Jump to content

60 Years Ago: Ranger 7 Photographs the Moon


Recommended Posts

  • Publishers
Posted

Long before Apollo astronauts set foot upon the Moon, much remained unknown about the lunar surface. While most scientists believed the Moon had a solid surface that would support astronauts and their landing craft, some believed a deep layer of dust covered it that would swallow any visitors. Until 1964, no closeup photographs of the lunar surface existed, only those obtained by Earth-based telescopes and grainy low-resolution images of the Moon’s far side obtained in 1959 by the Soviet Luna 3 robotic spacecraft. On July 28, 1964, Ranger 7 launched toward the Moon, and three days later returned not only the first images of the Moon taken by an American spacecraft but also the first high resolution close-up photographs of the lunar surface. The mission marked a turning point in America’s lunar exploration program, taking the country one step closer to a human Moon landing.

Block I Ranger 1 spacecraft under assembly at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California Block II Ranger spacecraft, showing the black-and-white spherical landing capsule Block III Ranger 7 spacecraft under assembly at JPL
Left: Block I Ranger 1 spacecraft under assembly at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. Middle: Block II Ranger spacecraft, showing the black-and-white spherical landing capsule. Right: Block III Ranger 7 spacecraft under assembly at JPL.

The Ranger program, initiated in 1960 and managed by NASA’s Jet Propulsion Laboratory in Pasadena, California, sought to acquire the first high resolution close-up images of the lunar surface. The program consisted of three phases of increasing complexity. The first phase of the program, designated “Block I,” intended to test the Atlas-Agena launch vehicle by placing a Ranger spacecraft in a highly elliptical Earth orbit where its equipment could be tested. The second “Block II” phase built on the lessons of Block I to send three spacecraft to the Moon to collect images and data and transmit them back to Earth. Each Block II Ranger carried a television camera for collecting images, a gamma-ray spectrometer for studying the minerals in the lunar rocks and soil, and a radar altimeter for studying lunar topography. These spacecraft carried a capsule, encased in balsa wood to protect it from the impact of landing, containing a seismometer and transmitter that would be able to operate for up to 30 days after being dropped on the lunar surface. The final “Block III” phase consisted of four spacecraft that each carried a high-resolution imaging system consisting of six television cameras with wide- and narrow-angle capabilities. They could take 300 pictures per minute.

The Block I and II Rangers met with limited success. Neither Ranger 1 nor 2 left low Earth orbit due to booster problems. Ranger 3, the first Block II spacecraft, missed the Moon by 22,000 miles and sailed on into solar orbit, returning no photographs but taking the first measurements of the interplanetary gamma ray flux. Ranger 4 has the distinction as the first American spacecraft to impact the Moon, and on its far side to boot, but due to a power failure in its central computer could not return any images or data. Ranger 5 missed the Moon by 450 miles but also failed to return images due to a power failure and entered solar orbit. None of the Block II Rangers delivered their seismometer-carrying capsules to the Moon’s surface. Ranger 6, the first Block III spacecraft, successfully impacted on the Moon in January 1964, but its television system failed to return any images due to a short circuit. NASA and JPL delayed the next mission until a thorough investigation identified the source of the problem and engineers completed corrective actions. All hopes rested on Ranger 7 to redeem the program.

Schematic diagram of a Block III Ranger, showing its major components The television camera system aboard Ranger 7 Launch of Ranger 7
Left: Schematic diagram of a Block III Ranger, showing its major components. Middle: The television camera system aboard Ranger 7. Right: Launch of Ranger 7.

On July 28, 1964, Ranger 7 launched from Cape Canaveral, Florida. The Atlas-Agena rocket first placed the spacecraft into Earth orbit before sending it on a lunar trajectory. The next day, the spacecraft successfully carried out a mid-course correction, and on July 31, Ranger 7 reached the Moon. This time, the spacecraft’s cameras turned on as planned. During its final 17 minutes of flight, the spacecraft sent back 4,308 images of the lunar surface. The last image, taken 2.3 seconds before Ranger 7 impacted at 1.62 miles per second, had a resolution of just 15 inches. Scientists renamed the area where it crashed – between Mare Nubium and Oceanus Procellarum – as Mare Cognitum, Latin for “The Known Sea,” to commemorate the first spot on the Moon seen close-up.

Ranger 7’s first image from an altitude of 1,311 miles – the large crater at center right is the 67-mile-wide Alphonsus Ranger 7 image from an altitude of 352 miles Ranger 7’s final image, taken at an altitude of 1,600 feet
Left: Ranger 7’s first image from an altitude of 1,311 miles – the large crater at center right is the 67-mile-wide Alphonsus. Middle: Ranger 7 image from an altitude of 352 miles. Right: Ranger 7’s final image, taken at an altitude of 1,600 feet.

Impact sites of Rangers 7, 8, and 9 The Ranger 7 impact crater photographed during the Apollo 16 mission in 1972 Lunar Reconnaissance Orbiter image of the Ranger 7 impact crater, taken in 2010 at a low sun angle
Left: Impact sites of Rangers 7, 8, and 9. Middle: The Ranger 7 impact crater photographed during the Apollo 16 mission in 1972. Right: Lunar Reconnaissance Orbiter image of the Ranger 7 impact crater, taken in 2010 at a low sun angle.

Two more Ranger missions followed. Ranger 8 returned more than 7,000 images of the Moon. NASA and JPL broadcast Ranger 9’s images of the Alphonsus crater and the surrounding area “live” as the spacecraft approached its crash site in the crater – letting millions of Americans see the Moon up-close as it happened. Based on the photographs returned by the last three Rangers, scientists felt confident to move on to the next phase of robotic lunar exploration, the Surveyor series of soft landers. The Ranger photographs provided confidence that the lunar surface could support a soft-landing. Just under five years after Ranger 7 returned its historic images, Apollo 11 landed the first humans on the Moon.

Enjoy a brief video about Ranger 7, or a more detailed video of the entire mission.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE Stream Of The Moon - Backyard Astronomy 11th April
    • By NASA
      NASA NASA astronauts Jim Lovell, Fred Haise, and Jack Swigert launch aboard the Apollo 13 spacecraft from NASA’s Kennedy Space Center in Florida on April 11, 1970. The mission seemed to be going smoothly until 55 hours and 55 minutes in when an oxygen tank ruptured. The new mission plan involved abandoning the Moon landing, looping around the Moon and getting the crew home safely as quickly as possible. The crew needed to go into “lifeboat mode,” using the lunar module Aquarius to save the spacecraft and crew. On April 17, the crew returned to Earth, splashing down in the Pacific Ocean near Samoa.
      Image credit: NASA
      View the full article
    • By Amazing Space
      LIVE Stream Of The Moon - Backyard Astronomy 9th April
    • By NASA
      NASA Deep Space Station 43 (DSS-43), a 230-foot-wide (70-meter-wide) radio antenna at NASA’s Deep Space Network facility in Canberra, Australia, is seen in this March 4, 2020, image. DSS-43 was more than six times as sensitive as the original antenna at the Canberra complex, so it could communicate with spacecraft at greater distances from Earth. In fact, Canberra is the only complex that can send commands to, and receive data from, Voyager 2 as it heads south almost 13 billion miles (21 billion kilometers) through interstellar space. More than 15 billion miles (24 billion kilometers) away, Voyager 1 sends its data down to the Madrid and Goldstone complexes, but it, too, can only receive commands via Canberra.
      As the Canberra facility celebrated its 60th anniversary on March 19, 2025, work began on a new radio antenna. Canberra’s newest addition, Deep Space Station 33, will be a 112-foot-wide (34-meter-wide) multifrequency beam-waveguide antenna. Buried mostly below ground, a massive concrete pedestal will house cutting-edge electronics and receivers in a climate-controlled room and provide a sturdy base for the reflector dish, which will rotate during operations on a steel platform called an alidade.
      When it goes online in 2029, the new Canberra dish will be the last of six parabolic dishes constructed under NASA’s Deep Space Network Aperture Enhancement Program, which is helping to support current and future spacecraft and the increased volume of data they provide. The network’s Madrid facility christened a new dish in 2022, and the Goldstone, California, facility is putting the finishing touches on a new antenna.
      Image credit: NASA
      View the full article
    • By NASA
      NASA astronauts (left to right) Christina Koch, Victor Glover, Reid Wiseman, Canadian Space Agency Astronaut Jeremy Hansen. Credit: NASA/Josh Valcarcel The Artemis II test flight will be NASA’s first mission with crew under Artemis. Astronauts on their first flight aboard NASA’s Orion spacecraft will confirm all of the spacecraft’s systems operate as designed with crew aboard in the actual environment of deep space.  Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.

      The unique Artemis II mission profile will build upon the uncrewed Artemis I flight test by demonstrating a broad range of SLS (Space Launch System) and Orion capabilities needed on deep space missions. This mission will prove Orion’s critical life support systems are ready to sustain our astronauts on longer duration missions ahead and allow the crew to practice operations essential to the success of Artemis III and beyond.

      Leaving Earth
      The mission will launch a crew of four astronauts from NASA’s Kennedy Space Center in Florida on a Block 1 configuration of the SLS rocket. Orion will perform multiple maneuvers to raise its orbit around Earth and eventually place the crew on a lunar free return trajectory in which Earth’s gravity will naturally pull Orion back home after flying by the Moon. The Artemis II astronauts are NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen.

      The initial launch will be similar to Artemis I as SLS lofts Orion into space, and then jettisons the boosters, service module panels, and launch abort system, before the core stage engines shut down and the core stage separates from the upper stage and the spacecraft. With crew aboard this mission, Orion and the upper stage, called the interim cryogenic propulsion stage (ICPS), will then orbit Earth twice to ensure Orion’s systems are working as expected while still close to home. The spacecraft will first reach an initial orbit, flying in the shape of an ellipse, at an altitude of about 115 by 1,400 miles. The orbit will last a little over 90 minutes and will include the first firing of the ICPS to maintain Orion’s path. After the first orbit, the ICPS will raise Orion to a high-Earth orbit. This maneuver will enable the spacecraft to build up enough speed for the eventual push toward the Moon. The second, larger orbit will take approximately 23.5 hours with Orion flying in an ellipse between about 115 and 46,000 miles above Earth. For perspective, the International Space Station flies a nearly circular Earth orbit about 250 miles above our planet. 

      After the burn to enter high-Earth orbit, Orion will separate from the upper stage. The expended stage will have one final use before it is disposed through Earth’s atmosphere—the crew will use it as a target for a proximity operations demonstration. During the demonstration, mission controllers at NASA’s Johnson Space Center in Houston will monitor Orion as the astronauts transition the spacecraft to manual mode and pilot Orion’s flight path and orientation. The crew will use Orion’s onboard cameras and the view from the spacecraft’s windows to line up with the ICPS as they approach and back away from the stage to assess Orion’s handling qualities and related hardware and software. This demonstration will provide performance data and operational experience that cannot be readily gained on the ground in preparation for critical rendezvous, proximity operations and docking, as well as undocking operations in lunar orbit beginning on Artemis III.

      Checking Critical Systems
      Following the proximity operations demonstration, the crew will turn control of Orion back to mission controllers at Johnson and spend the remainder of the orbit verifying spacecraft system performance in the space environment. They will remove the Orion Crew Survival System suit they wear for launch and spend the remainder of the in-space mission in plain clothes, until they don their suits again to prepare for reentry into Earth’s atmosphere and recovery from the ocean.

      While still close to Earth, the crew will assess the performance of the life support systems necessary to generate breathable air and remove the carbon dioxide and water vapor produced when the astronauts breathe, talk, or exercise. The long orbital period around Earth provides an opportunity to test the systems during exercise periods, where the crew’s metabolic rate is the highest, and a sleep period, where the crew’s metabolic rate is the lowest. A change between the suit mode and cabin mode in the life support system, as well as performance of the system during exercise and sleep periods, will confirm the full range of life support system capabilities and ensure readiness for the lunar flyby portion of the mission.

      Orion will also checkout the communication and navigation systems to confirm they are ready for the trip to the Moon. While still in the elliptical orbit around Earth, Orion will briefly fly beyond the range of GPS satellites and the Tracking and Data Relay Satellites of NASA’s Space Network to allow an early checkout of agency’s Deep Space Network communication and navigation capabilities. When Orion travels out to and around the Moon, mission control will depend on the Deep Space Network to communicate with the astronauts, send imagery to Earth, and command the spacecraft.

      After completing checkout procedures, Orion will perform the next propulsion move, called the translunar injection (TLI) burn. With the ICPS having done most of the work to put Orion into a high-Earth orbit, the service module will provide the last push needed to put Orion on a path toward the Moon. The TLI burn will send crew on an outbound trip of about four days and around the backside of the Moon where they will ultimately create a figure eight extending over 230,000 miles from Earth before Orion returns home.

      To the Moon and “Free” Ride Home
      On the remainder of the trip, astronauts will continue to evaluate the spacecraft’s systems, including demonstrating Earth departure and return operations, practicing emergency procedures, and testing the radiation shelter, among other activities.

      The Artemis II crew will travel approximately 4,600 miles beyond the far side of the Moon. From this vantage point, they will be able to see the Earth and the Moon from Orion’s windows, with the Moon close in the foreground and the Earth nearly a quarter-million miles in the background.

      With a return trip of about four days, the mission is expected to last about 10 days. Instead of requiring propulsion on the return, this fuel-efficient trajectory harnesses the Earth-Moon gravity field, ensuring that—after its trip around the far side of the Moon—Orion will be pulled back naturally by Earth’s gravity for the free return portion of the mission.

      Two Missions, Two Different Trajectories
      Following Artemis II, Orion and its crew will once again travel to the Moon, this time to make history when the next astronauts walk on the lunar surface. Beginning with Artemis III, missions will focus on establishing surface capabilities and building Gateway in orbit around the Moon.

      Through Artemis, NASA will explore more of the Moon than ever before and create an enduring presence in deep space.
      View the full article
  • Check out these Videos

×
×
  • Create New...