Jump to content

Composite Cryotank Technologies and Demonstration (CCTD)


NASA

Recommended Posts

  • Publishers

Note: Please note that this is an “archived project” and is no longer updated. This article is meant for historical purposes only.

im-cctd-140313a.jpg?w=2048
The Composite Cryogenic Propellant Tank project will develop and ground demonstrate large-scale composite cryogenic propellant tanks applicable to heavy-lift launch vehicles, propellant depots, and future lander systems.

The  primary objective of the Composite Cryotank Technologies and Demonstration (CCTD) project is to mature the technology readiness of composite cryogenic propellant tanks at diameters that are suitable for future heavy lift vehicles and other in-space applications. The concept being developed and demonstrated by this project involves advanced materials (composites), structural concepts (joints, splices, fasteners, etc.), and manufacturing techniques. For this project, an out-of-autoclave manufacturing approach is being developed.

The Boeing Company will: design and manufacture a 2.4-meter diameter and a 5.5-meter tanks based on expected loads from the larger SLS tank using an out-of-autoclave procedure; validate the performance of the tanks composite material systems in a relevant environment (e.g., structural integrity, permeability, microcracking); validate the durability of the tanks composite materials under cyclic thermal-mechanical loads; validate the predicted performance of critical joints and design details under representative mechanical and thermal loads; and validate the manufacturing techniques used to create a structural cryotanks. If successful, the manufacturing of large, high-performance composite structures can be accomplished throughout industry without the need of an autoclave, thus improving competition and potentially further reducing the cost to manufacture very large composite components.

Success in this project could lead to rocket propellant tanks that are more than 30 percent lighter and 25 percent cheaper to fabricate compared with current state-of-the-art metallic tanks. Such advancements offer less cost for payload delivery to orbit and the potential of enabling advanced human and robotic space exploration missions.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An automated fiber placement machine on an industrial robot is seen at Fives Machining Systems Inc. Fives is one of the new partners joining a NASA project that explores ways to speed up the production of composite aircraft.Fives Machining Systems Inc. Gulfstream Aerospace Corporation and Fives Machining Systems Inc. have joined 20 other organizations to support NASA’s Hi-Rate Composite Aircraft Manufacturing (HiCAM) project.
      The project is addressing industry’s needs to meet growing demand for air travel, replace aging airliners, and secure U.S. competitiveness in the commercial aircraft industry.  
      NASA and its partners are collaborating and sharing costs to increase the manufacturing rate for aircraft components made from composite (nonmetallic) materials. Gulfstream and Fives are the newest members in a public-private partnership called the Advanced Composites Consortium. 
      Advanced Composites Consortium
      Members of the Consortium have significant and unique expertise in aircraft design, manufacturing, certification, testing, and tool development, with the new members bringing important new insights and capabilities to the team.   
      “By partnering with U.S. industry, academia, and regulators, we’ll increase the likelihood of impacting the next generation of transports,” said Richard Young, manager for NASA’s HiCAM project, which oversees the consortium.
      The team is currently competing concepts to determine which technologies will have the greatest impact on manufacturing rates. Once the most promising concepts are selected, they’ll be demonstrated at full scale.
      The project and Advanced Composites Consortium contribute to NASA’s Sustainable Flight National Partnership by enabling broader use of lightweight composite airframes, which will reduce fuel consumption and carbon emissions, improving air quality and the environment.
       HiCAM is managed under NASA’s Advanced Air Vehicles Program.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      3 min read Beyond the Textbook: DC-8 Aircraft Inspires Students in Retirement
      Article 4 hours ago 2 min read NASA Celebrates Ames’s Legacy of Research on National Aviation Day
      Article 3 days ago 4 min read At Work and Beyond, NASA Employees Find Joy in Aviation
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Aug 22, 2024 EditorJim BankeContactRobert Margettarobert.j.margetta@nasa.gov Related Terms
      Aeronautics Advanced Air Vehicles Program Aeronautics Research Mission Directorate Green Aviation Tech Hi-Rate Composite Aircraft Manufacturing Sustainable Flight National Partnership View the full article
    • By Space Force
      Maj. Andrew Donlin, 2023 Department of the Air Force Athlete of the Year, competed at the International Handball Federation’s Beach Handball “Showcase” at the Paris Olympics; the demonstration event was a step in making beach handball an official sport in future games.

      View the full article
    • By NASA
      Michael Zanetti (ST13), Kyle Miller (EV42), and Chris Whetsel (ES52) conducted a technology demonstration and field work with the NASA JSC 5th Joint EVA Test Team (JETT-3) from 5/17-23/24, near SP Crater, Flagstaff, AZ. JETT5 tested full-up mission operations with communication to JSC-Houston, and included astronauts Kate Rubins and Andre Douglas testing ATLAS suits and 4-6 hr. planned traverses near SP-Crater – a former Apollo astronaut geology training site. The Kinematic Navigation and Cartography Knapsack (KNaCK) team members were invited to demonstrate GPS-denied navigation solutions using our person-mounted velocity-sensing LiDAR sensors that provide local position and a ground-track in addition to terrain mapping capabilities using terrain relative navigation and LiDAR SLAM algorithms. KNaCK tests were designed to provide a real-time ground-track to the Joint Augmented Reality (JointAR/JARVIS) heads-up display suit from NASA JSC. Our technology demo had Astronaut Kate Rubins in the JARVIS suit receiving real-time updates of her traverse path. KNaCK provided flawless positioning for 75% of the traverse, with ~2 m local accuracy compared to GPS. The remaining 25% of the run was impacted by algorithm issues in perfectly flat terrain (a rare issue, likely only on Earth, causing 3 restarts to reacquire an accurate ground-track). Overall, the KNaCK tech demo mission was a big success, with Kate Rubins noting Navigation accuracy reducing mental overhead and decreasing traverse time to sampling stations “Definitely giving me what I need. Pretty Cool!”
      View the full article
    • By NASA
      4 Min Read Next Generation NASA Technologies Tested in Flight
      Erin Rezich, Ian Haskin, QuynhGiao Nguyen, Jason Hill (Zero-G staff), and George Butt experience Lunar gravity while running test operations on the UBER payload. Credits: Zero-G Teams of NASA researchers put their next-generation technologies to the microgravity test in a series of parabolic flights that aim to advance innovations supporting the agency’s space exploration goals.
      These parabolic flights provide a gateway to weightlessness, allowing research teams to interact with their hardware in reduced gravity conditions for intervals of approximately 22 seconds. The flights, which ran from February to April, took place aboard Zero Gravity Corporation’s G-FORCE ONE aircraft and helped to advance several promising space technologies.

      Under the Fundamental Regolith Properties, Handling, and Water Capture (FLEET) project, researchers tested an ultrasonic blade technology in a regolith simulant at lunar and Martian gravities. On Earth, vibratory tools reduce the forces between the tool and the soil, which also lowers the reaction forces experienced by the system. Such reductions indicate the potential for mass savings for tool systems used in space. 
      This flight test aims to establish the magnitude of force reduction achieved by an ultrasonic tool on the Moon and Mars. Regolith interaction, including excavation, will be important to NASA’s resources to support long-duration lunar and Martian missions.
      This experiment represents the success of an international effort three years in the making between NASA and Concordia University in Montreal, Quebec.
      Erin Rezich
      Project Principal Investigator
      “This experiment represents the success of an international effort three years in the making between NASA and Concordia University in Montreal, Quebec. It was a NASA bucket list item for me to conduct a parabolic flight experiment, and it was even more special to do it for my doctoral thesis work. I’m very proud of my team and everyone’s effort to make this a reality,” said Erin Rezich, project principal investigator at NASA’s Glenn Research Center in Cleveland, Ohio. 
      The FLEET project also has a separate payload planned for a future flight test on a suborbital rocket. The Vibratory Lunar Regolith Conveyor will demonstrate a granular material (regolith) transport system to study the vertical transport of lunar regolith simulants (soil) in a vacuum under a reduced gravity environment.
      These two FLEET payloads increase the understanding of excavation behavior and how the excavated soil will be transported in a reduced gravity environment.
      QuynhGiao Nguyen takes experiment notes while Pierre-Lucas Aubin-Fournier and George Butt oversee experiment operations during a soil reset period between parabolas.Zero-G 3D Printed Technologies Take on Microgravity 

      Under the agency’s On-Demand Manufacturing of Electronics (ODME) project, researchers tested 3D printing technologies to ease the use of electronics and tools aboard the International Space Station.

      Flying its first microgravity environment test, the ODME Advanced Toolplate team evaluated a new set of substantially smaller 3D printed tools that provide more capabilities and reduce tool changeouts. The toolplate offers eight swappable toolheads so that new technologies can be integrated after it is sent up to the space station. The 3D printer component enables in-space manufacturing of electronics and sensors for structural and crew-monitoring systems and multi-material 3D printing of metals.
      “The development of these critical 3D printing technologies for microelectronics and semiconductors will advance the technology readiness of these processes and reduce the risk for planned future orbital demonstrations on the International Space Station.
      curtis hill
      ODME Project Principal Investigator
      Left to Right: Pengyu Zhang, Rayne Wolfe, and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G NASA researchers tested another 3D printing technology developed under the agency’s ODME project for manufacturing flexible electronics in space. The Space Enabled Advanced Devices and Semiconductors team is developing electrohydrodynamic inkjet printer technology for semiconductor device manufacturing aboard the space station. The printer will allow for printing electronics and semiconductors with a single development cartridge, which could be updated in the future for various materials systems.
      (Left to right) Paul Deffenbaugh (Sciperio), Cadré Francis (NASA MSFC), Christopher Roberts (NASA MSFC), Connor Whitley (Sciperio), and Tanner Corby (Redwire Space Technologies) operate the On Demand Manufacturing of Electronics (ODME) Advanced Toolplate printer in zero gravity to demonstrate the potential capability of electronics manufacturing in space.Zero-G The On Demand Manufacturing of Electronics (ODME) Advanced Toolplate printer mills a Fused Deposition Modeling (FDM) printed plastic substrate surface smooth in preparation for the further printing of electronic traces. Conducting this study in zero gravity allowed for analysis of Foreign Object Debris (FOD) capture created during milling.Zero-G Left to Right: Rayne Wolfe and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G Left to Right: Pengyu Zhang, Rayne Wolfe, and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G NASA’s Flight Opportunities program supported testing various technologies in a series of parabolic flights earlier this year. These technologies are managed under NASA’s Game Changing Development program within the Space Technology Mission Directorate. Space Enabled Advanced Devices and Semiconductors technology collaborators included Intel Corp., Tokyo Electron America, the University of Wisconsin-Madison, Arizona State University, and Iowa State University. The Space Operations Mission Directorate’s In-Space Production Applications also supports this technology. Advanced Toolplate Technology collaborated with Redwire and Sciperio. The Ultrasonic Blade technology is a partnership with NASA’s Glenn Research Center in Cleveland, Ohio, and Concordia University in Montreal, Quebec, through an International Space Act Agreement.

      For more information about the Game Changing Development program, visit: nasa.gov/stmd-game-changing-development/

      For more information about the Flight Opportunities program, visit: nasa.gov/stmd-flight-opportunities/ 
      Testing In-Space Manufacturing Techs and More in Flight Facebook logo @NASATechnology @NASA_Technology Share
      Details
      Last Updated Jun 20, 2024 EditorIvry Artis Related Terms
      Game Changing Development Program Flight Opportunities Program Space Technology Mission Directorate Explore More
      3 min read NSTGRO 2024
      Article 7 days ago 3 min read NASA’s RASC-AL Competition Selects 2024 Winners  
      Article 7 days ago 4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Game Changing Development
      Space Technology Mission Directorate
      STMD Flight Opportunities
      Glenn Research Center
      View the full article
    • By NASA
      This artist’s concept features one of multiple initial possible design options for NASA’s Habitable Worlds Observatory. Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab NASA announced Friday it selected three industry proposals to help develop technologies for future large space telescopes and plan for the agency’s Habitable Worlds Observatory mission concept, which could be the first space telescope designed to search for life outside our solar system.
      The mission would directly image Earth-like planets around stars like our Sun and study their atmospheres for the chemical signatures of life, as well as enable other investigations about our solar system and universe. NASA is currently in the early planning stages for this mission concept, with community-wide working groups exploring its fundamental science goals and how best to pursue them. The agency is also in the process of establishing a Habitable Worlds Observatory Technology Maturation project office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      “The Habitable Worlds Observatory will be a historically ambitious mission, so we are taking a deliberate, strategic approach to its development and laying the groundwork now. We will need to bring together diverse expertise from government, academia, and industry, while building on technologies and lessons learned from our previous large space telescopes,” said Mark Clampin, director of the Astrophysics Division at NASA Headquarters in Washington. “With these awards, we’re excited to engage industry to help close technology gaps to make this groundbreaking mission a reality.”
      In January 2024, NASA solicited industry proposals to help advance key technologies that will eventually be necessary for the Habitable Worlds Observatory. For example, the mission will require a coronagraph – an instrument that blocks the light of a star so we can better see nearby objects – thousands of times more capable than any prior space coronagraph, and a stable optical system moving no more than the width of an atom during its observations.
      To help further the readiness of these technologies, NASA has now selected the following proposals for two-year, fixed-price contracts with a combined value of $17.5 million, targeted to begin by late summer 2024:
      “Ultra-stable Telescope Research and Analysis – Critical Technologies (ULTRA-CT)”This project will focus on high-fidelity modeling and subsystem demonstrations to support future development of “ultra-stable” optical systems beyond current state-of-the-art technologies. Principal investigator: Laura Coyle, Ball Aerospace (now BAE Systems) “Technology Maturation for Astrophysics Space Telescopes (TechMAST)”This project seeks to advance the integrated modeling infrastructure required to navigate design interdependencies and compare potential mission design options. Principal investigator: Alain Carrier, Lockheed Martin “STABLE: Systems Technologies for Architecture Baseline”This project will focus on maturing technologies that support telescope features, such as a deployable baffle and a structure to support the optical train, while mitigating the impact of system or environmental disturbances. Principal investigator: Tiffany Glassman, Northrop Grumman This work will continue industry involvement started in 2017 under NASA’s “System-Level Segmented Telescope Design” solicitations, which concluded in December 2023. The new selected proposals will help inform NASA’s approach to planning for the Habitable Worlds Observatory, as the agency builds on technologies from its James Webb Space Telescope and future Nancy Grace Roman Space Telescope and identifies where future investments are needed.
      To learn more about NASA’s Habitable Worlds Observatory visit:
      https://go.nasa.gov/HWO
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Share
      Details
      Last Updated May 31, 2024 LocationNASA Headquarters Related Terms
      Science & Research Astrophysics Exoplanet Science Science Mission Directorate The Search for Life View the full article
  • Check out these Videos

×
×
  • Create New...