Jump to content

Overview for NASA’s Northrop Grumman 21st Commercial Resupply Mission


NASA

Recommended Posts

  • Publishers
NASA's Northrop Grumman 21st commercial resupply mission will launch on a SpaceX Falcon 9 rocket to deliver research and supplies to the International Space Station.
NASA’s Northrop Grumman 21st commercial resupply mission will launch on a SpaceX Falcon 9 rocket to deliver research and supplies to the International Space Station.
NASA
NASA’s Northrop Grumman 21st commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
NASA’s Northrop Grumman 21st commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
NASA

NASA, Northrop Grumman, and SpaceX are targeting no earlier than 11:28 a.m. EDT on Saturday, Aug. 3, for the next launch to deliver scientific investigations, supplies, and equipment to the International Space Station. Filled with more than 8,200 pounds of supplies, the Cygnus cargo spacecraft, carried on the SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This launch is the 21st Northrop Grumman commercial resupply services mission to the orbital laboratory for the agency.

Live launch coverage will begin at 11:10 a.m. and stream on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms.

Learn more at: www.nasa.gov/northropgrumman

Northrop Grumman S.S. Richard Dick” Scobee

NASA selected Richard Scobee as an astronaut in 1978. Scobee flew as a pilot of STS 41-C and was the commander of STS 51-L. The STS 51-L crew, including Scobee, died on January 28, 1986, when space shuttle Challenger exploded after launch.
NASA selected Richard Scobee as an astronaut in 1978. Scobee flew as a pilot of STS 41-C and was the commander of STS 51-L. The STS 51-L crew, including Scobee, died on January 28, 1986, when space shuttle Challenger exploded after launch.
NASA

Arrival & Departure

The Cygnus spacecraft will arrive at the orbiting laboratory on Monday, Aug. 5, filled with supplies, hardware, and critical materials to directly support dozens of scientific and research investigations during Expeditions 71 and 72. NASA astronaut Matthew Dominick will capture Cygnus using the station’s robotic arm, and NASA astronaut Jeanette Epps will act as backup.

After capture, the spacecraft will be installed on the Unity module’s Earth-facing port and will spend almost six months connected to the orbiting laboratory before departing in January 2025. Cygnus also provides the operational capability to reboost the station’s orbit.

Live coverage of Cygnus’ arrival will begin at 2:30 a.m. Aug. 5 on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

NASA astronauts Matthew Dominick and Jeanette Epps will be on duty during the Cygnus spacecraft’s approach and rendezvous. Dominick will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as Epps monitors the vehicle’s arrival.
NASA astronauts Matthew Dominick and Jeanette Epps will be on duty during the Cygnus spacecraft’s approach and rendezvous. Dominick will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as Epps monitors the vehicle’s arrival.
NASA

Research Highlights

Scientific investigations traveling in the Cygnus spacecraft include tests of water recovery technology and a process to produce blood and immune stem cells in microgravity, studies of the effects of spaceflight on engineered liver tissue and microorganism DNA, and live science demonstrations for students.

Gravitational Effects on Filtration Systems

The Packed Bed Reactor Experiment: Water Recovery Series evaluates gravity’s effects on eight additional test articles.
The Packed Bed Reactor Experiment: Water Recovery Series evaluates gravity’s effects on eight additional test articles.
NASA

The Packed Bed Reactor Experiment: Water Recovery Series investigates how gravity affects two-phase flow or simultaneous movement of gas and liquid through porous media. Teams will evaluate eight different test articles representing components found in the space station’s water processor or urine processor to understand two-phase flows for both liquid and gas in microgravity.

Packed bed reactors are structures that use “packing” of objects, usually pellet-like catalysts, of various shapes and materials to increase contact between different phases of fluids. These systems are used for a variety of applications such as water recovery, thermal management, and fuel cells, and the experiment develops a set of guidelines and tools to optimize their design and operation for water filtration and other systems in microgravity and on the Moon and Mars. Insights from the investigation also could lead to improvements in this technology for applications on Earth such as water purification and heating and cooling systems.

Balloon Sounds in Space

The Office of STEM Engagement’s Next Gen STEM Project, STEMonstrations, that will demonstration the effects centripetal force has on sounds during spaceflight.
The Office of STEM Engagement’s Next Gen STEM Project, STEMonstrations, that will demonstration the effects centripetal force has on sounds during spaceflight.
NASA’s Office of STEM Engagement

STEMonstrations, as part of NASA’s Next Gen STEM (science, technology, engineering, and mathematics) Project, are performed and recorded by astronauts on the space station. Each NASA STEMonstration illustrates a different scientific concept, such as centripetal force, and includes resources to help teachers further explore the topics with their students.

Astronauts will demonstrate centripetal force on the space station using a penny, a hexnut, and two clear balloons. The penny and the hexnut are whirled inside of the inflated balloon to compare the sounds made in a microgravity environment.

Cell Production on Station

The production of blood and immune stem cells on the space station with the BioServe In-Space Cell Expansion Platform (BICEP).
The production of blood and immune stem cells on the space station with the BioServe In-Space Cell Expansion Platform (BICEP).
NASA

In-Space Expansion of Hematopoietic Stem Cells for Clinical Application (InSPA-StemCellEX-H1) tests hardware to produce human hematopoietic stem cells (HSCs) in space. HSCs give rise to blood and immune cells and are used in therapies for patients with certain blood diseases, autoimmune disorders, and cancers.

Researchers use BioServe In-Space Cell Expansion Platform, a stem cell expansion bioreactor designed to expand the stem cells three hundredfold without the need to change or add new growth media.

Someone in the United States is diagnosed with a blood cancer about every three minutes. Treating patients with transplanted stem cells requires a donor-recipient match and long-term repopulation of transplanted stem cells. This investigation demonstrates whether expanding stem cells in microgravity could generate far more continuously renewing stem cells.

Spaceflight Effects on DNA

The Rotifer-B2 investigation on the Internation Space Station explores the effects of spaceflight on DNA (deoxyribonucleic acid) repair mechanisms.
The Rotifer-B2 investigation on the Internation Space Station explores the effects of spaceflight on DNA (deoxyribonucleic acid) repair mechanisms.
ESA (European Space Agency)

Rotifer-B2, an ESA (European Space Agency) investigation, explores how spaceflight affects DNA (deoxyribonucleic acid) repair mechanisms in a microscopic organisms called bdelloid rotifer, or Adineta vaga. These tiny but complex organisms are known for their ability to withstand harsh conditions, including radiation doses 100 times higher than human cells can survive.

Researchers culture rotifers, microorganisms that inhabit mainly freshwater aquatic environments, in an incubator facility on the space station. After exposure to microgravity conditions, the samples provide insights into how spaceflight affects the rotifer’s ability to repair sections of damaged DNA in a microgravity environment and could improve the general understanding of DNA damage and repair mechanisms for applications on Earth.

Bioprinting Tissue

The Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) investigation used to conduct bioprinting of tissue on the space station.
The Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) investigation used to conduct bioprinting of tissue on the space station.
NASA

Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) examines engineered liver tissue constructs that contain blood vessels. Researchers aim to learn more about the progression of tissue and development of blood vessels in engineered tissues on the space station.

The experiment observes how bioprinted liver tissue behaves in space and whether microgravity causes changes in cell shape, size, and volume. The formation of tissue structures and vascular linings also are studied to ensure proper structure generation in orbit. Bioprinting in microgravity may enable the manufacturing of high-quality tissues and organs that are difficult to maintain on the ground, which could help advance space-based production of tissues and functional organs to treat patients on Earth.

Cargo Highlights

SpaceX’s Falcon 9 rocket will launch the Northrop Grumman Cygnus spacecraft to the International Space Station.

NASA’s Northrop Grumman 21st commercial resupply mission will carry more than 8,500 pounds (3,856 kilograms) of cargo to the International Space Station.
NASA’s Northrop Grumman 21st commercial resupply mission will carry more than 8,500 pounds (3,856 kilograms) of cargo to the International Space Station.
NASA

Hardware

International Space Station Roll Out Solar Array Modification Kit 8 – This upgrade kit consists of power cables and large structural components such as a backbone, mounting brackets, and two sets of struts. This kit will support the installation of the eighth set of roll out solar arrays located on the S6 truss segment of orbiting laboratory in 2025. The new arrays are designed to augment the station’s original solar arrays which have degraded over time. The replacement solar arrays are installed on top of existing arrays to provide a net increase in power with each array generating more than 20 kilowatts of power.

Plant Habitat Environmental Control System – The environmental control system is a component of the Advanced Plant Habitat and controls the temperature, humidity, and air flow in the growth chamber. The habitat is an enclosed, fully automated plant growth facility that will conduct plant bioscience research in orbit for up to 135 days and complete at least one year of continuous operation without maintenance.

Rate Gyro Enclosure Assembly – The Rate Gyro Assembly determines the rate of angular motion of the space station. The assembly is integrated into the enclosure housing on ground to protect the hardware for launch and in-orbit storage. This unit will serve as an in-orbit spare.

European Enhanced Exploration Exercise Device & Vibration Isolation and Stabilization System (E4D VIS) Assembly Kit – This assembly kit consists of fasteners, clips, and labels to be used during the in-orbit assembly projected to be completed in mid-2025. ESA and the Danish Aerospace Company developed the E4D to address the challenge of preventing muscle and bone deterioration during long space missions. Some key features of E4D are resistive exercise, cycling ergonomic exercise, rowing, and rope pulling.

X-Y Rotation Axis Launch Configuration – This assembly consists of the X-Y-Rotational and Translational subassemblies in the flight configuration and adds the launch stabilization hardware to protect the various axes of motions for the transport to the space station. Once in orbit, the stabilizing hardware will be discarded, and the remaining assembly will then be installed into the Columbus module location with other subassemblies to provide a base for the E4D exercise device.

Pressure Control and Pump Assembly – This assembly evacuates the Distillation Assembly at startup, periodically purges non-condensable gases and water vapor, and pumps them into the Separator Plumbing Assembly as part of the Urine Processing Assembly. This unit will serve as an in-orbit spare to ensure successful urine processing operation capability without interruption.

Resupply Water Tanks – The resupply water tanks are cylindrical composite fibrewound pressure tanks that provide stored potable water for the space station.

NORS (Nitrogen/Oxygen Recharge System) Maintenance Tank/Recharge Tank Assembly, Nitrogen – The NORS Maintenance Kit is comprised of two separate assemblies: the NORS Recharge Tank Assembly and the NORS Vehicle Interface Assembly. The recharge tank assembly will be pressurized for launch with Nitrogen gas. The vehicle interface assembly will protect the recharge tank assembly for launch and stowage aboard the space station.

Tungsten Plates – A total of 14 tungsten plates will serve as the counter mass of the Vibration Isolation & Stabilization System designed to integrate with the European Enhanced Exercise Device.

Watch and Engage

Live coverage of the launch from Cape Canaveral Space Force Station will stream on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Coverage will begin at 11:10 a.m. on Aug. 3.

Live coverage of Cygnus’ arrival at the space station will begin at 2:30 a.m. Aug. 5 on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
      The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
      Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      NASA Headquarters, Washington
      202-358-1600
      tiernan.p.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      An artist’s concept of SpaceX’s Starship Human Landing System (HLS) on the Moon. NASA is working with SpaceX to develop the Starship HLS to carry astronauts from lunar orbit to the Moon’s surface and back for Artemis III and Artemis IV. Starship HLS is roughly 50 meters tall, or about the length of an Olympic swimming pool. SpaceX This artist’s concept depicts a SpaceX Starship tanker (bottom) transferring propellant to a Starship depot (top) in low Earth orbit. Before astronauts launch in Orion atop the agency’s SLS (Space Launch System) rocket, SpaceX will launch a storage depot to Earth orbit. For the Artemis III and Artemis IV missions, SpaceX plans to complete propellant loading operations in Earth orbit to send a fully fueled Starship Human Landing System (HLS) to the Moon. SpaceX An artist’s concept shows how a crewed Orion spacecraft will dock to SpaceX’s Starship Human Landing System (HLS) in lunar orbit for Artemis III. Starship HLS will dock directly to Orion so that two astronauts can transfer to the lander to descend to the Moon’s surface, while two others remain in Orion. Beginning with Artemis IV, NASA’s Gateway lunar space station will serve as the crew transfer point. SpaceX The artist’s concept shows two Artemis III astronauts preparing to step off the elevator at the bottom of SpaceX’s Starship HLS to the Moon’s surface. At about 164 feet (50 m), Starship HLS will be about the same height as a 15-story building. (SpaceX)The elevator will be used to transport crew and cargo between the lander and the surface. SpaceX NASA is working with U.S. industry to develop the human landing systems that will safely carry astronauts from lunar orbit to the surface of the Moon and back throughout the agency’s Artemis campaign.
      For Artemis III, the first crewed return to the lunar surface in over 50 years, NASA is working with SpaceX to develop the company’s Starship Human Landing System (HLS). Newly updated artist’s conceptual renders show how Starship HLS will dock with NASA’s Orion spacecraft in lunar orbit, then two Artemis crew members will transfer from Orion to Starship and descend to the surface. There, astronauts will collect samples, perform science experiments, and observe the Moon’s environment before returning in Starship to Orion waiting in lunar orbit. Prior to the crewed Artemis III mission, SpaceX will perform an uncrewed landing demonstration mission on the Moon.
      NASA is also working with SpaceX to further develop the company’s Starship lander to meet an extended set of requirements for Artemis IV. These requirements include landing more mass on the Moon and docking with the agency’s Gateway lunar space station for crew transfer.
      The artist’s concept portrays SpaceX’s Starship HLS with two Raptor engines lit performing a braking burn prior to its Moon landing. The burn will occur after Starship HLS departs low lunar orbit to reduce the lander’s velocity prior to final descent to the lunar surface. SpaceX With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      NASA engineers conduct a test of the liquid oxygen/liquid methane Morpheus lander engine HD4B on the E-3 Test Stand at NASA’s Stennis Space Center during the week of Sept. 9, 2013. The fourth-generation Project Morpheus engine was a prototype vertical takeoff and landing vehicle designed to advance innovative technologies into flight-proven systems that may be incorporated into future human exploration missions. NASA/Stennis The work of NASA has fueled commercial spaceflight for takeoff – and for many aerospace companies, the road to launch begins at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. 
      Already the nation’s largest propulsion test site and a leader in working with aerospace companies to support their testing needs, NASA Stennis aims to continue growing its commercial market even further.  
      “The aerospace industry is expanding rapidly, and we are here to support it,” said NASA Stennis Director John Bailey. “NASA Stennis has proven for more than two decades that we have the versatile infrastructure and reliable propulsion test experts to meet testing needs and accelerate space goals for a whole range of customers.” 
      The central hub for meeting those needs at the south Mississippi center is the E Test Complex. It features four stands with 12 test cells capable of supporting a range of component and engine test activities. NASA operates the E-1 Test Stand with four cell positions and the E-3 Test Stand with two cells. Relativity Space, based in Long Beach, California, leases the E-2 and E-4 stands to support some of its test operations. 
      Operators conduct a hot fire for Relativity Space’s Aeon R thrust chamber assembly on the E-1 Test Stand at NASA’s Stennis Space Center in 2024.  NASA/Stennis Virgin Orbit, a satellite-launch company, conducts a Thrust Chamber Assembly test on the E-1 Test Stand at NASA’s Stennis Space Center in 2021. The company partnered with NASA Stennis to conduct hot fire tests totaling a cumulative 974.391 seconds.NASA/Stennis Launcher’s 3D-printed Engine-2 rocket engine completes a 5-second hot fire of its thrust chamber assembly on Aug. 20, 2021, at NASA’s Stennis Space Center. The company was just one of several conducting test projects on site in 2021. Launcher, Virgin Orbit, Relativity Space, and L3Harris (formerly known as Aerojet Rocketdyne) made significant strides toward their space-project goals while utilizing NASA Stennis infrastructure.Launcher/John Kraus Photography An image from November 2021 shows a subscale center body diffuser hot fire on the E-3 Test Stand during an ongoing advanced diffuser test series at NASA’s Stennis Space Center.  NASA/Stennis A team of engineers from NASA, Orbital Sciences Corporation and L3Harris (formerly known as Aerojet Rocketdyne) conduct an engine acceptance test on the E-1 Test Stand at NASA’s Stennis Space Center on Jan. 18, 2013. The successful test of AJ26 Engine E12 continued support of Orbital Sciences Corporation as the company prepared to provide commercial cargo missions to the International Space Station.  NASA/Stennis Developed during the 1990s and early 2000s, the E Test Complex can deliver various propellants and gases at high and low pressures and flow rates not available elsewhere. The versatility of the complex infrastructure and test team allows it to support projects for commercial aerospace companies, large and small. NASA Stennis also provides welding, machining, calibration, precision cleaning, and other support services required to conduct testing.  
      “NASA Stennis delivers exceptional results in a timely manner with our capabilities and services,” said Duane Armstrong, manager of the NASA Stennis Strategic Business Development Office. “Our commercial partnerships and agreements have proven to be true win-win arrangements. NASA Stennis is where customers have access to unique NASA test support infrastructure and expertise, making it the go-to place for commercial propulsion testing.”  
      Companies come to the south Mississippi site with various needs. Some test for a short time and collect essential data. Others stay for an extended period. The stage of development and the particular test article, whether a component or full engine, determine where testing takes place within the E Complex. 
      NASA Stennis also offers a variety of test agreements. Companies may lease a stand or area and perform its own test campaign. They also may team with NASA Stennis engineers and operators to form a blended test team. And in some cases, companies will turn over the entirety of test work to the NASA Stennis team. Current companies conducting work at NASA Stennis include: Blue Origin; Boeing; Evolution Space; Launcher, a Vast company; Relativity Space; and Rolls-Royce. They join a growing list who conducted earlier test projects in the complex, including SpaceX, Stratolaunch, Virgin Orbit, and Orbital Sciences Corporation. 
      In addition, three companies – Relativity Space, Rocket Lab, and Evolution Space – are establishing production and/or test operations onsite. 
      “We may work with a customer brand new to the field, so we help them figure out how to build their engine,” said Chris Barnett-Woods, E-1 electrical lead and instrumentation engineer. “Another customer may know exactly what they want, and we support them to make it happen. We focus on customer need. Given our expertise, we know how testing needs to be conducted or can figure it out quickly together, which can help our customer save money toward a successful outcome.” 
      NASA engineers conduct a test of a methane-fueled 2K thruster on the E-3 Test Stand at NASA’s Stennis Space Center during a four-day span in May 2015. NASA/Stennis NASA records a historic week Nov. 5-9, 2012, conducting 27 tests on three different rocket engines/components across three stands in the E Test Complex at NASA’s Stennis Space Center. Inset images show the types of tests conducted on the E-1 Test Stand (right), the E-2 Test Stand (left) and the E-3 Test Stand (center). The E-1 image is from an October 2012 test and is provided courtesy of Blue Origin. Other images are from tests conducted the week of Nov. 5, 2012. NASA/Stennis Operators at the E-2 Test Stand at NASA’s Stennis Space Center conduct a test of the oxygen preburner component developed by SpaceX for its Raptor rocket engine on June 9, 2015. NASA/Stennis Operators conduct a hot fire on the E-3 Test Stand during ongoing advanced diffuser test series in October 2015 at NASA’s Stennis Space Center. Subscale testing was conducted at NASA Stennis to validate innovative new diffuser designs to help test rocket engines at simulated high altitudes, helping to ensure the engines will fire and operate on deep space missions as needed.  NASA/Stennis NASA’s Stennis Space Center and  L3Harris (formerly known as Aerojet Rocketdyne) complete a successful round of AR1 preburner tests on Cell 2 of the E-1 Test Stand during the last week of June 2016. The tests successfully verified key preburner injector design parameters for the company’s AR1 engine being designed to end use of Russian engines for national security space launches. NASA/Stennis Capabilities to benefit NASA and the aerospace industry have grown since the center entered its first commercial partnership in the late 1990s. The test team also has grown in understanding the commercial approach, and the center has committed itself to adapting and streamlining its business processes. 
      “Time-to-market is key for commercial companies,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “They want to test as efficiently and economically as possible. Our goal is to meet them where they are and deliver what they need. And that is exactly what we focus our efforts on.”
      As stated in the site’s latest strategic plan, the goal is to operate as “a multi-user propulsion testing enterprise that accelerates the development of aerospace systems and services by government and industry.” To that end, the site is innovating its operations, modernizing its services, and demonstrating it is the best choice for propulsion testing. 
      “NASA Stennis is open for business as the preferred propulsion provider for aerospace companies,” Bailey said. “Companies across the board are realizing they can achieve their desired results at NASA Stennis.”  
      For information about NASA’s Stennis Space Center, visit: 
      Stennis Space Center – NASA 
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 14 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
    • By NASA
      MuSat2 at Vandenberg Air Force Base, prior to launch. MuSat2 leverages a dual-frequency science antenna developed with support from NASA to measure phenomena such as ocean wind speed. Muon Space A science antenna developed with support from NASA’s Earth Science Technology Office (ESTO) is now in low-Earth orbit aboard MuSat2, a commercial remote-sensing satellite flown by the aerospace company Muon Space. The dual-frequency science antenna was originally developed as part of the Next Generation GNSS Bistatic Radar Instrument (NGRx). Aboard MuSat2, it will help measure ocean surface wind speed—an essential data point for scientists trying to forecast how severe a burgeoning hurricane will become.
      “We’re very interested in adopting this technology and pushing it forward, both from a technology perspective and a product perspective,” said Jonathan Dyer, CEO of Muon.
      Using this antenna, MuSat2 will gather signals transmitted by navigation satellites as they scatter off Earth’s surface and back into space. By recording how those scattered navigation signals change as they interact with Earth’s surface, MuSat2 will provide meteorologists with data points they can use to study severe weather.
      “We use the standard GPS signals you know—the navigation signals that work for your car and your cell phone,” explained Chris Ruf, director of the University of Michigan Space Institute and principal investigator for NGRx.
      Ruf designed the entire NGRx system to be an updated version of the sensors on NASA’s Cyclone Global Navigation Satellite System (CYGNSS), another technology he developed with support from ESTO. Since 2016, data from CYGNSS has been a critical resource for people dedicated to forecasting hurricanes.
      The science antenna aboard MuSat2 enables two key improvements to the original CYGNSS design. First, the antenna allows MuSat2 to gather measurements from satellites outside the U.S.-based GPS system, such as the European Space Agency’s Galileo satellites. This capability enables MuSat2 to collect more data as it orbits Earth, improving its assessments of conditions on the planet’s surface.
      Second, whereas CYGNSS only collected cross-polar radar signals, the updated science antenna also collects co-polar radar signals. This additional information could provide improved information about soil moisture, sea ice, and vegetation. “There’s a whole lot of science value in looking at both polarization components scattering from the Earth’s surface. You can separate apart the effects of vegetation from the effects of surface, itself,” explained Ruf.
      Hurricane Ida, as seen from the International Space Station. NASA-developed technology onboard MuSat2 will help supply the U.S. Air Force with critical data for producing reliable weather forecasts. NASA For Muon Space, this technology infusion has been helpful to the company’s business and science missions. Dallas Masters, Vice President of Muon’s Signals of Opportunity Program, explains that NASA’s investments in NGRx technology made it much easier to produce a viable commercial remote sensing satellite. According to Masters, “NGRx-derived technology allowed us to start planning a flight mission early in our company’s existence, based around a payload we knew had flight heritage.”
      Dyer agrees. “The fact that ESTO proves out these measurement approaches – the technology and the instrument, the science that you can actually derive, the products from that instrument – is a huge enabler for companies like ours, because we can adopt it knowing that much of the physics risk has been retired,” he said.
      Ultimately, this advanced antenna technology for measuring ocean surface wind speed will make it easier for researchers to turn raw data into actionable science products and to develop more accurate forecasts.
      “Information is absolutely precious. When it comes to forecast models and trying to understand what’s about to happen, you have to have as good an idea as you can of what’s already happening in the real world,” said oceanographer Lew Gramer, an Associate Scientist with the Cooperative Institute For Marine And Atmospheric Studies and NOAA’s Hurricane Research Division.
      Project Lead: Chris Ruf, University of Michigan
      Sponsoring Organizations: NASA’s Earth Science Technology Office and Muon Space
      Share








      Details
      Last Updated Nov 12, 2024 Related Terms
      CYGNSS (Cyclone Global Navigation Satellite System) Earth Science Earth Science Division Earth Science Technology Office Oceans Science-enabling Technology Technology Highlights Explore More
      22 min read Summary of the Second OMI–TROPOMI Science Team Meeting


      Article


      1 hour ago
      3 min read Integrating Relevant Science Investigations into Migrant Children Education


      Article


      6 days ago
      2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow


      Article


      1 week ago
      View the full article
    • By NASA
      NASA astronaut Tracy C. Dyson displays from JAXA (Japan Aerospace Exploration Agency) food packets in the International Space Station galley.Credits: NASA NASA recently welcomed more than 50 commercial food and commercial space companies to learn about the evolving space food system supporting NASA missions, including unique requirements for spaceflight, menu development, and food provisioning – essential elements for human spaceflight and sustainable living in space.

      The event, held at the agency’s Johnson Space Center in Houston, brought together private industry leaders, NASA astronauts, and NASA’s space food team to discuss creative solutions for nourishing government and private astronauts on future commercial space stations.

      “The commercial food industry is the leader in how to produce safe and nutritious food for the consumer, and with knowledge passed on from NASA regarding the unique needs for space food safety and human health, this community is poised to support this new market of commercial low Earth orbit consumers,” said Kimberlee Prokhorov, deputy chief for the Human Systems Engineering and Integration Division at Johnson, which encompasses food systems work.

      Experts from NASA’s Space Food Systems Laboratory shared the unique requirements and conditions surrounding the formulation, production, packaging, and logistics of space food for enabling the success of commercial low Earth orbit missions. Attendees heard astronaut perspectives on the importance of space food, challenges they encounter, and potential areas of improvement. They also tasted real space food and learned about the nutritional requirements critical for maintaining human health and performance in space.

      “By bringing together key players in the commercial food and space industries, we were able to provide a collaborative opportunity to share fresh ideas and explore future collaborations,” said Angela Hart, manager for NASA’s Commercial Low Earth Orbit Development Program at Johnson. “Space food is a unique challenge, and it is one that NASA is excited to bring commercial companies into. Working with our commercial partners allows us to advance in ways that benefit not only astronauts but also food systems on Earth.”

      As NASA expands opportunities in low Earth orbit, it’s essential for the commercial sector to take on the support of space food production, allowing the agency to focus its resources on developing food systems for longer duration human space exploration missions.

      NASA will continue providing best practices and offer additional opportunities  to interested commercial partners to share knowledge that will enable a successful commercial space ecosystem.

      The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars, while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/humans-in-space/commercial-space/
      View the full article
  • Check out these Videos

×
×
  • Create New...