Jump to content

NASA’s First-Ever Quantum Memory Made at Glenn Research Center


NASA

Recommended Posts

  • Publishers

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Five engineers inspect laboratory equipment. The quantum memory the equipment holds is shown on a digital screen. Engineers wear eye protection and point at the equipment.
NASA Glenn Research Center’s quantum team stands with new quantum memory laboratory equipment.
Credit: NASA/Jef Janis

Bringing bright minds together has once again proven to be the key to unlocking the mysteries of the universe. Researchers developed technology that will store information within a cloud of atoms.

Together with Infleqtion Inc., researchers at NASA’s Glenn Research Center in Cleveland produced NASA’s first-ever quantum memory. This technology is NASA’s first step in creating a large-scale quantum network, which could lead to more secure space communications and, eventually, new scientific discoveries.

Quantum memory stores information encoded in matter or on photons — which are single particles of light ­— for a certain amount of time. The memory developed in partnership with Glenn stores information in a cloud of laser-cooled atoms and later releases it as photons.

On Earth, many quantum networks use fiber optic infrastructure. However, quantum information degrades after just a few dozen miles, greatly limiting the size of any future network. Quantum memory will help enable the expansion of quantum networks to send information over longer distances.

Credit: NASA/Steve Logan

“If we’re able to put quantum memory into space, then we could use free space transmission and further those distances to spanning the country,” said Dr. Adam Fallon, quantum scientist at NASA Glenn.

A large-scale quantum network would process information faster, provide better information security, and improve the accuracy of how we explore the world compared to a traditional computer network.

“So, quantum may provide NASA the ability to explore or sense things in space that we could not do otherwise classically,” said Evan Katz, quantum scientist at NASA Glenn. “While quantum networks are a little further down the road, in the here-and-now, we are excited to have received this memory through an SBIR effort with Infleqtion Inc. so that we can understand more about how quantum memory impacts quantum networks.”

A small cloud of light is illuminated by a red laser. It appears hazy in a cube.
A cloud of rubidium atoms is illuminated by a red laser. Quantum memory stores information that is encoded in matter or on photons for a certain amount of time.
Credit: NASA/Jef Janis

Glenn’s quantum team intends to study and refine the new technology and then plug what they’ve learned into models to simulate how it would work in a large-scale quantum network. From there, they plan to provide feedback to NASA, academia, and industry so all parties can come closer to their goal of developing a quantum network.

Infleqtion Inc. created the quantum memory through the NASA Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) Program, which provides funding for research, development, and demonstration of innovative technologies that fulfill the needs of NASA and the commercial marketplace.

Learn more about the SBIR/STTR program.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      During Aviation Day at NASA’s Glenn Research Center, researcher Will Banks, right, assists a student with the installation of his test article into a demonstration wind tunnel to gain a drag force measurement. Credit: NASA/Sara Lowthian-Hanna  For students considering careers in STEM, the field of aviation offers diverse and abundant opportunities they may never have realized.  
      During Aviation Day on Aug. 27, NASA Glenn Research Center’s Office of STEM Engagement welcomed middle and high school students to the research center in Cleveland. The one-day event enabled students to learn more about the field of aviation and advancements in technology related to the aviation industry.  
      Test engineer Cecila Otero, left, explains factors to consider when testing inside the 1×1 Supersonic Wind Tunnel facility at NASA’s Glenn Research Center.  Credit: NASA/Sara Lowthian-Hanna  An aerodynamic drag challenge, virtual reality cockpit, and tours of icing and wind tunnel facilities were among the activities that connected students with NASA scientists and engineers working in aeronautics.  


      Return to Newsletter Explore More
      1 min read Ohio State Fairgoers Learn About NASA Technologies
      Article 4 mins ago 1 min read Dr. Kenyon Makes Calls, On and Off the Field
      Article 4 mins ago 1 min read NASA Glenn Attends Air Shows in Cleveland and Michigan
      Article 4 mins ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Glenn Research Center’s Frank Kaufhold discuses next-generation technologies for turbofan engines with the public during EAA AirVenture. Credit: NASA/Andrew Carlsen  The first “A” in NASA stands for aeronautics, and NASA’s Glenn Research Center helped bring that message to thousands of people at major airshows in Wisconsin and Ohio this summer. 
      In July, NASA Glenn subject matter experts and outreach professionals landed in Oshkosh, Wisconsin, to participate in EAA AirVenture Oshkosh 2024. Thousands of aircraft arrived at Wittman Regional Airport in Oshkosh and other airports in east-central Wisconsin to attend the event.
      Under the large NASA tent, staff shared information on both agencywide and center-specific projects, missions, and technology. NASA Glenn employees also assisted NASA Administrator Bill Nelson through tours and presentations.  
      NASA Glenn Research Center’s Amber Waid, left, discusses the wing-like shape of the truss of the X-66 Sustainable Flight Demonstrator with NASA Administrator Bill Nelson during EAA AirVenture. Credit: NASA/Andrew Carlsen  Over Labor Day weekend, NASA Glenn’s experts traveled down the road to the Cleveland National Air Show at Burke Lakefront Airport. A main attraction, NASA Glenn’s newest aircraft — the Pilatus PC-12 — garnered enthusiasm from visitors who met NASA’s aircrew and learned about how this aircraft helps test innovative communications technology.
      NASA Glenn Research Center interns Nikhita Kalluri, left, and Divya Nagireddy share fun facts about NASA and aviation with guests at the Cleveland National Air Show. Credit: NASA  Inside the NASA tent, guests experienced virtual reality simulators, watched wind tunnel demonstrations, and learned about Quesst, NASA’s mission to make quiet, faster-than-sound air travel a reality.   
      NASA Glenn Research Center’s research pilot James Demers talks with guests about airplanes and flight research at the Cleveland National Air Show. Credit: NASA  Return to Newsletter Explore More
      1 min read Students Soar at NASA Glenn’s Aviation Day
      Article 3 mins ago 1 min read Ohio State Fairgoers Learn About NASA Technologies
      Article 4 mins ago 1 min read Dr. Kenyon Makes Calls, On and Off the Field
      Article 4 mins ago View the full article
    • By NASA
      ESA/Hubble & NASA, M. Koss, A, Barth This NASA/ESA Hubble Space Telescope image features the spiral galaxy IC 4709 located around 240 million light-years away in the southern constellation Telescopium. Hubble beautifully captures its faint halo and swirling disk filled with stars and dust bands. The compact region at its core might be the most remarkable sight. It holds an active galactic nucleus (AGN).
      If IC 4709’s core just held stars, it wouldn’t be nearly as bright. Instead, it hosts a gargantuan black hole, 65 million times more massive than our Sun. A disk of gas spirals around and eventually into this black hole, crashing together and heating up as it spins. It reaches such high temperatures that it emits vast quantities of electromagnetic radiation, from infrared to visible to ultraviolet light and X-rays. A lane of dark dust, just visible at the center of the galaxy in the image above, obscures the AGN in IC 4709. The dust lane blocks any visible light emission from the nucleus itself. Hubble’s spectacular resolution, however, gives astronomers a detailed view of the interaction between the quite small AGN and its host galaxy. This is essential to understanding supermassive black holes in galaxies much more distant than IC 4709, where resolving such fine details is not possible.
      This image incorporates data from two Hubble surveys of nearby AGNs originally identified by NASA’s Swift telescope. There are plans for Swift to collect new data on these galaxies. Swift houses three multiwavelength telescopes, collecting data in visible, ultraviolet, X-ray, and gamma-ray light. Its X-ray component will allow SWIFT to directly see the X-rays from IC 4709’s AGN breaking through the obscuring dust. ESA’s Euclid telescope — currently surveying the dark universe in optical and infrared light — will also image IC 4709 and other local AGNs. Their data, along with Hubble’s, provides astronomers with complementary views across the electromagnetic spectrum. Such views are key to fully research and better understand black holes and their influence on their host galaxies.
      View the full article
    • By NASA
      From Sept. 6-7, 2024, NASA’s Johnson Space Center brought the excitement of space exploration to the annual Japan Festival at Hermann Park in Houston.  

      The lively cultural event featured traditional food, dance, martial arts, and more, while Johnson’s booth attracted attendees with interactive space exhibits and STEM (science, technology, engineering, and mathematics) activities.  
      Johnson Space Center volunteers share NASA’s mission and student opportunities at the annual Japan Festival in Houston. NASA Johnson employees passed along information about High School Aerospace Scholars (HAS), a NASA-unique program offering Texas high school juniors an opportunity to explore STEM fields.  

      The program kicks off with an online course and, for top performers, culminates in an on-site summer experience at Johnson, where students can learn from NASA scientists and engineers. Program graduates may also apply for NASA internships and scholarships, including the Houston Livestock Show and Rodeo™ and Rotary National Award for Space Achievement scholarships. 

      Attendees enjoy Johnson Space Center’s exhibit booth at Hermann Park in Houston. NASA/Johnnie Joseph Festival attendees explored interactive displays, including models of the Space Launch System and Orion spacecraft, space food samples, and a real spacesuit glove and helmet. Johnson volunteers distributed NASA meatball stickers, mission stickers, and Artemis bookmarks with QR codes, offering students and space enthusiasts opportunities to dive deeper into STEM education and NASA’s missions. 
      Johnson volunteers share NASA’s mission and student opportunities to festival attendees. NASA/Johnnie Joseph NASA’s long-standing partnership with Japan was front and center as JAXA (Japan Aerospace Exploration Agency) set up a neighboring booth. JAXA astronaut Satoshi Furukawa delighted festival-goers by posing for photos, signing autographs, and visiting NASA’s booth to greet Johnson employees.  

      The event highlighted the collaborative spirit of space exploration between NASA and its international partners, who are working together on missions around the Moon and beyond as part of the Artemis campaign. Japan, alongside other global partners, has committed to supporting the International Space Station through 2030. 
      Festival attendees explore NASA’s booth, captivated by the space exhibits.NASA/Johnnie Joseph View the full article
    • By Space Force
      The United States Space Force has partnered with the Rochester Institute of Technology and University of Michigan to research Advanced Space Power and Propulsion under the USSF University Consortium/Space Strategic Technology Institute 3.
      View the full article
  • Check out these Videos

×
×
  • Create New...