Members Can Post Anonymously On This Site
What’s Up: August 2024 Skywatching Tips from NASA
-
Similar Topics
-
By NASA
6 Min Read NASA Marshall Reflects on 65 Years of Ingenuity, Teamwork
NASA’s Marshall Space Flight Center in Huntsville, Alabama, is celebrating its 65-year legacy of ingenuity and service to the U.S. space program – and the expansion of its science, engineering, propulsion, and human spaceflight portfolio with each new decade since the NASA field center opened its doors on July 1, 1960.
What many Americans likely call to mind are the “days of smoke and fire,” said Marshall Director Joseph Pelfrey, referring to the work conducted at Marshall to enable NASA’s launch of the first Mercury-Redstone rocket and the Saturn V which lifted Americans to the Moon, the inaugural space shuttle mission, and the shuttle flights that carried the Hubble Space Telescope, Chandra X-ray Observatory, and elements of the International Space Station to orbit. Most recently, he said they’re likely to recall the thunder of NASA’s SLS (Space Launch System), rising into the sky during Artemis I.
NASA’s Space Launch System, carrying the Orion spacecraft, launches on the Artemis I flight test on Nov. 16, 2022. NASA’s Marshall Space Flight Center in Huntsville, Alabama, led development and oversees all work on the new flagship rocket, building on its storied history of propulsion and launch vehicle design dating back to the Redstone and Saturn rockets. The most powerful rocket ever built, SLS is the backbone of NASA’s Artemis program, set to carry explorers back to the Moon in 2026, help establish a permanent outpost there, and make possible new, crewed journeys to Mars in the years to come.NASA/Bill Ingalls Yet all the other days are equally meaningful, Pelfrey said, highlighting a steady stream of milestones reflecting the work of Marshall civil service employees, contractors, and industry partners through the years – as celebrated in a new “65 Years of Marshall” timeline.
“The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable,” Pelfrey said. “Together they’ve blended legacy with innovation – advancing space exploration and scientific discovery through collaboration, engineering excellence, and technical solutions. They’ve invented and refined technologies that make it possible to safely live and work in space, to explore other worlds, and to help safeguard our own.
The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable.
Joseph Pelfrey
Marshall Space Flight Center Director
“Days of smoke and fire may be the most visible signs, but it’s the months and years of preparation and the weeks of post-launch scientific discovery that mark the true dedication, sacrifice, and monumental achievements of this team.”
Reflecting on Marshall history
Marshall’s primary task in the 1960s was the development and testing of the rockets that carried the first American astronaut to space, and the much larger and more technically complex Saturn rocket series, culminating in the mighty Saturn V, which carried the first human explorers to the Moon’s surface in 1969.
“Test, retest, and then fly – that’s what we did here at the start,” said retired engineer Harry Craft, who was part of the original U.S. Army rocket development team that moved from Fort Bliss, Texas, to Huntsville to begin NASA’s work at Marshall. “And we did it all without benefit of computers, working out the math with slide rules and pads of paper.”
The 138-foot-long first stage of the Saturn V rocket is lowered to the ground following a successful static test firing in fall 1966 at the S-1C test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The Saturn V, developed and managed at Marshall, was a multi-stage, multi-engine launch vehicle that stood taller than the Statue of Liberty and lofted the first Americans to the Moon. Its success helped position Marshall as an aerospace leader in propulsion, space systems, and launch vehicle development.NASA “Those were exciting times,” retired test engineer Parker Counts agreed. He joined Marshall in 1963 to conduct testing of the fully assembled and integrated Saturn first stages. It wasn’t uncommon for work weeks to last 10 hours a day, plus weekend shifts when deadlines were looming.
Counts said Dr. Wernher von Braun, Marshall’s first director, insisted staff in the design and testing organizations be matched with an equal number of engineers in Marshall’s Quality and Reliability Assurance Laboratory.
“That checks-and-balances engineering approach led to mission success for all 32 of the Saturn family of rockets,” said Counts, who went on to support numerous other propulsion programs before retiring from NASA in 2003.
“We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century,” said instrumentation and electronics test engineer Willie Weaver, who worked at Marshall from 1960 to 1988 – and remains a tour guide at its visitor center, the U.S. Space & Rocket Center.
We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century.
Willie Weaver
Former Marshall Space Flight Center Employee
The 1970s at Marshall were a period of transition and expanded scientific study, as NASA ended the Apollo Program and launched the next phase of space exploration. Marshall provided critical work on the first U.S. space station, Skylab, and led propulsion element development and testing for NASA’s Space Shuttle Program.
Marshall retiree Jim Odom, a founding engineer who got his start launching NASA satellites in the run-up to Apollo, managed the Space Shuttle External Tank project. The role called for weekly trips to NASA’s Michoud Assembly Facility in New Orleans, which has been managed by Marshall since NASA acquired the government facility in 1961. The shuttle external tanks were manufactured in the same bays there where NASA and its contractors built the Saturn rockets.
This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle’s three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.NASA “We didn’t have cellphones or telecon capabilities yet,” Odom recalled. “I probably spent more time with the pilot of the twin-engine plane in those days than I did with my wife.”
Marshall’s shuttle propulsion leadership led to the successful STS-1 mission in 1981, launching an era of orbital science exemplified by NASA’s Spacelab program.
“Spacelab demonstrated that NASA could continue to achieve things no one had ever done before,” said Craft, who served as mission manager for Spacelab 1 in 1983 – a highlight of his 40-year NASA career. “That combination of science, engineering, and global partnership helped shape our goals in space ever since.”
Engineers in the X-ray Calibration Facility at NASA’s Marshall Space Flight Center in Huntsville, Alabama, work to integrate elements of the Chandra X-ray Observatory in this March 1997 photo. Chandra was lifted to orbit by space shuttle Columbia on July 23, 1999, the culmination of two decades of telescope optics, mirror, and spacecraft development and testing at Marshall. In the quarter century since, Chandra has delivered nearly 25,000 detailed observations of neutron stars, supernova remnants, black holes, and other high-energy objects, some as far as 13 billion light-years distant. Marshall continues to manage the program for NASA. NASA Bookended by the successful Hubble and Chandra launches, the 1990s also saw Marshall deliver the first U.S. module for the International Space Station, signaling a transformative new era of human spaceflight.
Odom, who retired in 1989 as associate administrator for the space station at NASA Headquarters, reflects on his three-decade agency career with pride.
“It was a great experience, start to finish, working with the teams in Huntsville and New Orleans and our partners nationwide and around the globe, meeting each new challenge, solving the practical, day-to-day engineering and technology problems we only studied about in college,” he said.
Shrouded for transport, a 45-foot segment of the International Space Station’s “backbone” truss rolls out of test facilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama, in July 2000, ready to be flown to the Kennedy Space Center in Florida for launch. Marshall played a key role in the development, testing, and delivery of the truss and other critical space station modules and structural elements, as well as the station’s air and water recycling systems and science payload hardware. Marshall’s Payload Operations Integration Center also continues to lead round-the-clock space station science. NASA That focus on human spaceflight solutions continued into the 21st century. Marshall delivered additional space station elements and science hardware, refined its air and water recycling systems, and led round-the-clock science from the Payload Operations Integration Center. Marshall scientists also managed the Gravity Probe Band Hinode missions and launched NASA’s SERVIR geospatial observation system. Once primary space stationconstruction – and the 40-year shuttle program – concluded in the 2010s, Marshall took on oversight of NASA’s Space Launch System, led James Webb Space Telescope mirror testing, and delivered the orbiting Imaging X-ray Polarimetry Explorer.
As the 2020s continue, Marshall meets each new challenge with enthusiasm and expertise, preparing for the highly anticipated Artemis II crewed launch and a host of new science and discovery missions – and buoyed by strong industry partners and by the Huntsville community, which takes pride in being home to “Rocket City USA.”
“Humanity is on an upward, outward trajectory,” Pelfrey said. “And day after day, year after year, Marshall is setting the course to explore beyond tomorrow’s horizon.”
Read more about Marshall and its 65-year history:
https://www.nasa.gov/marshall
Hannah Maginot
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
hannah.l.maginot@nasa.gov
Share
Details
Last Updated Feb 24, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center Explore More
6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
Article 2 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation
Article 2 weeks ago 5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
Article 1 month ago Keep Exploring Discover More Topics From NASA
Legacy to Horizon: Marshall 65
Marshall Space Flight Center Missions
Marshall Space Flight Center
Marshall Space Flight Center History
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Project F.I.R.E. team, part of Falcon Research Labs and current students at Cerritos Community College in California, is researching the use of drones to extinguish fires as part of a NASA research award called the University Student Research Challenge. From left, Logan Stahl, Juan Villa, Angel Ortega, Larisa Mayoral, Jenny Escobar, and Paola Mayoral-Jimenez.Falcon Research Labs Great ideas, and the talent and passion that bring them to life, can be found anywhere.
In that spirit, NASA’s University Student Research Challenge (USRC) in 2024 selected its first group of community college students to contribute original research to the agency’s transformative vision for 21st century aviation.
The student-led group, from Cerritos Community College in California, is researching a new method of safely extinguishing wildfires using eco-friendly pellets dropped from uncrewed drones they call Project F.I.R.E. (Fire Intervention Retardant Expeller).
“Wildfires are a major problem we’re facing today,” said Angel Ortega, project technical director and lead research engineer for Project F.I.R.E. at Cerritos Community College. “The goal of our research is to demonstrate that our prototype drone with biodegradable fire retardant can successfully put out a controlled fire.”
A Community College First
Until now, USRC has only selected participants from traditional four-year institutions, compared to a two-year community college. This award exemplifies the activity’s goal of giving all of tomorrow’s aeronautical innovators a shot at NASA support for their research ideas.
“The University Innovation (UI) project provides a number of different avenues for students to contribute to aeronautics,” said Steven Holz, who manages the USRC award process. “All of the opportunities are different and help build knowledge and skills that would be advantageous to those wanting to continue working on UI opportunities or within NASA.”
This award is one of two from NASA’s USRC selected in 2024. The team received the USRC award prior to the devastating Los Angeles fires of January 2025.
“Our thoughts are with everyone affected by this tragedy,” members of the team said in a statement. “As a team, we are deeply committed to advancing innovative solutions to enhance safety and resilience, working toward a future where communities are better protected against such disasters.”
Innovating a Solution
The six team members of Project F.I.R.E. are driven by an ethic of public service. As fires continue to affect communities in their native southern California, they are applying their skills to finding a way to help.
“We want to get the public inspired that there are possible solutions at hand,” Ortega said. “And the work we’re doing now can hopefully build towards that bigger goal of a widespread solution.”
The research they are pursuing involves dropping biodegradable pellets into fires from uncrewed, autonomous drones. The pellets, upon reaching the ground, combine chemical ingredients which create a foamlike solution of fire retardant that will not contaminate the environment after the fire is extinguished.
Project F.I.R.E.’s innovative idea for fire suppression involves releasing eco-friendly foam pellets from uncrewed drones.Falcon Research Labs The team is keen to support firefighters and wildland fire managers and keep them safe while managing these natural disasters. The group has met with firefighters, discussed the idea with them, and received useful feedback on how to make the technology work best in the field.
Though the group is only at the outset of the research, their idea has existed for longer.
Blue Skies Forever
Prior to applying for a USRC, Project F.I.R.E. also presented at NASA’s 2024 Gateway to Blue Skies competition, in which they won the “Future Game-Changer” award.
Through Gateway to Blue Skies, NASA challenges college students to research climate-friendly technologies and applications related to the future of aviation and present them at an annual forum.
Following Project F.I.R.E.’s participation in the forum, they applied for a USRC grant to begin turning their vision into reality.
“Our experience with NASA has been incredibly supportive and inspiring,” said Logan Stahl, the project’s operations director. “We thought competing against some of the other schools would be intimidating, but the experience we’ve had is the complete opposite. Everyone was very welcoming, and the NASA representatives communicated with us and asked questions.”
The USRC support will allow the team to build on their earlier foundations, they said.
“Because Gateway to Blue Skies is more conceptual, it let us bring our idea to the table. Now through USRC, we can start building hands-on and make our idea come to life,” said Larisa Mayoral, chemical engineer and laboratory operations manager.
The Project F.I.R.E. team receives their “Future Game-Changer” award during the 2024 Gateway to Blue Skies forum held at NASA’s Ames Research Center in California.NASA / Brandon Torres The team expressed gratitude, speaking as community college students, for their ability to participate in and contribute research at a level that competes with top-brass universities.
“We’re very appreciative of our college and NASA providing us this opportunity,” said Paola Mayoral Jimenez, laboratory coordinator and safety manager. “By doing this project, we hope to shine a light on community colleges, their students, and what they have to offer.”
Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
3 min read NASA Selects New Round of Student-Led Aviation Research Awards
Article 5 days ago 3 min read NASA’s X-59 Turns Up Power, Throttles Through Engine Tests
Article 2 weeks ago 3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Feb 23, 2025 EditorJim BankeContactAngela Surgenorangela.d.surgenor@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Flight Innovation Transformative Aeronautics Concepts Program University Innovation University Student Research Challenge View the full article
-
By NASA
Explore This SectionEarth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries NewsScience in the News Calendars In Memoriam MoreArchives 3 min read
In Memoriam: Jeff Dozier [1944–2024]
Jeff Dozier [1944–2024]Photo credit: Dozier’s family obituary Jeff Dozier, an environmental scientist, snow hydrologist, researcher, academic – and former Earth Observing System Project Scientist – died on November 17, 2024. Jeff’s research focused on snow hydrology and biogeochemistry in mountain environments and addressed the role of stored and melting snow in the hydrologic cycle as well as the economic and social impact on water resources. In these efforts, he embraced remote sensing with satellites to measure snow properties and energy balance. He was a Project Scientist with the Earth Observing System (EOS) Data and Information System, contributing to the design and management of very large information systems that would impact spatial modeling and environmental informatics.
Jeff served as the second EOS Project Scientist from 1990–1992. During that time, he worked with the NASA science community to – in his own words – “accomplish the goals of EOS, the most important of which is to develop the capability to predict or assess plausible environmental changes – both natural and human-induced – that will occur in the future. Meeting this challenge for the next decade to century requires the integration of knowledge from the traditional disciplines and information from many different sources into a coherent view of the Earth system. EOS is the largest project in the history of NASA and arguably the most important national and international scientific mission of the next two decades.”
Jeff’s work alongside Michael Matson, was featured in a 2019 NASA Earth Science news article: “NASA Tracks Wildfires From Above to Aid Firefighters Below.” While working at NOAA’s National Environmental Satellite, Data, and Information Service building in Camp Springs, MD, the pair detected methane fires in the Persian Gulf using the Advanced Very High Resolution Radiometer (AVHRR) instrument on the NOAA-6 satellite – marking the first time that such a small fire had been seen from space. Jeff went on to develop a mathematical method to distinguish small fires from other sources of heat, which become the foundation for nearly all subsequent satellite fire-detection algorithms.
At the time of his death, Jeff was Principal Investigator of a NASA-funded project with the objective of testing whether data from the Earth Surface Mineral Dust Source Investigation (EMIT) mission could be used to help refine the estimate for the snowpack melting rate. In the 2024 Earth Science news article, “NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission,” Jeff indicated that EMIT’s ability to ‘see’ well into the infrared (IR) spectrum of light is key to his group’s efforts because ice is “pretty absorptive at near-IR and shortwave-IR wavelengths.” The results from this research will help inform water management decisions in states, such as California, where meltwater makes up the majority of the agricultural water supply.
Jeff earned a Bachelor’s of Science degree from California State University, Hayward (now California State University, East Bay) and a Master’s of Science degree and Ph.D. from the University of Michigan. He spent his career teaching at the University of California, Santa Barbara (UCSB), where he was named the founding Dean of the Bren School of Environmental Science and Management at UCSB in 1994. As the Dean, he recruited renowned faculty and developed one of the top environmental programs in the country. After his role as Dean, Jeff returned as a professor at Bren, educating the next generation of Earth scientists.
Jeff Dozier [1944–2024]Photo credit: Dozier’s family obituaryView the full article
-
By NASA
Explore This SectionEarth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries NewsScience in the News Calendars In Memoriam MoreArchives 3 min read
In Memoriam: Berrien Moore III [1941–2024]
Berrien Moore III [1941–2024]Photo credit: Moore’s obituary on the University of Oklahoma’s (OU) website Berrien Moore III, Dean of the College of Atmospheric and Geographic Sciences at the University of Oklahoma (OU), director of the National Weather Center in Norman, OK, and Vice President for Weather and Climate Programs, died on December 17, 2024. Berrien earned an undergraduate degree from the University of North Carolina in 1963 and a doctorate degree from the University of Virginia in 1969. After graduating, he taught mathematics at the University of New Hampshire (UNH) and became tenured in 1976.
In 1987, Berrien became director of the Institute for the Study of Earth, Oceans, and Space (ISEOS) at UNH. NASA chose ISEOS to be one of the 24 founding members of the “Working Prototype Federation” of Earth Science Information Partners (ESIP) in 1998. Still active more than 25 years later, ESIP is now a thriving nonprofit entity funded by cooperative agreements with NASA, the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Geological Survey, which brings together interdisciplinary collaborations (among over 170 partners) to share technical knowledge and engage with data users.
Berrien left UNH in 2008, to serve as the founding Executive Director of Climate Central, a think-tank based in Princeton, NJ, which is dedicated to providing objective and understandable information about climate change
Berrien moved to OU in 2010. Given his diverse academic, research, and career experience in global carbon cycle, biogeochemistry, remote sensing, environmental and space policy, and mathematics, Berrien was a natural choice to become the architect and principal investigator for the Geostationary Carbon Cycle Observatory (GeoCARB), a proposed NASA Earth Venture Mission that would have monitored plant health and vegetation stress throughout the Americas from geostationary orbit, probing natural sources, sinks, and exchange processes that control carbon dioxide, carbon monoxide, and methane in the atmosphere. While the mission was ultimately cancelled, the lessons learned are being applied to similar current and future Earth observing endeavors, e,g, NASA’s ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission.
Berrien served on and chaired numerous government-affiliated scientific committees throughout his career. From 1995–1998 he served on the National Research Council’s Committee on Global Change Research, which produced the landmark report, “Global Environment Change: Research Pathways for the Next Decade.” In 2011, he was an author on the National Research Council’s (NRC) decadal survey, “Earth Science and Applications from Space: A Community Assessment and Strategies for the Future.”
Berrien participated on international scientific committees as well. From 1998–2002, he was the chair of the Science Committee of the International Geosphere Biosphere Programme (IGBP). He was also a lead author within the Intergovernmental Panel on Climate Change’s Third Assessment Report, which was released in 2001.
Berrien served in several roles specific to NASA, including as a committee member and later chair of the organization’s Space and Earth Science Advisory Committee. He served as Chair of the Earth Observing System (EOS) Payload Advisory Committee, member and Chair of NASA’s Earth Science and Applications Committee, and member of the NASA Advisory Council. He was also active at NOAA, having chaired the agency’s Research Review Team and served on the Research and Development Portfolio Review Team for NOAA’s Science Advisory Board.
Berrien received NASA’s highest civilian honor, the Distinguished Public Service Medal, for outstanding service and the NOAA Administrator’s Recognition Award. He also received the 2007 Dryden Lectureship in Research Medal from the American Institute of Aeronautics and Astronautics and was honored for his contributions to the IPCC when the organization received the 2007 Nobel Peace Prize.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.