Members Can Post Anonymously On This Site
Tech Today: Remote Sensing Technology Fights Forest Fires
-
Similar Topics
-
By NASA
8 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Return to 2024 SARP Closeout Faculty Advisors:
Dr. Tom Bell, Woods Hole Oceanographic Institution
Dr. Kelsey Bisson, NASA Headquarters Science Mission Directorate
Graduate Mentor:
Kelby Kramer, Massachusetts Institute of Technology
Kelby Kramer, Graduate Mentor
Kelby Kramer, graduate mentor for the 2024 SARP Ocean Remote Sensing group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
Lucas DiSilvestro
Shallow Water Benthic Cover Type Classification using Hyperspectral Imagery in Kaneohe Bay, Oahu, Hawaii
Lucas DiSilvestro
Quantifying the changing structure and extent of benthic coral communities is essential for informing restoration efforts and identifying stressed regions of coral. Accurate classification of shallow-water benthic coral communities requires high spectral and spatial resolution, currently not available on spaceborne sensors, to observe the seafloor through an optically complex seawater column. Here we create a shallow water benthic cover type map of Kaneohe Bay, Oahu, Hawaii using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) without requiring in-situ data as inputs. We first run the AVIRIS data through a semi-analytical inversion model to derive color dissolved organic matter, chlorophyll concentration, bottom albedo, suspended sediment, and depth parameters for each pixel, which are then matched to a Hydrolight simulated water column. Pure reflectance for coral, algae, and sand are then projected through each water column to create spectral endmembers for each pixel. Multiple Endmember Spectral Mixture Analysis (MESMA) provides fractional cover of each benthic class on a per-pixel basis. We demonstrate the efficacy of using simulated water columns to create surface reflectance spectral endmembers as Hydrolight-derived in-situ endmember spectra strongly match AVIRIS surface reflectance for corresponding locations (average R = 0.96). This study highlights the capabilities of using medium-fine resolution hyperspectral imagery to identify fractional cover type of localized coral communities and lays the groundwork for future spaceborne hyperspectral monitoring of global coral communities.
Atticus Cummings
Quantifying Uncertainty In Kelp Canopy Remote Sensing Using the Harmonized Landsat Sentinel-2 Dataset
Atticus Cummings
California’s giant kelp forests serve as a major foundation for the region’s rich marine biodiversity and provide recreational and economic value to the State of California. With the rising frequency of marine heatwaves and extreme weather onset by climate change, it has become increasingly important to study these vital ecosystems. Kelp forests are highly dynamic, changing across several timescales; seasonally due to nutrient concentrations, waves, and predator populations, weekly with typical growth and decay, and hourly with the tides and currents. Previous remote sensing of kelp canopies has relied on Landsat imagery taken with a eight-day interval, limiting the ability to quantify more rapid changes. This project aims to address uncertainty in kelp canopy detection using the Harmonized Landsat and Sentinel-2 (HLS) dataset’s zero to five-day revisit period. A random forest classifier was used to identify pixels that contain kelp, on which Multiple Endmember Spectral Mixture Analysis (MESMA) was then run to quantify intrapixel kelp density. Processed multispectral satellite images taken within 3 days of one another were paired for comparison. The relationship between fluctuations in kelp canopy density with tides and currents was assessed using in situ data from an acoustic doppler current profiler (ADCP) at the Santa Barbara Long Term Ecological Research site (LTER) and a NOAA tidal buoy. Preliminary results show that current and tidal trends cannot be accurately correlated with canopy detection due to other sources of error. We found that under cloud-free conditions, canopy detection between paired images varied on average by 42%. Standardized image processing suggests that this uncertainty is not created within the image processing step, but likely arises due to exterior factors such as sensor signal noise, atmospheric conditions, and sea state. Ultimately, these errors could lead to misinterpretation of remotely sensed kelp ecosystems, highlighting the need for further research to identify and account for uncertainties in remote sensing of kelp canopies.
Jasmine Sirvent
Kelp Us!: A Methods Analysis for Predicting Kelp Pigment Concentrations from Hyperspectral Reflectance
Jasmine Sirvent
Ocean color remote sensing enables researchers to assess the quantity and physiology of life in the ocean, which is imperative to understanding ecosystem health and formulating accurate predictions. However, without proper methods to analyze hyperspectral data, correlations between spectral reflectance and physiological traits cannot be accurately derived. In this study, I explored different methods—single variable regression, partial least squares regressions (PLSR), and derivatives—in analyzing in situ Macrocystis pyrifera (giant kelp) off the coast of Santa Barbara, California in order to predict pigment concentrations from AVIRIS hyperspectral reflectance. With derivatives as a spectral diagnostic tool, there is evidence suggesting high versus low pigment concentrations could be diagnosed; however, the fluctuations were within 10 nm of resolution, thus AVIRIS would be unable to reliably detect them. Exploring a different method, I plotted in situ pigment measurements — chlorophyll a, fucoxanthin, and the ratio of fucoxanthin to chlorophyll a—against hyperspectral reflectance that was resampled to AVIRIS bands. PLSR proved to be a more successful model because of its hyperdimensional analysis capabilities in accounting for multiple wavelength bands, reaching R2 values of 0.67. Using this information, I constructed a model that predicts kelp pigments from simulated AVIRIS reflectance using a spatial time series of laboratory spectral measurements and photosynthetic pigment concentrations. These results have implications, not only for kelp, but many other photosynthetic organisms detectable by hyperspectral airborne or satellite sensors. With these findings, airborne optical data could possibly predict a plethora of other biogeochemical traits. Potentially, this research would permit scientists to acquire data analogous to in situ measurements about floating matters that cannot financially and pragmatically be accessed by anything other than a remote sensor.
Isabelle Cobb
Correlations Between SSHa and Chl-a Concentrations in the Northern South China Sea
Isabelle Cobb
Sea surface height anomalies (SSHa)–variations in sea surface height from climatological averages–occur on seasonal timescales due to coastal upwelling and El Niño-Southern Oscillation (ENSO) cycles. These anomalies are heightened when upwelling plumes bring cold, nutrient-rich water to the surface, and are particularly strong along continental shelves in the Northern South China Sea (NSCS). This linkage between SSHa and nutrient availability has interesting implications for changing chlorophyll-a (chl-a) concentrations, a prominent indicator of phytoplankton biomass that is essential to the health of marine ecosystems. Here, we evaluate the long-term (15 years) relationship between SSHa and chl-a, in both satellite remote sensing data and in situ measurements. Level 3 SSHa data from Jason 1/2/3 satellites and chl-a data from MODIS Aqua were acquired and binned to monthly resolution. We found a significant inverse correlation between SSHa and chl-a during upwelling months in both the remote sensing (Spearman’s R=-0.57) and in situ data, with higher resolution in situ data from ORAS4 (an assimilation of buoy observations from 2003-2017) showing stronger correlations (Spearman’s R=-0.75). In addition, the data reveal that the magnitude of SSH increases with time during instances of high correlation, possibly indicating a trend of increased SSH associated with reduced seasonal chl-a concentrations. Thus, this relationship may inform future work predicting nutrient availability and threats to marine ecosystems as climate change continues to affect coastal sea surface heights.
Alyssa Tou
Exploring Coastal Sea Surface Temperature Anomalies and their effect on Coastal Fog through analyzing Plant Phenology
Alyssa Tou
Marine heat waves (MHW) have been increasing in frequency, duration and intensity, giving them substantial potential to influence ecosystems. Do these MHWs sufficiently enhance coastal precipitation such that plant growth is impacted? Recently, the Northeast Pacific experienced a long, intense MHW in 2014/2015, and another short, less intense MHW in 2019/2020. Here we investigate how the intensity and duration of MHWs influence the intensity and seasonal cycle of three different land cover types (‘grass’, ‘trees’, and a combination of both ‘combined’’) to analyze plant phenology trends in Big Sur, California. We hypothesize that longer intense MHWs decrease the ocean’s evaporative capacity, decreasing fog, thus lowering plant productivity, as measured by Normalized Difference Vegetation Index (NDVI). Sea surface temperature (SST) and NDVI data were collected from the NOAA Coral Reef Watch, and NASA MODIS/Terra Vegetation Indices 16-Day L3 Global 250m products respectively. Preliminary results show no correlation (R2=0.02) between SSTa and combined NDVI values and no correlation (R2=0.01) between SST and NDVI. This suggests that years with anomalously high SST do not significantly impact plant phenology. During the intense and long 2014/2015 MHW, peak NDVI values for ‘grass’ and ‘combined’ pixels were 2.0 and 1.7 standard deviations above the climatological average, while the shorter 2019/2020 MHW saw higher peaks of 3.2 and 2.4 standard deviations. However, the ‘grass’, ‘tree’ and ‘combined’ NDVI anomalies were statistically insignificant during both MHWs, showing that although NDVI appeared to increase during the shorter and less intense MHW, these values may be attributed to other factors. The data qualitatively suggest that MHW’s don’t impact the peak NDVI date, but more data at higher temporal resolution are necessary. Further research will involve analyzing fog indices and exploring confounding variables impacting NDVI, such as plant physiology, anthropogenic disturbance, and wildfires. In addition, it’s important to understand to what extent changes in NDVI are attributed to the driving factors of MHWs or the MHWs themselves. Ultimately, mechanistically understanding the impacts MHW intensity and duration have on terrestrial ecosystems will better inform coastal community resilience.
Return to 2024 SARP Closeout Share
Details
Last Updated Nov 22, 2024 Related Terms
General Explore More
10 min read SARP East 2024 Atmospheric Science Group
Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
Article 22 mins ago View the full article
-
By Space Force
SecAF Kendall delivered a speech to USAFA cadets about the qualities necessary for strong leadership and why capable, insightful, moral leaders are more essential than ever in defense of the nation.
View the full article
-
By NASA
Imagine designing technology that can survive on the Moon for up to a decade, providing a continuous energy supply. NASA selected three companies to develop such systems, aimed at providing a power source at the Moon’s South Pole for Artemis missions.
Three companies were awarded contracts in 2022 with plans to test their self-sustaining solar arrays at the Johnson Space Center’s Space Environment Simulation Laboratory (SESL) in Houston, specifically in Chamber A in building 32. The prototypes tested to date have undergone rigorous evaluations to ensure the technology can withstand the harsh lunar environment and deploy the solar array effectively on the lunar surface.
The Honeybee Robotics prototype during lunar VSAT (Vertical Solar Array Technology) testing inside Chamber A at NASA’s Johnson Space Center in Houston.NASA/David DeHoyos The Astrobotic Technology prototype during lunar VSAT testing inside Chamber A at Johnson Space Center. NASA/James Blair In the summer of 2024, both Honeybee Robotics, a Blue Origin company from Altadena, California and Astrobotic Technology from Pittsburgh, Pennsylvania put their solar array concepts to the test in Chamber A.
Each company has engineered a unique solution to design the arrays to withstand the harsh lunar environment and extreme temperature swings. The data collected in the SESL will support refinement of requirements and the designs for future technological advancements with the goal to deploy at least one of the systems near the Moon’s South Pole.
The contracts for this initiative are part of NASA’s VSAT (Vertical Solar Array Technology) project, aiming to support the agency’s long-term lunar surface operations. VSAT is under the Space Technology Mission Directorate Game Changing Development program and led by the Langley Research Center in Hampton, Virginia, in collaboration with Glenn Research Center in Cleveland.
“We foresee the Moon as a hub for manufacturing satellites and hardware, leveraging the energy required to launch from the lunar surface,” said Jim Burgess, VSAT lead systems engineer. “This vision could revolutionize space exploration and industry.”
Built in 1965, the SESL initially supported the Gemini and Apollo programs but was adapted to conduct testing for other missions like the Space Shuttle Program and Mars rovers, as well as validate the design of the James Webb Space Telescope. Today, it continues to evolve to support future Artemis exploration.
Johnson’s Front Door initiative aims to solve the challenges of space exploration by opening opportunities to the public and bringing together bold and innovative ideas to explore new destinations.
“The SESL is just one of the hundreds of unique capabilities that we have here at Johnson,” said Molly Bannon, Johnson’s Innovation and Strategy specialist. “The Front Door provides a clear understanding of all our capabilities and services, the ways in which our partners can access them, and how to contact us. We know that we can go further together with all our partners across the entire space ecosystem if we bring everyone together as the hub of human spaceflight.”
Chamber A remains as one of the largest thermal vacuum chambers of its kind, with the unique capability to provide extreme deep space temperature conditions down to as low as 20 Kelvin. This allows engineers to gather essential data on how technologies react to the Moon’s severe conditions, particularly during the frigid lunar night where the systems may need to survive for 96 hours in darkness.
“Testing these prototypes will help ensure more safe and reliable space mission technologies,” said Chuck Taylor, VSAT project manager. “The goal is to create a self-sustaining system that can support lunar exploration and beyond, making our presence on the Moon not just feasible but sustainable.”
The power generation systems must be self-aware to manage outages and ensure survival on the lunar surface. These systems will need to communicate with habitats and rovers and provide continuous power and recharging as needed. They must also deploy on a curved surface, extend 32 feet high to reach sunlight, and retract for possible relocation.
“Generating power on the Moon involves numerous lessons and constant learning,” said Taylor. “While this might seem like a technical challenge, it’s an exciting frontier that combines known technologies with innovative solutions to navigate lunar conditions and build a dynamic and robust energy network on the Moon.”
Watch the video below to explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A facility.
View the full article
-
By NASA
Clayton P. Turner, associate administrator for Space Technology Mission DirectorateCredit: NASA Clayton P. Turner will serve as the associate administrator of the Space Technology Mission Directorate (STMD) at the agency’s headquarters in Washington, NASA Administrator Bill Nelson announced Monday. His appointment is effective immediately.
Turner has served as the acting associate administrator of STMD since July. In this role, Turner will continue to oversee executive leadership, strategic planning, and overall management of all technology maturation and demonstration programs executed from the directorate enabling critical space focused technologies that deliver today and help create tomorrow.
“Under Turner’s skilled and steady hand, the Space Technology Mission Directorate will continue to do what it does best: help NASA push the boundaries of what’s possible and drive American leadership in space,” said NASA Administrator Bill Nelson. “I look forward to what STMD will achieve under Turner’s direction.”
As NASA embarks on the next era of space exploration, STMD leverages partnerships to advance technologies and test new capabilities helping the agency develop a sustainable presence on the Moon and beyond. As associate administrator of STMD, Turner will plan, coordinate, and evaluate the mission directorate’s full range of programs and activities, including budget formulation and execution, as well as represent the programs to officials within and outside the agency.
Previously, Turner served as NASA Langley Research Center Director since September 2019 and has been with the agency for more than 30 years. He has held several roles at NASA Langley, including engineering director, associate center director, and deputy center director. Throughout his NASA career, he has worked on many projects for the agency, including: the Earth Science Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation Project; the materials technology development Gas Permeable Polymer Materials Project; the Space Shuttle Program’s Return to Flight work; the flight test of the Ares 1-X rocket; the flight test of the Orion Launch Abort System; and the entry, descent, and landing segment of the Mars Science Laboratory.
In recognition of his commitment to the agency and engineering, Turner has received many prestigious awards, such as the NASA Distinguished Service Medal, the NASA Outstanding Leadership Medal, the NASA Exceptional Engineering Achievement Medal. He is also an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA) and a Board of Trustees member of his alma mater, Rochester Institute of Technology.
NASA Glenn Research Center Deputy Director, Dawn Schaible, became acting Langley Center Director in July and will continue to serve in this role. At NASA Langley, Schaible leads a skilled group of more than 3,000 civil servant and contractor scientists, researchers, engineers, and support staff, who work to advance aviation, expand understanding of Earth’s atmosphere, and develop technology for space exploration.
For more about Turner’s experience, visit his full biography online at:
https://go.nasa.gov/48UmkmS
-end-
Meira Bernstein / Jasmine Hopkins
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / jasmine.s.hopkins@nasa.gov
Share
Details
Last Updated Nov 18, 2024 LocationNASA Headquarters Related Terms
Space Technology Mission Directorate View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Aerostar Thunderhead balloon carries the STRATO payload into the sky to reach the stratosphere for flight testing. The balloon appears deflated because it will expand as it rises to higher altitudes where pressures are lower.Credit: Colorado Division of Fire Prevention and Control Center of Excellence for Advanced Technology Aerial Firefighting/Austin Buttlar NASA is participating in a collaborative effort to use high-altitude balloons to improve real-time communications among firefighters battling wildland fires.
The rugged and often remote locations where wildland fires burn mean cell phone service is often limited, making communication between firefighters and command posts difficult.
The flight testing of the Strategic Tactical Radio and Tactical Overwatch (STRATO) technology brought together experts from NASA’s Ames Research Center in California’s Silicon Valley, the U.S. Forest Service, high-altitude balloon company Aerostar, and Motorola to provide cell service from above. The effort was funded by the NASA Science Mission Directorate’s Earth Science Division Airborne Science Program and the agency’s Space Technology Mission Directorate Flight Opportunities program.
“This project leverages NASA expertise to address real problems,” said Don Sullivan, principal investigator for STRATO at NASA Ames. “We do a lot of experimental, forward-thinking work, but this is something that is operational and can make an immediate impact.”
Flying High Above Wildland Fires
Soaring above Earth at altitudes of 50,000 feet or more, Aerostar’s Thunderhead high-altitude balloon systems can stay in operation for several months and can be directed to “station keep,” staying within a radius of few miles. Because wildland fires often burn in remote, rugged areas, firefighting takes place in areas where cell service is not ideal. Providing cellular communication from above, from a vehicle that can move as the fire changes, would improve firefighter safety and firefighting efficiency.
The STRATO project’s first test flight took place over the West Mountain Complex fires in Idaho in August and demonstrated significant opportunities to support future firefighting efforts. The balloon was fitted with a cellular LTE transmitter and visual and infrared cameras. To transmit between the balloon’s cell equipment and the wildland fire incident command post, the team used a SpaceX Starlink internet satellite device and Silvus broadband wireless system.
When tested, the onboard instruments provided cell coverage for a 20-mile radius. By placing the transmitter on a gimbal, that cell service coverage could be adjusted as ground crews moved through the region.
The onboard cameras gave fire managers and firefighters on the ground a bird’s-eye view of the fires as they spread and moved, opening the door to increased situational awareness and advanced tracking of firefighting crews. On the ground, teams use an app called Tactical Awareness Kit (TAK) to identify the locations of crew and equipment. Connecting the STRATO equipment to TAK provides real-time location information that can help crews pinpoint how the fire moves and where to direct resources while staying in constant communication.
Soaring Into the Future
The next steps for the STRATO team are to use the August flight test results to prepare for future fire seasons. The team plans to optimize balloon locations as a constellation to maximize coverage and anticipate airflow changes in the stratosphere where the balloons fly. By placing balloons in strategic locations along the airflow path, they can act as replacements to one another as they are carried by airflow streams. The team may also adapt the scientific equipment aboard the balloons to support other wildland fire initiatives at NASA.
As the team prepares for further testing next year, the goal is to keep firefighters informed and in constant communication with each other and their command posts to improve the safety and efficiency of fighting wildland fires.
“Firefighters work incredibly hard saving lives and property over long days of work,” said Sullivan. “I feel honored to be able to do what we can to make their jobs safer and better.”
Share
Details
Last Updated Nov 14, 2024 Related Terms
Ames Research Center Airborne Science Earth Science Division Flight Opportunities Program Explore More
5 min read NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission
Article 17 mins ago 3 min read Entrevista con Instructor de OCEANOS Samuel Suleiman
Article 1 day ago 4 min read Entrevista con Instructora de OCEANOS María Fernanda Barberena-Arias
Article 2 days ago Keep Exploring Discover More Topics From NASA
Ames Research Center
Improving Firefighter Safety with STRATO
Airborne Science at Ames
Space Technology Mission Directorate
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.