Jump to content

From Intern to Astronaut


NASA

Recommended Posts

  • Publishers
Three astronauts have their arms over each other's shoulders as they smile for the camera. From left to right, they are Anil Menon, a Ukrainian and Indian American man, Deniz Burnham, a white woman, and Marcos Berríos, a Latino man. All three wear blue jumpsuits with various patches sewn on, including a NASA patch, a patch with their name, and an American flag patch. The picture shows them from the knees up. In the distance behind them, beyond a grassy area, are the Artemis I rocket and spacecraft. The launch pad is out of focus, but the SLS's distinctive butterscotch orange color can be made out.
NASA/Steven Seipel

On Sept. 2, 2022, NASA astronauts Anil Menon (left), Deniz Burnham (center), and Marcos Berrios (right) posed for a photograph in front of NASA’s Artemis I SLS (Space Launch System) and Orion spacecraft at the agency’s Kennedy Space Center in Florida.

Burnham began her career as an intern at NASA’s Ames Research Center. She earned a bachelor’s degree in chemical engineering from the University of California, San Diego, and a master’s degree in mechanical engineering from the University of Southern California in Los Angeles.

Burnham reported for duty in January 2022 to complete two years of initial astronaut training as a NASA astronaut candidate. Burnham, Menon, and Berrios astronaut candidates graduated in a ceremony on March 5, 2024. The graduates may be assigned to missions destined for the International Space Station, future commercial space stations, and Artemis campaign missions to the Moon in preparation for Mars.

Applications to become a NASA intern are currently open. Apply for Spring 2025 internships by Aug. 23, 2024.

Image credit: NASA/Steven Seipel

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A fisheye lens attached to an electronic still camera was used to capture this image of NASA astronaut Don Pettit.NASA Science ideas are everywhere. Some of the greatest discoveries have come from tinkering and toying with new concepts and ideas. NASA astronaut Don Pettit is no stranger to inventing and discovering. During his previous missions, Pettit has contributed to advancements for human space exploration aboard the International Space Station resulting in several published scientific papers and breakthroughs.

      Pettit, accompanied by cosmonauts Alexey Ovchinin and Ivan Vagner, will launch to the orbiting laboratory in September 2024. In preparation for his fourth spaceflight, read about previous “science of opportunity” experiments Pettit performed during his free time with materials readily available to the crew or included in his personal kit.

      Freezing Ice in Space
      Thin ice under polarized light frozen aboard the International Space Station.NASA Have you ever noticed a white bubble inside the ice in your ice tray at home? This is trapped air that accumulates in one area due to gravity. Pettit took this knowledge, access to a -90° Celsius freezer aboard the space station, and an open weekend to figure out how water freezes in microgravity compared to on Earth. This photo uses polarized light to show thin frozen water and the visible differences from the ice we typically freeze here on Earth, providing more insight into physics concepts in microgravity.

      Space Cup
      NASA astronaut Don Pettit demonstrates how surface tension, wetting, and container shape hold coffee in the space cup.NASA Microgravity affects even the most mundane tasks, like sipping your morning tea. Typically, crews drink beverages from a specially sealed bag with a straw. Using an overhead transparency film, Pettit invented the prototype of the Capillary Beverage, or Space Cup. The cup uses surface tension, wetting, and container shape to mimic the role of gravity in drinking on Earth, making drinking beverages in space easier to consume and showing how discoveries aboard station can be used to design new systems.
      Planetary Formation
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Astronaut Don Pettit demonstrates a mixture of coffee grounds and sugar sticking together in microgravity to understand planetary formation. NASA Using materials that break into very small particles, such as table salt, sugar, and coffee, Pettit experimented to understand planetary formation. A crucial early step in planet formation is the aggregation or clumping of tiny particles, but scientists do not fully understand this process. Pettit placed different particulate mixtures in plastic bags, filled them with air, thoroughly shook the bags, and observed that the particles clumped within seconds due to what appears to be an electrostatic process. Studying the behavior of tiny particles in microgravity may provide valuable insight into how material composition, density, and turbulence play a role in planetary formation.
      Orbital Motion
      Charged water particles orbit a knitting needle, showing electrostatic processes in space. NASA Knitting needles made of different materials arrived aboard station as personal crew items. Pettit electrically charged the needles by rubbing each one with paper. Then, he released charged water from a Teflon syringe and observed the water droplets orbit the knitting needle, demonstrating electrostatic orbits in microgravity. The study was later repeated in a simulation that included atmospheric drag, and the 3D motion accurately matched the orbits seen in the space station demonstration. These observations could be analogous to the behavior of charged particles in Earth’s magnetic field and prove useful in designing future spacecraft systems.
      Astrophotography
      Top: NASA astronaut Don Pettit photographed in the International Space Station cupola surrounded by cameras. Bottom: Star trails photographed by NASA astronaut Don Pettit in March of 2012.NASA An innovative photographer, Pettit has used time exposure, multiple cameras, infrared, and other techniques to contribute breathtaking images of Earth and star trails from the space station’s unique viewpoint. These photos contribute to a database researchers use to understand Earth’s changing landscapes, and this imagery can inspire the public’s interest in human spaceflight.

      Christine Giraldo
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Keep Exploring Discover More Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Official portrait of NASA astronaut Jonny Kim in an EMU suit.Credit: NASA During his first mission to the International Space Station, NASA astronaut Jonny Kim will serve as a flight engineer and member of the upcoming Expedition 72/73 crew.
      Kim will launch on the Roscosmos Soyuz MS-27 spacecraft in March 2025, accompanied by Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky. The trio will spend approximately eight months at the space station.
      While aboard the orbiting laboratory, Kim will conduct scientific investigations and technology demonstrations to help prepare the crew for future space missions and provide benefits to people on Earth.
      NASA selected Kim as an astronaut in 2017. After completing the initial astronaut candidate training, Kim supported mission and crew operations in various roles including the Expedition 65 lead operations officer, T-38 operations liaison, and space station capcom chief engineer.
      A native of Los Angeles, Kim is a United States Navy lieutenant commander and dual designated naval aviator and flight surgeon. Kim also served as an enlisted Navy SEAL. He holds a bachelor’s degree in Mathematics from the University of San Diego and a medical degree from Harvard Medical School in Boston, and completed his internship with the Harvard Affiliated Emergency Medicine Residency at Massachusetts General Hospital and Brigham and Women’s Hospital.
      For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to more fully focus its resources on deep space missions to the Moon and Mars.
      Get breaking news, images and features from the space station on the station blog, Instagram, Facebook, and X.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Josh Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2024 LocationNASA Headquarters Related Terms
      Jonny Kim Astronauts Humans in Space International Space Station (ISS) ISS Research View the full article
    • By NASA
      On Aug. 14, 1969, NASA announced the selection of seven new astronauts. The Group 7 astronauts consisted of pilots transferred from the Manned Orbital Laboratory (MOL) Program canceled two months earlier. The MOL, a joint project of the U.S. Air Force (USAF) and the National Reconnaissance Office, sought to obtain high-resolution photographic imagery of America’s Cold War adversaries. The Air Force selected 17 pilots in three groups for the MOL program – eight pilots in 1965, five in 1966, and four in 1967. After the cancellation, NASA invited the younger (under 35) of the 14 remaining MOL pilots to join its astronaut corps at the Manned Spacecraft Center, now the Johnson Space Center in Houston. The selected pilots included Major Karol J. “Bo” Bobko, USAF, Commander Robert L. Crippen, US Navy, Major C. Gordon Fullerton, USAF, Major Henry W. “Hank” Hartsfield, USAF, Major Robert F. Overmyer, US Marine Corps, Major Donald H. Peterson, USAF, and Commander Richard H. Truly, US Navy. In addition to the seven selected as astronauts, NASA assigned an eighth MOL pilot, Lt. Colonel Albert H. Crews, USAF, to MSC’s Flight Crew Operations Directorate. Prior to his MOL training, Crews served as a pilot for the X-20 Dyna-Soar Program, an early USAF experimental lifting body vehicle canceled in 1963.

      Left: Official NASA photograph of Group 7 astronauts Karol J. “Bo” Bobko, left, C. Gordon Fullerton, Henry “Hank” W. Hartsfield, Robert L. Crippen, Donald H. Peterson, Richard H. Truly, and Robert F. Overmyer who transferred from the Manned Orbiting Laboratory program. Right: Official Air Force portrait of Albert H. Crews. Image credit: courtesy U.S. Air Force.
      The MOL Program had envisioned a series of 60-foot-long space stations in low polar Earth orbit, occupied by 2-man crews for 30 days at a time, launching and returning to Earth aboard modified Gemini-B capsules. Externally similar to NASA’s Gemini spacecraft, the MOL version’s major modification involved a hatch cut into the heat shield that allowed the pilots to access the laboratory located behind the spacecraft without the need for a spacewalk. While MOL pilots would carry out a variety of experiments, a telescope with imaging systems for military reconnaissance constituted the primary payload intended to fly in the laboratory. The imaging system carried the Keyhole KH-10 designation with the code name Dorian. Its 72-inch primary mirror could provide high resolution images of targets of military interest. To reach their polar orbits, MOLs would launch from Vandenberg Air Force, now Space Force, Base in California atop Titan-IIIM rockets. Construction of Space Launch Complex-6 (SLC-6) had begun in 1966 to accommodate that launch vehicle but stopped with the program’s cancellation. When NASA and the Air Force decided to fly payloads into polar orbit using the space shuttle, in 1979 they began to reconfigure the SLC-6 facilities to accommodate the new vehicle. After the January 1986 Challenger accident, the agencies abandoned plans for shuttle missions from Vandenberg and mothballed SLC-6.

      Group 7 astronauts. Left: Karol J. “Bo” Bobko. Middle left: Robert L. Crippen. Middle right: L. Gordon Fullerton. Right: Henry “Hank” W. Hartsfield.
      Bobko, selected in the second group of MOL pilots, served as the pilot for the 56-day Skylab Medical Experiment Altitude Test (SMEAT) in 1972, a ground-based simulation of a Skylab mission. He then served as a support crew member for the Apollo-Soyuz Test Project (ASTP) that flew in July 1975. For his first spaceflight, he served as pilot on STS-6 in April 1983. NASA next assigned him as commander of STS-41F, a mission to launch two communications satellites in August 1984. However, following the STS-41D launch abort in June 1984, NASA canceled the mission, combined its payloads with the delayed STS-41D, and reassigned Bobko and his crew to a later mission. That flight, STS-51E, a four-day mission aboard Challenger planned for February 1985 to deploy the second Tracking and Data Relay Satellite (TDRS), in turn was canceled when the TDRS developed serious problems. NASA reassigned Bobko and his crew to STS-51D, flown aboard Discovery in April 1985. Bobko flew his third and final spaceflight as commander of STS-51J, a Department of Defense mission and the first flight of Atlantis, in October 1985. The 167 days between his last two missions marked the shortest turnaround between spaceflights up to that time. Bobko retired from NASA in 1989.
      Crippen, a member of the second group of MOL pilots, served as commander of SMEAT in 1972, a ground-based simulation of a Skylab mission. He then served as a member of the ASTP support crew. NASA assigned him as pilot of STS-1, the first space shuttle mission in April 1981. He later served as commander of STS-7 in June 1983, STS-41C in April 1984, and STS-41G in October 1984. NASA assigned him as commander of STS-62A, planned for October 1986 as the first shuttle flight from Vandenberg in California, prior to cancellation of all shuttle flights from that launch site after the Challenger accident. Crippen went on to serve as director of the Space Shuttle Program at NASA Headquarters in Washington, D.C., from 1990 to 1992, and then as director of NASA’s Kennedy Space Center in Florida from 1992 until his retirement from the agency in 1995.
      Fullerton, selected into the second group of MOL pilots, served as the pilot of the first, third, and fifth Approach and Landing Tests (ALT) with space shuttle Enterprise in 1977. NASA assigned him as pilot on STS-3, the only shuttle to land at White Sands in March 1982. He flew his second mission in July-August 1985 as the commander of the STS-51F Spacelab 2 mission. Fullerton retired from NASA in 1986.
      Hartsfield, part of the second group of MOL pilots, served as the pilot on STS-4, the first Department of Defense shuttle mission in June-July 1982. NASA next assigned him as commander of STS-12, a mission to launch the second TDRS that was canceled due to continuing problems with its Inertial Upper Stage. NASA reassigned Hartsfield and his crew to STS-41D, space shuttle Discovery’s first flight that in June 1984, experienced the first launch pad abort of the program. That mission flew two months later, having absorbed payloads from the canceled STS-41F mission. Hartsfield commanded his third and final flight in October-November 1985, the STS-61A German Spacelab D1 mission that included the first eight-person crew. He retired from NASA in 1988.

      Group 7 astronauts. Left: Robert F. Overmyer. Middle: Donald H. Peterson. Right: Richard H. Truly.
      Overmyer, selected as part of the second group of MOL pilots, served as a support crew member for ASTP. For his first space mission, Overmyer served as pilot of STS-5 in November 1982. For his second and final spaceflight, he served as commander of the STS-51B Spacelab 3 mission in April-May 1985. Overmyer retired from NASA in 1986.
      Peterson, selected in the third group of MOL pilots, made his only spaceflight as a mission specialist during STS-6 in April 1983. During that mission, he participated in the first spacewalk of the shuttle program. Peterson retired from NASA in 1984.
      Truly, selected with the first group of MOL pilots, served as an ASTP support crew member and then as the pilot of the ALT-2 and 4 flights with space shuttle Enterprise in 1977. During his first spaceflight, he served as pilot of STS-2 in November 1981, the first reflight of a reusable spacecraft. On his second and final mission, he commanded STS-8 that included the first night launch and night landing of the shuttle program. Truly retired from NASA in 1984 but returned in 1986 as Associate Administrator for Space Flight at NASA Headquarters in Washington, D.C. In 1989, he assumed the position of NASA’s eighth administrator, serving until 1992.

      Summary of spaceflights by Group 7 astronauts. Missions in italics represent canceled flights.
      Although it took nearly 12 years for the first of the MOL transfers to make it to orbit (Crippen on STS-1 in 1981), many served in supporting roles during Skylab and ASTP, and all of them went on to fly on the space shuttle in the 1980s. After their flying careers, Truly and Crippen went on serve in senior NASA leadership positions. Crews stayed with the agency as a pilot until 1994.
      Read Bobko’s, Crews’, Crippen’s, Fullerton’s, Hartsfield’s, Peterson’s, and Truly’s recollections of the MOL program and their subsequent NASA careers in their oral history interviews with the JSC History Office.
      Explore More
      5 min read Celebrating NASA’s Coast Guard Astronauts on Coast Guard Day
      Article 2 weeks ago 20 min read MESSENGER – From Setbacks to Success
      Article 2 weeks ago 5 min read 60 Years Ago: Ranger 7 Photographs the Moon
      Article 2 weeks ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      “Mustard,” NASA Glenn Center Director Dr. Jimmy Kenyon, Eva the Astronaut mascot, and “Onion” stop for a photo after the hot dog derby at the Guardians’ game. Credit: NASA/Kristen Parker  NASA Glenn Research Center’s Director Dr. Jimmy Kenyon threw out the first pitch that started the game between the Cleveland Guardians and San Francisco Giants on July 7. He was joined by Glenn’s Eva the Astronaut mascot, who had a ball hanging out with the Guardians’ Slider mascot during NASA Day at Progressive Field in Cleveland.  
      Employees, their families, and other Guardians fans enjoyed the first pitch and having Eva represent the center.  
      NASA Glenn’s Eva the Astronaut mascot and the Guardians’ Slider at NASA Day at Progressive Field in Cleveland. Credit: NASA/Kristen Parker 
      Return to Newsletter Explore More
      2 min read Automated Technology Developed at Glenn Launches to Space 
      Article 4 mins ago 1 min read Cleveland High School Students Land STEM Career Exploration Experience 
      Article 5 mins ago 1 min read NASA Lands at National Cherry Festival 
      Article 5 mins ago View the full article
    • By NASA
      NASA astronaut Don Pettit during crew qualification exams at the Gagarin Cosmonaut Training Center.Credits: GCTC/Roscosmos NASA astronaut Don Pettit is available for limited interview opportunities beginning at 10 a.m. EDT, Friday, Aug. 16, to discuss his upcoming mission to the International Space Station in September.
      The virtual interviews will stream live on NASA+, NASA Television, the NASA app, and the agency’s website. Learn how to stream NASA+ through a variety of platforms including social media.
      Interested media must submit a request no later than 12 p.m., Thursday, Aug. 15, to the newsroom at NASA’s Johnson Space Center in Houston at 281-483-5111 or jsccommu@mail.nasa.gov.
      Pettit will launch on the Roscosmos Soyuz MS-26 spacecraft, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. The trio will spend approximately six months aboard the orbital laboratory before returning to Earth in the spring of 2025.
      During his time in orbit, Pettit will conduct scientific investigations and technology demonstrations to help prepare the crew for future space missions and provide benefits to people on Earth. Pettit will participate in several of the hundreds of experiments happening during his mission, including studying how spaceflight affects blood clotting, continuing tests of technology to produce human stem cells in space, and contributing his unique photography skills to the long-running Crew Earth Observations study of how Earth is changing over time.
      NASA selected Pettit as an astronaut in 1996. A veteran of three spaceflights, he has contributed to integral advancements in technology and demonstrations for human space exploration. He served as a science officer for Expedition 6 in 2003, operated the robotic arm for STS-126 space shuttle Endeavour in 2008, and served as a flight engineer for Expedition 30/31 in 2012. Pettit has logged 370 days in space and conducted two spacewalks totaling 13 hours and 17 minutes.
      A native from Silverton, Oregon, Pettit holds a bachelor’s degree in Chemical Engineering from Oregon State University, Corvallis, and a doctorate degree in Chemical Engineering from the University of Arizona, Tucson. Prior to his career with NASA, Pettit worked as a staff scientist at the Los Alamos National Laboratory in New Mexico.
      For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to focus more of its resources on deep space missions to the Moon and Mars.
      Get breaking news, images and features from the space station on the station blog, Instagram, Facebook, and X.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Aug 09, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Donald R. Pettit Humans in Space ISS Research Johnson Space Center NASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...