Jump to content

NASA Johnson Dedicates Dorothy Vaughan Center to Women of Apollo 


Recommended Posts

  • Publishers
Posted

On the eve of the 55th anniversary of the Apollo 11 Moon landing, NASA’s Johnson Space Center in Houston commemorated the unsung heroes who helped make humanity’s first steps on the Moon possible. 

To celebrate their enduring legacy, Johnson named one of its central buildings the “Dorothy Vaughan Center in Honor of the Women of Apollo” on July 19, 2024, during a ceremony recognizing the early pioneers who laid the groundwork for the Artemis Generation. 

The image shows the exterior of a building named “Dorothy Vaughan Center in Honor of the Women of Apollo.” The building features modern architecture with large windows and a flat roof.
NASA’s Johnson Space Center in Houston named one of its central building the “Dorothy Vaughan Center in Honor of the Women of Apollo.”
NASA/David DeHoyos

Dorothy Vaughan, a mathematician and NASA’s first Black manager, played a crucial role in this historic achievement. As the head of the West Area Computing Unit at Langley Research Center in Hampton, Virginia, from 1949 to 1958, she led her team in mastering new computer programming languages, helping to pave the way for the agency’s current diverse workforce and leadership. 

The program included remarks from Johnson Director Vanessa Wyche, NASA astronaut Christina Koch, and Deputy Associate Administrator Casey Swails.  

A woman stands at a podium with the NASA logo, delivering a speech. She is dressed in a black and white outfit and wearing glasses. Behind her is a backdrop featuring large images of tape reels and computer equipment. Two microphones and a teleprompter are set up on either side of the podium.
Johnson Director Vanessa Wyche gives opening remarks at the building naming ceremony on July 19, 2024.
NASA/Robert Markowitz

“Dorothy Vaughan, alongside all of our Women of Apollo, represents the best of NASA’s past, and their legacies serve as the inspiration and foundation for our future,” said Wyche. “As we prepare to take our next giant leap, the Women of Apollo will take each step with us.” 

NASA leadership joined for the special occasion, including Associate Administrator Jim Free, Acting Associate Administrator for Space Technology Mission Directorate and Langley Director Clayton Turner, Director of NASA’s Stennis Space Center in Mississippi John Bailey, and former Johnson Director Mike Coats. Also in attendance were Reps. Lizzie Fletcher and Sylvia Garcia, and representatives from the offices of Sen. Ted Cruz, Sen. John Cornyn, and Rep. Brian Babin. 

NASA astronauts Suni Williams, Jeanette J. Epps, and Tracy C. Dyson celebrated the historic moment with a special message from the International Space Station.  

“We have accomplished our dreams of space exploration thanks to the many NASA women that paved the way for diversity, inclusion, and excellence,” said Epps.  

“Building on the efforts of our space exploration pioneers, we continue to work for the benefit of humanity,” said Dyson. “NASA’s success is only possible because of the tenacity and expertise of individuals like Dorothy Vaughan whose legacy of brilliance continues to inspire us today.”

Four young people stand on a stage in front of a large NASA logo. They are dressed in matching maroon blazers and are holding black folders.The backdrop features large images of tape reels and computer equipment.
Texas Southern University’s Dr. Thomas F. Freeman Debate Team delivers a speech during the building naming event.
NASA/Robert Markowitz

The program also featured the reading of a poem by Dr. Vivian Ayers Allen, a Pulitzer Prize-nominated poet, cultural activist, and former NASA editor and typist. The poem, titled “Hawk,” was published just 11 weeks before humankind’s first venture into space with Sputnik I as an allegory where space flight symbolizes freedom. Allen’s daughter, Phylicia Rashad, recited the poem ahead of the presentation by Texas Southern University’s Dr. Thomas F. Freeman Debate Team.  

A group of women pose for a photo in front of a large NASA logo backdrop. The group includes women of various ages, some seated and some standing. They are dressed in a variety of outfits, from professional attire to casual wear.
The Women of Apollo stand behind the “Women in Human Spaceflight” panelists. From left: Sandy Johnson, CEO of Barrios Technology; Andrea Mosie, manager and senior sample processor for NASA’s Lunar Materials Repository Laboratory; NASA astronaut Christina Hammock Koch; Dr. Shirley Price, former NASA equal opportunity specialist; Lara Kearney, manager of NASA’s Extravehicular Activity and Human Surface Mobility Program; and panel moderator Debbie Korth, deputy manager of the Orion Program.
NASA/Robert Markowitz

The ceremony also included a “Women in Human Spaceflight” panel discussion with some of the impactful Women of Apollo and current trailblazers in human spaceflight.  

The panelists inspired the crowd with their collective experiences of breaking barriers and making monumental contributions to space exploration. 

Debbie Korth, deputy manager of the Orion Program, moderated the event with panelists Lara Kearney, manager of NASA’s Extravehicular Activity and Human Surface Mobility Program; Sandy Johnson, CEO of Barrios Technology; NASA astronaut Christina Hammock Koch; Andrea Mosie, manager and senior sample processor for NASA’s Lunar Materials Repository Laboratory; and Dr. Shirley Price, former NASA equal opportunity specialist. 

“I learned that as long as I am being myself, I can make a difference,” said Price. “Dorothy Vaughan helped me make that difference because she paved the way for me, and I am here to pave the way forward for more to follow.” 

Koch reflected on the future, saying, “I am looking forward to us being driven by our values of inclusivity, making sure that we are going for all and by all in a non-hidden way and that we are calling out the amazing contributions of every single person that has a dream.” 

A group of people participate in a ribbon-cutting ceremony in front of a building. A woman in a floral dress is cutting a red ribbon with large gold scissors. She is surrounded by four other individuals: two women, one in a black and white dress and the other in a light blue suit, a man in a dark blue suit, and a young woman in a blue and white dress.
Dorothy Vaughan’s granddaughter Heather Vaughan-Batten cuts the ribbon to officially name building 12 the Dorothy Vaughan Center in Honor of the Women of Apollo.
NASA/David DeHoyos

Heather Vaughan-Batten, Vaughan’s granddaughter, marked the official naming of the building with a ribbon-cutting ceremony. 

A group of people gather indoors for the unveiling of a portrait. Two women, one young and one older, are removing a black cloth to reveal a framed painting of an elderly woman. The attendees, including a man in a blue suit and a woman in a floral dress, watch the unveiling.
Vaughan’s family reacts to the surprise unveiling of Dorothy Vaughan’s painted portrait, created by artist Eliza Hoffman.
NASA/David DeHoyos

The event concluded with a surprise unveiling of a painting of Vaughan to her family. The portrait, created by Eliza Hoffman, an artist and student from Clear Creek Independent High School, now illuminates the main hallway of the Dorothy Vaughan Center in honor of the Women of Apollo. 

More than 30 portraits of women who made notable contributions to NASA during the Apollo era now line the building’s main hallway.  

Watch the building dedication ceremony, ribbon-cutting, and portrait unveiling below.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From left, Ramon Pedoto, Nathan Walkenhorst, and Tyrell Jemison review information at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The three team members developed new automation tools at Marshall for flight controllers working with the International Space Station (Credit: NASA/Tyrell Jemison Two new automation tools developed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are geared toward improving operations for flight controllers working with the International Space Station from the Huntsville Operations Support Center.
      The tools, called AutoDump and Permanently Missing Intervals Checker, will free the flight control team to focus on situational awareness, anomaly response, and real-time coordination.
      The space station experiences routine loss-of-signal periods based on communication coverage as the space station orbits the Earth. When signal is lost, an onboard buffer records data that could not be downlinked during that period. Following acquisition of signal, flight controllers previously had to send a command to downlink, or “dump,” the stored data.
      The AutoDump tool streamlines a repetitive data downlinking command from flight controllers by detecting a routine loss-of-signal, and then autonomously sending the command to downlink data stored in the onboard buffer when the signal is acquired again. Once the data has been downlinked, the tool will automatically make an entry in the console log to confirm the downlink took place.
      “Reliably and quickly sending these dump commands is important to ensure that space station payload developers can operate from the most current data,” said Michael Zekoff, manager of Space Systems Operations at Marshall.
      As a direct result of this tool, we have eliminated the need to manually perform routine data dump commands by as much as 40% for normal operations.
      Michael Zekoff
      Space Systems Operations Manager
      AutoDump was successfully deployed on Feb. 4 in support of the orbiting laboratory.
      The other tool, known as the Permanently Missing Intervals Checker, is another automated process coming online that will improve team efficiency.
      Permanently missing intervals are gaps in the data stream where data can be lost due to a variety of reasons, including network fluctuations. The missing intervals are generally short but are documented so the scientific community and other users have confirmation that the missing data is unable to be recovered.
      “The process of checking for and documenting permanently missing intervals is challenging and incredibly time-consuming to make sure we capture all the payload impacts,” said Nathan Walkenhorst, a NASA contractor with Bailey Collaborative Solutions who serves as a flight controller specialist.
      The checker will allow NASA to quickly gather and assess payload impacts, reduce disruptions to operations, and allow researchers to get better returns on their science investigations. It is expected to be deployed later this year.
      In addition to Walkenhorst, Zekoff also credited Ramon Pedoto, a software architect, and Tyrell Jemison, a NASA contractor and data management coordinator with Teledyne Brown Engineering Inc, for their work in developing the automation tools. The development of the tools also requires coordination between flight control and software teams at Marshall, followed by extensive testing in both simulated and flight environments, including spacecraft operations, communications coverage, onboard anomalies, and other unexpected conditions.
      “The team solicited broad review to ensure that the tool would integrate correctly with other station systems,” Zekoff said. “Automated tools are evaluated carefully to prevent unintended commanding or other consequences. Analysis of the tools included thorough characterization of the impacts, risk mitigation strategies, and approval by stakeholders across the International Space Station program.”
      The Huntsville Operations Support Center provides payload, engineering, and mission operations support to the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within the Huntsville Operations Support Center operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.
      For more information on the International Space Station, visit:
      www.nasa.gov/international-space-station/
      Share
      Details
      Last Updated Apr 11, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      3 min read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF  
      Article 4 hours ago 7 min read NASA’s First Flight With Crew Important Step on Long-term Return to the Moon, Missions to Mars
      Article 3 days ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA NASA astronauts Jim Lovell, Fred Haise, and Jack Swigert launch aboard the Apollo 13 spacecraft from NASA’s Kennedy Space Center in Florida on April 11, 1970. The mission seemed to be going smoothly until 55 hours and 55 minutes in when an oxygen tank ruptured. The new mission plan involved abandoning the Moon landing, looping around the Moon and getting the crew home safely as quickly as possible. The crew needed to go into “lifeboat mode,” using the lunar module Aquarius to save the spacecraft and crew. On April 17, the crew returned to Earth, splashing down in the Pacific Ocean near Samoa.
      Image credit: NASA
      View the full article
    • By NASA
      3 Min Read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF  
      On March 18, NASA’s IMAP (Interstellar Mapping and Acceleration Probe) arrived at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for thermal vacuum testing at the X-ray and Cryogenic Facility, which simulates the harsh conditions of space.
      The IMAP mission is a modern-day celestial cartographer that will map the solar system by studying the heliosphere, a giant bubble created by the Sun’s solar wind that surrounds our solar system and protects it from harmful interstellar radiation. 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s IMAP mission being loaded into the thermal vacuum chamber of NASA Marshall Space Flight Center’s X-Ray and Cryogenic Facility (XRCF) in Huntsville, Alabama. IMAP arrived at Marshall March 18 and was loaded into the chamber March 19.Credit: NASA/Johns Hopkins APL/Princeton/Ed Whitman Testing performed in the X-ray and Cryogenic Facility will help to assess the spacecraft before its journey toward the Sun. The IMAP mission will orbit the Sun at a location called Lagrange Point 1 (L1), which is about one million miles from Earth towards the Sun. From this location, IMAP can measure the local solar wind and scan the distant heliosphere without background from planets and their magnetic fields. The mission will use its suite of ten instruments to map the boundary of the heliosphere, analyze the composition of interstellar particles that make it through, and investigate how particles change as they move through the solar system. 
      Furthermore, IMAP will maintain a continuous broadcast of near real-time space weather data from five instruments aboard IMAP that will be used to test new space weather prediction models and improve our understanding of effects impacting our human exploration of space. 
      Team members from Marshall Space Flight Center in Huntsville, Alabama, install IMAP into the XRCF’s chamber dome before the start of the thermal vacuum test. NASA/Johns Hopkins APL/Princeton/Ed Whitman While inside the Marshall facility, the spacecraft will undergo dramatic temperature changes to simulate the environment during launch, on the journey toward the Sun, and at its final orbiting point. The testing facility has multiple capabilities including a large thermal vacuum chamber which simulates the harsh conditions of space such as extreme temperatures and the near-total absence of an atmosphere. Simulating these conditions before launch allow scientists and engineers to identify successes and potential failures in the design of the spacecraft. 
      Team members from Marshall Space Flight Center in Huntsville, Alabama work to close the chamber door of the XRCF for IMAP testing. The chamber is 20 feet in diameter and 60 feet long making it one of the largest across NASA. NASA/Johns Hopkins APL/Princeton/Ed Whitman “The X-ray and Cryogenic Facility was an ideal testing location for IMAP given the chamber’s size, availability, and ability to meet or exceed the required test parameters including strict contamination control, shroud temperature, and vacuum level,” said Jeff Kegley, chief of Marshall’s Science Test Branch. 
      The facility’s main chamber is 20 feet in diameter and 60 feet long, making it the 5th largest thermal vacuum chamber at NASA. It’s the only chamber that is adjoined to an ISO 6 cleanroom — a controlled environment that limits the number and size of airborne particles to minimize contamination. 
      The IMAP mission will launch on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, no earlier than September. 
      NASA’s IMAP mission was loaded into NASA Marshall’s XRCF thermal vacuum chamber where the spacecraft will undergo testing such as dramatic temperature changes to simulate the harsh environment of space. NASA/Johns Hopkins APL/Princeton/Ed Whitman Learn More about IMAP Media Contact:
      Lane Figueroa
      Marshall Space Flight Center
      Huntsville, Alabama
      256.544.0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Apr 11, 2025 Related Terms
      Marshall Space Flight Center Goddard Space Flight Center Heliophysics Marshall Heliophysics & Planetary Science Marshall Science Research & Projects Marshall X-Ray & Cryogenic Facility The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Captures a Star’s Swan Song
      The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal,…
      Article 4 hours ago 6 min read NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise
      Observations from NASA’s James Webb Space Telescope have provided a surprising twist in the narrative…
      Article 1 day ago 3 min read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
      An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements…
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      How NASA Science Data Defends Earth from Asteroids
      Artist’s impression of NASA’s DART mission, which collided with the asteroid Dimorphos in 2022 to test planetary defense techniques. Open science data practices help researchers identify asteroids that pose a hazard to Earth, opening the possibility for deflection should an impact threat be identified. NASA/Johns Hopkins APL/Steve Gribben The asteroid 2024 YR4 made headlines in February with the news that it had a chance of hitting Earth on Dec. 22, 2032, as determined by an analysis from NASA’s Center for Near Earth Object Studies (CNEOS) at the agency’s Jet Propulsion Laboratory in Southern California. The probability of collision peaked at over 3% on Feb. 18 — the highest ever recorded for an object of its size. This sparked concerns about the damage the asteroid might do should it hit Earth.
      New data collected in the following days lowered the probability to well under 1%, and 2024 YR4 is no longer considered a potential Earth impactor. However, the event underscored the importance of surveying asteroid populations to reveal possible threats to Earth. Sharing scientific data widely allows scientists to determine the risk posed by the near-Earth asteroid population and increases the chances of identifying future asteroid impact hazards in NASA science data.
      “The planetary defense community realizes the value of making data products available to everyone,” said James “Gerbs” Bauer, the principal investigator for NASA’s Planetary Data System Small Bodies Node at the University of Maryland in College Park, Maryland.
      How Scientists Spot Asteroids That Could Hit Earth
      Professional scientists and citizen scientists worldwide play a role in tracking asteroids. The Minor Planet Center, which is housed at the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, collects and verifies vast numbers of asteroid and comet position observations submitted from around the globe. NASA’s Small Bodies Node distributes the data from the Minor Planet Center for anyone who wants to access and use it.
      A near-Earth object (NEO) is an asteroid or comet whose orbit brings it within 120 million miles of the Sun, which means it can circulate through Earth’s orbital neighborhood. If a newly discovered object looks like it might be an NEO, information about the object appears on the Minor Planet Center’s NEO Confirmation Page. Members of the planetary science community, whether or not they are professional scientists, are encouraged to follow up on these objects to discover where they’re heading.
      The asteroid 2024 YR4 as viewed on January 27, 2025. The image was taken by the Magdalena Ridge 2.4m telescope, one of the largest telescopes in NASA’s Planetary Defense network. Asteroid position information from observations such as this one are shared through the Minor Planet Center and NASA’s Small Bodies Node to help scientists pinpoint the chances of asteroids colliding with Earth. NASA/Magdalena Ridge 2.4m telescope/New Mexico Institute of Technology/Ryan When an asteroid’s trajectory looks concerning, CNEOS alerts NASA’s Planetary Defense Coordination Office at NASA Headquarters in Washington, which manages NASA’s ongoing effort to protect Earth from dangerous asteroids. NASA’s Planetary Defense Coordination Office also coordinates the International Asteroid Warning Network (IAWN), which is the worldwide collaboration of asteroid observers and modelers.
      Orbit analysis centers such as CNEOS perform finer calculations to nail down the probability of an asteroid colliding with Earth. The open nature of the data allows the community to collaborate and compare, ensuring the most accurate determinations possible.
      How NASA Discovered Risks of Asteroid 2024 YR4
      The asteroid 2024 YR4 was initially discovered by the NASA-funded ATLAS (Asteroid Terrestrial-impact Last Alert System) survey, which aims to discover potentially hazardous asteroids. Scientists studied additional data about the asteroid from different observatories funded by NASA and from other telescopes across the IAWN.
      At first, 2024 YR4 had a broad uncertainty in its future trajectory that passed over Earth. As the planetary defense community collected more observations, the range of possibilities for the asteroid’s future position on Dec. 22, 2032 clustered over Earth, raising the apparent chances of collision. However, with the addition of even more data points, the cluster of possibilities eventually moved off Earth.
      This visualization from NASA’s Center for Near Earth Object Studies shows the evolution of the risk corridor for asteroid 2024 YR4, using data from observations made up to Feb. 23, 2025. Each yellow dot represents the asteroid’s possible location on Dec. 22, 2032. As the range of possible locations narrowed, the dots at first converged on Earth, before skewing away harmlessly. NASA/JPL/CNEOS Having multiple streams of data available for analysis helps scientists quickly learn more about NEOs. This sometimes involves using data from observatories that are mainly used for astrophysics or heliophysics surveys, rather than for tracking asteroids.
      “The planetary defense community both benefits from and is beneficial to the larger planetary and astronomy related ecosystem,” said Bauer, who is also a research professor in the Department of Astronomy at the University of Maryland. “Much of the NEO survey data can also be used for searching astrophysical transients like supernova events. Likewise, astrophysical sky surveys produce data of interest to the planetary defense community.”
      How Does NASA Stop Asteroids From Hitting Earth?
      In 2022, NASA’s DART (Double Asteroid Redirection Test) mission successfully impacted with the asteroid Dimorphos, shortening the time it takes to orbit around its companion asteroid Didymos by 33 minutes. Didymos had no chance of hitting Earth, but the DART mission’s success means that NASA has a tested technique to consider when addressing a future asteroid potential impact threat.
      Artist’s impression of NASA’s upcoming NEO Surveyor mission, which will search for potentially hazardous near-Earth objects. The mission will follow open data practices to improve the chances of identifying dangerous asteroids. NASA/JPL-Caltech To increase the chances of discovering asteroid threats to Earth well in advance, NASA is working on a new space-based observatory, NEO Surveyor, which will be the first spacecraft specifically designed to look for asteroids and comets that pose a hazard to Earth. The mission is expected to launch in the fall of 2027, and the data it collects will be available to everyone through NASA archives.
      “Many of the NEOs that pose a risk to Earth remain to be found,” Bauer said. “An asteroid impact has a very low likelihood at any given time, but consequences could be high, and open science is an       important component to being vigilant.”
      For more information about NASA’s approach to sharing science data, visit:
      https://science.nasa.gov/open-science.
      By Lauren Leese 
      Web Content Strategist for the Office of the Chief Science Data Officer 
      Share








      Details
      Last Updated Apr 10, 2025 Related Terms
      Open Science Planetary Defense Explore More
      2 min read Citizen Scientists Use NASA Open Science Data to Research Life in Space


      Article


      1 week ago
      5 min read Old Missions, New Discoveries: NASA’s Data Archives Accelerate Science


      Article


      1 week ago
      3 min read NASA Open Data Turns Science Into Art


      Article


      1 month ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      The airborne Lunar Spectral Irradiance (air-LUSI) instrument is moved across the hangar floor by robotic engineer Alexander McCafferty-Leroux ,from right to left, co-investigator Dr. John Woodward, NIST astronomer Dr. Susana Deustua, air-LUSI chief system engineer Dr. Kathleen “Kat” Scanlon, and members of the ER-2 ground crew at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2025.NASA/Genaro Vavuris Flying high above the clouds and moon-gazing may sound like a scene from a timeless romance, but NASA did just that in the name of Earth science research. In March 2025 pilots took the agency’s ER-2 science aircraft on a series of night flights over NASA’s Armstrong Flight Research Center in Edwards, California, as the Moon increased in visible size. For those few nights, the high-flying plane was converted into a one-of-a-kind airborne lunar observatory.
      The Airborne Lunar Spectral Irradiance, or air-LUSI, mission observed the Moon at different phases and measured the sunlight reflected by the lunar surface. Specifically, the instrument tracks the amount of light reflected at different wavelengths. This information enables scientists to use the Moon as a calibration tool for Earth-observing sensors.
      As an “absolute reference, the Moon also becomes the perfect benchmark for satellites to consistently and accurately measure processes on Earth,” said Kevin Turpie, air-LUSI’s principal investigator and a researcher based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. This helps scientists to improve the precision of many different measurements, including data on weather patterns, vegetation growth, and ocean conditions.
      As the highest-flying platform for airborne science, the ER-2 can fly the air-LUSI instrument in the stratosphere, above 95% of the atmosphere. Data collected at an altitude nearing 70,000 feet are highly accurate because the air is predominantly clear of the gases and particles found in the lower atmosphere that can interfere with measurements.
      The ER-2 aircraft is parked in a hangar at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2025. The plane is prepared for takeoff to support the airborne Lunar Spectral Irradiance, or air-LUSI, mission.NASA/Genaro Vavuris “To date, air-LUSI measurements of the Moon are the most accurate ever made,” said Kelsey Bisson, the NASA program scientist supporting the mission. “Air-LUSI data can advance our ability to understand the Earth and our weather, and they provide a new way to calibrate satellites that can result in cost savings.”
      The quality of these data has transformative implications for satellite and Earth observing systems. The improved accuracy and enhanced ability provided by air-LUSI data flown on the ER-2 reduces the need for onboard reference devices, effectually cutting satellite costs.
      The air-LUSI project is a collaboration between scientists and engineers from NASA, the National Institute of Standards and Technology, the U.S. Geological Survey, the University of Maryland Baltimore County, and McMaster University in Ontario.
      The ER-2 ground crew Wissam Habbal, left, and Dr. Kevin Turpie, airborne Lunar Spectral Irradiance (air-LUSI) principal investigator, guide delicate fiber optic and electric cabling into place while uploading the air-LUSI instrument onto the ER-2 aircraft in March 2025 at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris “The collective effort of the American and Canadian team members offers an opportunity for truly exciting engineering and science collaboration,” said Andrew Gadsden, associate professor and associate chair for graduate studies in mechanical engineering at McMaster University, and co-investigator on the air-LUSI project. The McMaster team developed the Autonomous Robotic Telescope Mount Instrument System and High-Altitude Aircraft Mounted Robotic (HAAMR) telescope mount, which support the air-LUSI system.
      Dr. John Woodward, of the National Institute of Standards and Technology and co-investigator on the airborne Lunar Spectral Irradiance (air-LUSI) mission, prepares the instrument for upload onto the ER-2 aircraft in March 2025 at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris The HAAMR telescope mount was integrated onto the ER-2 and flown for the first time during the science flights in March. This new lunar tracking system is contributing to what John Woodward IV, co-investigator for air-LUSI, called the “highest accuracy measurements” of moonlight. To improve Earth observation technology, air-LUSI represents an important evolutionary step.
      View the full article
  • Check out these Videos

×
×
  • Create New...