
      Following the Challenger accident, the Teacher in Space project remained active for a time as NASA reevaluated the entire Space Flight Participant Program. Morgan assumed the role of Teacher in Space designee for a few months, returning to Idaho in the fall of 1986 to resume her teaching duties, yet maintained her contact with NASA. In 1990, NASA canceled the Teacher in Space project.

      Left: Official portrait of Barbara R. Morgan following her selection as a NASA astronaut in 1998. Middle: In 2004, NASA selected Educator Astronauts Dorothy “Dottie” M. Metcalf-Lindenburger, left, Richard “Ricky” R. Arnold, and Joseph “Joe” M. Acaba as members of the Group 19 astronauts. Right: Emblem of the Year of Education on Station.
      In 1998, NASA invited Morgan to join the next astronaut selection group, not as a teacher but as a full-fledged mission specialist, eligible for multiple flights. That same year, NASA initiated its Educator Astronaut program, in which the agency selected qualified teachers as full-time astronauts instead of payload specialists. Morgan reported for training with the rest of the Group 17 astronauts in August 1998. In 2002, NASA assigned her to the STS-118 space station assembly mission that, following delays caused by the Columbia accident, flew in August 2007 aboard Endeavour, Challenger’s replacement. In 2004, NASA selected its first Educator Astronauts as part of Group 19 – Joseph “Joe” M. Acaba, Richard R. “Rickey” Arnold, and Dorothy “Dottie” M. Metcalf-Lindenburger. Metcalf-Lindenburger flew as a mission specialist aboard the STS-131 space station assembly flight in April 2010. Acaba and Arnold flew together on STS-119 in March 2009. Acaba went on to spend 125 days aboard the space station as an Expedition 31 and 32 flight engineer between May and September 2012, and another 168 days during Expedition 53 and 54 between September 2017 and February 2018. He has served as chief of the astronaut office since February 2023. Arnold made his second flight as a flight engineer during Expedition 55 and 56 from March to October 2018. Between their nearly back-to-back missions, Acaba and Arnold spent the 2017-18 school year aboard the space station for A Year of Education on Station. As a tribute to McAuliffe and her legacy, they completed her mission, filming her demonstrations and developing corresponding lessons for classrooms.
      Explore More
      12 min read 55 Years Ago: Apollo 11 Astronauts End Quarantine, Feted from Coast to Coast
      Article 7 days ago 7 min read 55 Years Ago: NASA Group 7 Astronaut Selection
      Article 2 weeks ago 5 min read Celebrating NASA’s Coast Guard Astronauts on Coast Guard Day
      Article 4 weeks ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A fire burns in Fishlake National Forest, as part of the Fall 2023 FASMEE prescribed burn. NASA/ Grace Weikert Background
      Fire is a natural occurrence in many ecosystems and can promote ecological health. However, wildfires are growing in scope and occurring more often than in the past. Among other causes this is due to human-caused climate impacts and the expansion of communities into areas with wildland vegetation. These blazes continue to significantly harm communities, public health, and natural ecosystems. NASA is leveraging cutting-edge science and technology to better understand wildland fire behavior and provide valuable tools for fire policy, response, and mitigation. 
      NASA’s Stake in Wildfire
      NASA’s contributions to wildland fire management span decades. This includes research to better understand the role fire plays in Earth’s dynamic atmosphere, and airborne and spaceborne sensors to analyze fire lifecycles. Much of this research and technology is still used by wildfire agencies across the globe today. NASA is building on this research and technology development with the Wildland Fire Management Initiative (WMI).  
      WMI leverages expertise across the Agency in space technology, science, and aeronautics to improve wildfire research and response. Through this effort, NASA and its partners will continue to provide tools and technologies for improved predictive fire modeling, risk assessment, fire prevention, suppression and post-fire recovery operations. NASA’s WMI aims to equip responders with improved tools for managing these fires
      How NASA is Tackling Wildfire

      NASA is collaborating with other government agencies, academia, and commercial industries to build a concept of operations for the future of wildland fire management. This means identifying gaps in current wildland fire technologies and procedures and laying out clear solutions to address those challenges.  
      NASA will perform a demonstration of wildland fire technologies – including X – in the coming years. 
      To provide a well-rounded toolkit for improving wildland operations, NASA and is tackling every aspect of wildland fire response. These efforts include: 
      Pre-Fire 
      Fuel fire maps with improved accuracy   Tools that identify where and when safe, preventative burn treatments would be most effective  Airspace management and safety technologies to enable mainstream use of uncrewed aircraft systems in prescribed burns  Active Fire 
      Fire detection and tracking imagery   Improved fire information management systems  Models for changing fire conditions, including fire behavior, and wind and atmospheric tracking for quality forecasts  Uncrewed aircraft and high-altitude balloons for real-time communications for fighting fires in harsh environments  Uncrewed Aircraft Systems Traffic Management (UTM) to expand use of uncrewed aircraft systems in fire response, particularly in environments where traditional air traffic control technologies aren’t available  An airspace awareness and communications system to enable remotely piloted aircraft to identify, monitor, and suppress wildfires 24 hours a day  Post-Fire 
      Improved fire impact assessments, including fire severity, air and water quality, risks of landslides, debris flows, and burn scars  Ground-based, airborne, and spaceborne observations to develop monitoring systems for air quality and map burn severity and develop and enhance models and predictions of post-fire hazards  NASA’s Disasters Response Coordination System (DRCS) supports all three fire response aspects listed above. The DRCS, developed under the Agency’s Earth Science Division’s Disasters Program, provides decisional support to international and domestic operational response agencies. This support includes products for understanding wildfire movement and potential pathways, burn-area maps, and impacts of fire, ash, and smoke to population and critical infrastructure. DCRS tools also provide assessments of post-fire flooding and debris flow susceptibility. 
      NASA’s Investment in New Wildland Fire Technologies  
      NASA’s WMI offers grants, contracts, and prizes to small businesses, research institutions, and other wildland technology innovators. Some related technology development activities underway include: 
      Testing communications technologies for incident response teams in areas with no cellphone coverage via a high-altitude balloon 60,000 feet above ground level  Developing wildfire detection systems and instruments for crewed and uncrewed aircraft   Funding early-stage technology development for remote sensing instruments and sensor systems  Developing and flight testing integrated, compact systems for small spacecraft and other platforms for autonomous detection, location tracking, and data collection of transient smoke plumes, early wildfires and other events  Licensing technologies relevant to wildland fire management and hosting wildland fire webinars to promote NASA technology licensing  Partners 
      The NASA Wildland Fire Management Initiative team collaborates with industry, academia, philanthropic institutions, and other government agencies for a more fire-resilient future. These include:  
      U.S. Forest Service  The California Department of Forestry and Fire Protection  The National Oceanic and Atmospheric Administration  The Federal Aviation Administration  The Department of Homeland Security  The Department of Defense  The National Wildfire Coordinating Group  WMI Deliverables
      Through these combined efforts, NASA aims to address urgent wildland fire management challenges and ensure communities are better prepared for wildland fires. NASA will continue to expand partnerships within wildland fire management agencies for technology development and adoptions. 
      For more information, email: Agency-WildlandFiresInitiative@mail.nasa.gov 
      View the full article
  • Check out these Videos

×
×
  • Create New...