Members Can Post Anonymously On This Site
NASA to Highlight 13th Space Station Research, Development Conference
-
Similar Topics
-
By NASA
Continuing his engagement to deepen international collaboration and promote the peaceful use of space, NASA Administrator Bill Nelson will travel to Lima on Wednesday.
Nelson will meet with Maj. Gen. Roberto Melgar Sheen, director of Peru’s National Commission for Aerospace Research and Development (CONIDA) Thursday, Nov. 14, and sign a non-binding memorandum of understanding to enhance space cooperation. The memorandum of understanding between NASA and CONIDA will include safety training, a joint feasibility study for a potential sounding rockets campaign, and technical assistance for CONIDA on sounding rocket launches.
Nelson will discuss the importance of international partnerships and collaboration in space and celebrate Peru’s signing of the Artemis Accords earlier this year.
For more information about NASA’s international partnerships, visit:
https://www.nasa.gov/oiir
-end-
Meira Bernstein
Headquarters, Washington
202-615-1747
meira.b.bernstein@nasa.gov
Share
Details
Last Updated Nov 13, 2024 LocationNASA Headquarters Related Terms
Office of International and Interagency Relations (OIIR) Bill Nelson View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The American Institute of Aeronautics and Astronautics (AIAA) has named two distinguished engineers at NASA’s Glenn Research Center in Cleveland AIAA Associate Fellows.
The grade of Associate Fellow recognizes individuals who have accomplished or overseen important engineering or scientific work, done original work of outstanding merit, or have otherwise made outstanding contributions to the arts, sciences, or technology of aeronautics or astronautics. To be selected as an Associate Fellow, an individual must be an AIAA Senior Member in good standing, with at least 12 years of professional experience, and be recommended by three AIAA members.
L. Danielle KochCredit: NASA L. Danielle Koch, aerospace engineer, performs research and educational outreach at NASA Glenn. Her 34-year career at NASA has been dedicated to conducting research for safer, cleaner, and quieter aircraft engines; high-performance ventilation systems for spacecraft; and bio-inspired broadband acoustic absorbers. She has authored over 50 technical publications and has been granted three patents. Koch has been recognized for excellence in engineering and educational outreach with many awards, most recently named as one of the 2024 Women of Distinction by the Girl Scouts of Northeast Ohio.
Dr. Sam LeeCredit: NASA Dr. Sam Lee, a research engineer supporting the Aircraft Icing Branch, conducts research in NASA Glenn’s Icing Research Tunnel to study how ice builds up, or accretes, on aircraft surfaces. The results from the experiments are used to understand the physics of how ice accretes on aircraft during flight and to provide the validation data to develop computational tools to predict ice accretion. He also performs research on the effects of ice accretion on aircraft performance in aerodynamic wind tunnels. Lee has authored 17 conference papers and journal papers. He has contributed to the development of many future engineers and scientists as a mentor for NASA’s Explorer Scouts program and various college internship programs. Lee has been part of the Aircraft Icing Branch since 2002.
AIAA will formally honor and induct the class at the AIAA Associate Fellows Induction Ceremony and Dinner on Jan. 8, 2025, during the 2025 AIAA SciTech Forum in Orlando.
Return to Newsletter Explore More
4 min read Entrevista con Instructora de OCEANOS María Fernanda Barbarena-Arias
Article 14 hours ago 4 min read Entrevista con Instructor de OCEANOS Roy Armstrong
Article 14 hours ago 4 min read Entrevista con Instructor de OCEANOS Juan Torres-Pérez
Article 14 hours ago View the full article
-
By NASA
5 Min Read Wearable Tech for Space Station Research
A wearable monitoring device is visible on the left wrist of NASA astronaut Jeanette Epps. Credits: NASA Science in Space Nov 2024
Many of us wear devices that count our steps, measure our heart rate, track sleep patterns, and more. This information can help us make healthy decisions – research shows the devices encourage people to move more, for example – and could flag possible problems, such as an irregular heartbeat.
Wearable monitors also have become common tools for research on human health, including studies on the International Space Station. Astronauts have worn special watches, headbands, vests, and other devices to help scientists examine sleep quality, effectiveness of exercise, heart health, and more.
Warm to the core
Spaceflight can affect body temperature regulation and daily rhythms due to factors such as the absence of convection (a natural process that transfers heat away from the body) and changes in the cardiovascular and metabolic systems.
A current investigation from ESA (European Space Agency), Thermo-Mini or T-Mini examines how the body regulates its core temperature during spaceflight. The study uses a non-invasive headband monitor that astronauts can wear for hours at a time. Data from the monitor allow researchers to determine the effect on body temperature from environmental and physiological factors such as room temperature and humidity, time of day, and physical stress. The same type of sensor already is used on Earth for research in clinical environments, such as improving incubators, and studies of how hotter environments affect human health.
Thermolab, an earlier ESA investigation, examined thermoregulatory and cardiovascular adaptations during rest and exercise in microgravity. Researchers found that core body temperature rises higher and faster during exercise in space than on Earth and that the increase was sustained during rest, a phenomenon that could affect the health of crew members on long-term spaceflight. The finding also raises questions about the thermoregulatory set point humans are assumed to have as well as our ability to adapt to climate change on Earth.
NASA astronaut Nick Hague wears the T-mini device while exercising.NASA To sleep, perchance to dream
Spaceflight is known to disrupt sleep-wake patterns. Actiwatch Spectrum, a device worn on the wrist, contains an accelerometer to measure motion and photodetectors to monitor ambient lighting. It is an upgrade of previous technology used on the space station to monitor the length and quality of crew member sleep. Data from earlier missions show that crew members slept significantly less during spaceflight than before and after. The Actiwatch Sleep-Long investigation used an earlier version of the device to examine how ambient light affects the sleep-wake cycle and found an association between sleep deficiency and changes during spaceflight in circadian patterns, or the body’s response to a normal 24-hour light and dark cycle. Follow up studies are testing lighting systems to address these effects and help astronauts maintain healthy circadian rhythms.
NASA astronaut Sunita Williams wears an Actiwatch as she conducts research.NASA Wearable Monitoring tested a lightweight vest with embedded sensors to monitor heart rate and breathing patterns during sleep and help determine whether changes in heart activity affect sleep quality. The technology offers a significant advantage by monitoring heart activity without waking the test subject and could help patients on Earth with sleep disorders. Researchers reported positive performance and good quality of recorded signals, suggesting that the vest can contribute to comprehensive monitoring of individual health on future spaceflight and in some settings on Earth as well.
These and other studies support development of countermeasures to improve sleep for crew members, helping to maintain alertness and lessen fatigue during missions.
(Not) waiting to exhale
Humans exhale carbon dioxide and too much of it can build up in closed environments, causing headaches, dizziness, and other symptoms. Spacecraft have systems to remove this substance from cabin air, but pockets of carbon dioxide can form and be difficult to detect and remove. Personal CO2 Monitor tested specially designed sensors attached to clothing to monitor the wearer’s immediate surroundings. Researchers reported that the devices functioned adequately as either crew-worn or static monitors, an important step toward using them to determine how carbon dioxide behaves in enclosed systems like spacecraft.
One of the wearable carbon dioxide monitors clipped to the wall near a crew sleeping compartment. Radiation in real time
EVARM, an investigation from CSA (Canadian Space Agency), used small wireless dosimeters carried in a pocket to measure radiation exposure during spacewalks. The data showed that this method is a feasible way to measure radiation exposure, which could help focus routine dosage monitoring where it is most needed. Any shielding and countermeasures developed also could help protect people who work in high-radiation areas on Earth.
ESA’s Active Dosimeter tested a radiation dosimeter worn by crew members to measure changes in their exposure over time based on the space station’s orbit and altitude, the solar cycle, and solar flares. Measurements from the device allowed researchers to analyze radiation dosage across an entire space mission.
ESA astronaut Thomas Pesquet holds one of the mobile units for the Active Dosimeter study.NASA The Active Dosimeter also was among the instruments used to measure radiation on NASA’s Orion spacecraft during its 25.5-day uncrewed Artemis I mission around the Moon and back in 2022.
Another device tested on the space station and then on Artemis I, AstroRad Vest is designed to protect astronauts from solar particle events. Researchers used these and other radiation measuring devices to show that Orion’s design can protect its crew from potentially hazardous radiation levels during lunar missions.
The International Space Station serves as an important testbed for these technologies and many others being developed for future missions to the Moon and beyond.
Melissa Gaskill
International Space Station Research Communications Team
Johnson Space Center
Keep Exploring Discover More Topics From NASA
Humans In Space
Space Station Technology Demonstration
Space Station Research and Technology
Station Science 101: Human Research
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
NASA engineers conduct a test of the liquid oxygen/liquid methane Morpheus lander engine HD4B on the E-3 Test Stand at NASA’s Stennis Space Center during the week of Sept. 9, 2013. The fourth-generation Project Morpheus engine was a prototype vertical takeoff and landing vehicle designed to advance innovative technologies into flight-proven systems that may be incorporated into future human exploration missions. NASA/Stennis The work of NASA has fueled commercial spaceflight for takeoff – and for many aerospace companies, the road to launch begins at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
Already the nation’s largest propulsion test site and a leader in working with aerospace companies to support their testing needs, NASA Stennis aims to continue growing its commercial market even further.
“The aerospace industry is expanding rapidly, and we are here to support it,” said NASA Stennis Director John Bailey. “NASA Stennis has proven for more than two decades that we have the versatile infrastructure and reliable propulsion test experts to meet testing needs and accelerate space goals for a whole range of customers.”
The central hub for meeting those needs at the south Mississippi center is the E Test Complex. It features four stands with 12 test cells capable of supporting a range of component and engine test activities. NASA operates the E-1 Test Stand with four cell positions and the E-3 Test Stand with two cells. Relativity Space, based in Long Beach, California, leases the E-2 and E-4 stands to support some of its test operations.
Operators conduct a hot fire for Relativity Space’s Aeon R thrust chamber assembly on the E-1 Test Stand at NASA’s Stennis Space Center in 2024. NASA/Stennis Virgin Orbit, a satellite-launch company, conducts a Thrust Chamber Assembly test on the E-1 Test Stand at NASA’s Stennis Space Center in 2021. The company partnered with NASA Stennis to conduct hot fire tests totaling a cumulative 974.391 seconds.NASA/Stennis Launcher’s 3D-printed Engine-2 rocket engine completes a 5-second hot fire of its thrust chamber assembly on Aug. 20, 2021, at NASA’s Stennis Space Center. The company was just one of several conducting test projects on site in 2021. Launcher, Virgin Orbit, Relativity Space, and L3Harris (formerly known as Aerojet Rocketdyne) made significant strides toward their space-project goals while utilizing NASA Stennis infrastructure.Launcher/John Kraus Photography An image from November 2021 shows a subscale center body diffuser hot fire on the E-3 Test Stand during an ongoing advanced diffuser test series at NASA’s Stennis Space Center. NASA/Stennis A team of engineers from NASA, Orbital Sciences Corporation and L3Harris (formerly known as Aerojet Rocketdyne) conduct an engine acceptance test on the E-1 Test Stand at NASA’s Stennis Space Center on Jan. 18, 2013. The successful test of AJ26 Engine E12 continued support of Orbital Sciences Corporation as the company prepared to provide commercial cargo missions to the International Space Station. NASA/Stennis Developed during the 1990s and early 2000s, the E Test Complex can deliver various propellants and gases at high and low pressures and flow rates not available elsewhere. The versatility of the complex infrastructure and test team allows it to support projects for commercial aerospace companies, large and small. NASA Stennis also provides welding, machining, calibration, precision cleaning, and other support services required to conduct testing.
“NASA Stennis delivers exceptional results in a timely manner with our capabilities and services,” said Duane Armstrong, manager of the NASA Stennis Strategic Business Development Office. “Our commercial partnerships and agreements have proven to be true win-win arrangements. NASA Stennis is where customers have access to unique NASA test support infrastructure and expertise, making it the go-to place for commercial propulsion testing.”
Companies come to the south Mississippi site with various needs. Some test for a short time and collect essential data. Others stay for an extended period. The stage of development and the particular test article, whether a component or full engine, determine where testing takes place within the E Complex.
NASA Stennis also offers a variety of test agreements. Companies may lease a stand or area and perform its own test campaign. They also may team with NASA Stennis engineers and operators to form a blended test team. And in some cases, companies will turn over the entirety of test work to the NASA Stennis team. Current companies conducting work at NASA Stennis include: Blue Origin; Boeing; Evolution Space; Launcher, a Vast company; Relativity Space; and Rolls-Royce. They join a growing list who conducted earlier test projects in the complex, including SpaceX, Stratolaunch, Virgin Orbit, and Orbital Sciences Corporation.
In addition, three companies – Relativity Space, Rocket Lab, and Evolution Space – are establishing production and/or test operations onsite.
“We may work with a customer brand new to the field, so we help them figure out how to build their engine,” said Chris Barnett-Woods, E-1 electrical lead and instrumentation engineer. “Another customer may know exactly what they want, and we support them to make it happen. We focus on customer need. Given our expertise, we know how testing needs to be conducted or can figure it out quickly together, which can help our customer save money toward a successful outcome.”
NASA engineers conduct a test of a methane-fueled 2K thruster on the E-3 Test Stand at NASA’s Stennis Space Center during a four-day span in May 2015. NASA/Stennis NASA records a historic week Nov. 5-9, 2012, conducting 27 tests on three different rocket engines/components across three stands in the E Test Complex at NASA’s Stennis Space Center. Inset images show the types of tests conducted on the E-1 Test Stand (right), the E-2 Test Stand (left) and the E-3 Test Stand (center). The E-1 image is from an October 2012 test and is provided courtesy of Blue Origin. Other images are from tests conducted the week of Nov. 5, 2012. NASA/Stennis Operators at the E-2 Test Stand at NASA’s Stennis Space Center conduct a test of the oxygen preburner component developed by SpaceX for its Raptor rocket engine on June 9, 2015. NASA/Stennis Operators conduct a hot fire on the E-3 Test Stand during ongoing advanced diffuser test series in October 2015 at NASA’s Stennis Space Center. Subscale testing was conducted at NASA Stennis to validate innovative new diffuser designs to help test rocket engines at simulated high altitudes, helping to ensure the engines will fire and operate on deep space missions as needed. NASA/Stennis NASA’s Stennis Space Center and L3Harris (formerly known as Aerojet Rocketdyne) complete a successful round of AR1 preburner tests on Cell 2 of the E-1 Test Stand during the last week of June 2016. The tests successfully verified key preburner injector design parameters for the company’s AR1 engine being designed to end use of Russian engines for national security space launches. NASA/Stennis Capabilities to benefit NASA and the aerospace industry have grown since the center entered its first commercial partnership in the late 1990s. The test team also has grown in understanding the commercial approach, and the center has committed itself to adapting and streamlining its business processes.
“Time-to-market is key for commercial companies,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “They want to test as efficiently and economically as possible. Our goal is to meet them where they are and deliver what they need. And that is exactly what we focus our efforts on.”
As stated in the site’s latest strategic plan, the goal is to operate as “a multi-user propulsion testing enterprise that accelerates the development of aerospace systems and services by government and industry.” To that end, the site is innovating its operations, modernizing its services, and demonstrating it is the best choice for propulsion testing.
“NASA Stennis is open for business as the preferred propulsion provider for aerospace companies,” Bailey said. “Companies across the board are realizing they can achieve their desired results at NASA Stennis.”
For information about NASA’s Stennis Space Center, visit:
Stennis Space Center – NASA
Share
Details
Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
Article 14 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
Article 14 mins ago Keep Exploring Discover Related Stennis Topics
Propulsion Test Engineering
NASA Stennis Front Door
Multi-User Test Complex
Doing Business with NASA Stennis
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
Contrary to the popular saying, work conducted by the propulsion test team at NASA’s Stennis Space Center is rocket science – and requires all the talent, knowledge, and expertise the term implies.
Rocket science at NASA Stennis, located near Bay St. Louis, Mississippi, has helped safely power American space dreams for almost 60 years ago. The accumulated knowledge and skills of the site’s test team continue to benefit NASA and commercial aerospace companies, thanks to new generations of skilled engineers and operators.
“The innovative, can-do attitude started with the founding of the south Mississippi site more than six decades ago,” said NASA Stennis Director John Bailey. “The knowledge, skills, and insight of a versatile team continue supporting NASA’s mission and goals of commercial aerospace companies by routinely conducting successful propulsion testing at NASA Stennis.”
Test team personnel perform facility data review following completion of a liquid oxygen cold-flow activation activity on the E-1 Test Stand at NASA’s Stennis Space Center on March 23, 2016. Activation of the test cell was in preparation for testing L3Harris’ (then known as Aerojet Rocketdyne) AR1 rocket engine pre-burner and main injector. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities for NASA and commercial projects. NASA/Stennis Operators at NASA’s High Pressure Gas Facility conduct a critical stress test Oct. 18-19, 2018, to demonstrate the facility’s readiness to support testing of the core stage of NASA’s powerful SLS (Space Launch System) rocket. The High Pressure Gas Facility was critical in producing and delivering gases needed for SLS core stage testing ahead of the successful launch of Artemis I. NASA/Stennis Test control center crews at NASA’s Stennis Space Center’s simulate full operations of core stage testing Dec. 13, 2019, for NASA’s powerful SLS (Space Launch System) rocket on the Thad Cochran Test Stand (B-2). NASA Stennis conducted SLS core stage testing in 2020-21 ahead of the successful Artemis I mission. NASA/Stennis A sitewide stress test at NASA’s Stennis Space Center on Dec. 13, 2019, simulates full operations needed during SLS (Space Launch System) core stage testing. The 24-hour exercise involved crews across NASA Stennis, including at the High Pressure Water Facility that provided needed generator power and water flow to the Thad Cochran Test Stand (B-2) during testing.NASA/Stennis The NASA Stennis team exhibits a depth and breadth of experience and expertise likely unsurpassed anywhere in the world.
The depth is built on decades of propulsion test experience. Veteran team members of today learned from those working during the Apollo era, who overcame various engineering, technical, communications, and mechanical difficulties in testing the Saturn V rocket stages that powered humans to the Moon. During 43 stage firings, the team accumulated an estimated 2,475 years of rocket engine test expertise.
Members of the Apollo test team then joined with new engineers and operators to test main engines that powered 30 years of space shuttle missions. From 1975 to 2009, the team supported main engine development, certification, acceptance, and anomaly testing with over 2,300 hot fires and more than 820,000 seconds of accumulated hot-fire time.
“NASA Stennis is unique because of the proven test operations expertise passed from generation to generation,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “It is expertise you can trust to deliver what is needed.”
A member of the Fred Haise Test Stand (formerly the A-1 Test Stand) operations team examines the progress of a cold-shock test on May 1, 2014. The test marked a milestone in preparing the stand to test RS-25 rocket engines that will help power NASA’s SLS (Space Launch System) rocket.NASA/Stennis In addition to depth, the site team also has a breadth of experience that gives it unparalleled versatility and adaptability.
Part of that comes from the nature of the center itself. NASA Stennis is the second largest NASA center in terms of geography, but the civil servant workforce is small. As a result, test team members work on a range of propulsion projects, from testing components on smaller E Test Complex cells to firing large engines and even rocket stages on the heritage Apollo-era stands.
“Our management have put us in a position to be successful,” said NASA engineer Josh Greiner. “They have helped move us onto the test stands and given us a huge share of the responsibility of leading projects early in our career, which provides us the confidence and opportunity to conduct tests.”
In addition, center leaders made a deliberate decision more than a decade ago to return test stand operations to the NASA team. Prior to that time, stand operations were in the hands of contractors under NASA supervision. The shift allowed the civil servant test team to fine-tune its skill set even as it continued to work closely with contractor partners to support both government and commercial aerospace propulsion projects.
An image from October 2022 shows NASA engineers preparing for the next RS-25 engine test series at NASA’s Stennis Space Center by monitoring the reload of propellant tanks to the Fred Haise Test Stand (formerly the A-1 Test Stand). RS-25 engines are powered by a mix of liquid hydrogen and liquid oxygen.NASA/Stennis An image from October 2022 shows test team personnel ensuring pressures and flow paths are set properly for liquid oxygen to be transferred to the Fred Haise Test Stand (formerly the A-1 Test Stand), pictured in the background.NASA/Stennis An image from August 2023 shows test team personnel inspecting a pump during an initial chill down activity at the E-3 Test Complex. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities for NASA and commercial programs and projects. NASA/Stennis An image from September 2023 shows test team personnel preparing for future SLS (Space Launch System) exploration upper stage testing that will take place on the B-2 side of the Thad Cochran Test Stand. NASA’s new upper stage is being built as a more powerful SLS second stage to send the Orion spacecraft and heavier payloads to deep space. It will fly on the Artemis missions following a series of Green Run tests of its integrated systems at NASA Stennis. The test series will culminate with a hot fire of the four RL10 engines that will power the upper stage.NASA/Stennis An image from September 2023 shows test team personnel preparing for future SLS (Space Launch System) exploration upper stage testing by conducting a liquid hydrogen flow procedure. NASA’s new upper stage is being built as a more powerful SLS second stage to send the Orion spacecraft and heavier payloads to deep space. The upper stage will undergo a series of Green Run tests of its integrated systems on the B-2 side of the Thad Cochran Test Stand at NASA Stennis.NASA/Stennis The evolution and performance of the NASA Stennis team was illustrated in stark fashion in June/July 2018 when a blended team of NASA, Defense Advanced Research Projects Agency, Aerojet Rocketdyne, Boeing, and Syncom Space Services engineers and operators test fired an AR-22 rocket engine 10 times in a 240-hour period.
The campaign marked the first time a large liquid oxygen/liquid hydrogen engine had been tested so often in such a short period of time. The test team overcame a variety of challenges, including a pair of lightning strikes that threatened to derail the entire effort. Following completion of the historic series, a NASA engineer who helped lead the campaign recounted one industry observer who repeatedly characterized the site’s test team as nothing less than a national asset.
The experienced site workforce now tests RS-25 engines and propulsion systems for NASA’s Artemis campaign, including those that will help power Artemis missions to the Moon for scientific discovery and economic benefits. The NASA Stennis team also supports a range of commercial aerospace propulsion test activities, facilitating continued growth in capabilities. For instance, the team now has experience working with oxygen, hydrogen, methane, and kerosene propellants.
“The NASA and contractor workforce at NASA Stennis is second to none when it comes to propulsion testing,” Schuyler said. “Many of the current employees have been involved in rocket engine testing for over 30 years, and newer workers are being trained under these seasoned professionals.”
For information about NASA’s Stennis Space Center, visit:
Stennis Space Center – NASA
Share
Details
Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
5 min read NASA Stennis – An Ideal Place for Commercial Companies
Article 13 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
Article 14 mins ago Keep Exploring Discover Related Stennis Topics
Propulsion Test Engineering
NASA Stennis Front Door
Multi-User Test Complex
Doing Business with NASA Stennis
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.