Jump to content

NASA’s Fermi Finds New Feature in Brightest Gamma-Ray Burst Yet Seen


NASA

Recommended Posts

  • Publishers

4 min read

NASA’s Fermi Finds New Feature in Brightest Gamma-Ray Burst Yet Seen

In October 2022, astronomers were stunned by what was quickly dubbed the BOAT — the brightest-of-all-time gamma-ray burst (GRB). Now an international science team reports that data from NASA’s Fermi Gamma-ray Space Telescope reveals a feature never seen before.

The brightest gamma-ray burst yet recorded gave scientists a new high-energy feature to study. Learn what NASA’s Fermi mission saw, and what this feature may be telling us about the burst’s light-speed jets. Credit: NASA’s Goddard Space Flight Center

“A few minutes after the BOAT erupted, Fermi’s Gamma-ray Burst Monitor recorded an unusual energy peak that caught our attention,” said lead researcher Maria Edvige Ravasio at Radboud University in Nijmegen, Netherlands, and affiliated with Brera Observatory, part of INAF (the Italian National Institute of Astrophysics) in Merate, Italy. “When I first saw that signal, it gave me goosebumps. Our analysis since then shows it to be the first high-confidence emission line ever seen in 50 years of studying GRBs.”

A paper about the discovery appears in the July 26 edition of the journal Science.

When matter interacts with light, the energy can be absorbed and reemitted in characteristic ways. These interactions can brighten or dim particular colors (or energies), producing key features visible when the light is spread out, rainbow-like, in a spectrum. These features can reveal a wealth of information, such as the chemical elements involved in the interaction. At higher energies, spectral features can uncover specific particle processes, such as matter and antimatter annihilating to produce gamma rays.

“While some previous studies have reported possible evidence for absorption and emission features in other GRBs, subsequent scrutiny revealed that all of these could just be statistical fluctuations. What we see in the BOAT is different,” said coauthor Om Sharan Salafia at INAF-Brera Observatory in Milan, Italy. “We’ve determined that the odds this feature is just a noise fluctuation are less than one chance in half a billion.”

Illustration of a particle jet emerging from a dying star
A jet of particles moving at nearly light speed emerges from a massive star in this artist’s concept. The star’s core ran out of fuel and collapsed into a black hole. Some of the matter swirling toward the black hole was redirected into dual jets firing in opposite directions. We see a gamma-ray burst when one of these jets happens to point directly at Earth.
NASA’s Goddard Space Flight Center Conceptual Image Lab

GRBs are the most powerful explosions in the cosmos and emit copious amounts of gamma rays, the highest-energy form of light. The most common type occurs when the core of a massive star exhausts its fuel, collapses, and forms a rapidly spinning black hole. Matter falling into the black hole powers oppositely directed particle jets that blast through the star’s outer layers at nearly the speed of light. We detect GRBs when one of these jets points almost directly toward Earth.

The BOAT, formally known as GRB 221009A, erupted Oct. 9, 2022, and promptly saturated most of the gamma-ray detectors in orbit, including those on Fermi. This prevented them from measuring the most intense part of the blast. Reconstructed observations, coupled with statistical arguments, suggest the BOAT, if part of the same population as previously detected GRBs, was likely the brightest burst to appear in Earth’s skies in 10,000 years.

The putative emission line appears almost 5 minutes after the burst was detected and well after it had dimmed enough to end saturation effects for Fermi. The line persisted for at least 40 seconds, and the emission reached a peak energy of about 12 MeV (million electron volts). For comparison, the energy of visible light ranges from 2 to 3 electron volts.

So what produced this spectral feature? The team thinks the most likely source is the annihilation of electrons and their antimatter counterparts, positrons.

“When an electron and a positron collide, they annihilate, producing a pair of gamma rays with an energy of 0.511 MeV,” said coauthor Gor Oganesyan at Gran Sasso Science Institute and Gran Sasso National Laboratory in L’Aquila, Italy. “Because we’re looking into the jet, where matter is moving at near light speed, this emission becomes greatly blueshifted and pushed toward much higher energies.”

If this interpretation is correct, to produce an emission line peaking at 12 MeV, the annihilating particles had to have been moving toward us at about 99.9% the speed of light.

“After decades of studying these incredible cosmic explosions, we still don’t understand the details of how these jets work,” noted Elizabeth Hays, the Fermi project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Finding clues like this remarkable emission line will help scientists investigate this extreme environment more deeply.” 

The Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership managed by Goddard. Fermi was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States.

By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Secretary of Defense Lloyd J. Austin III announced seven initiatives to improve the quality of life for service members and their families.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This bar graph shows GISTEMP summer global temperature anomalies for 2023 (shown in yellow) and 2024 (shown in red). June through August is considered meteorological summer in the Northern Hemisphere. The white lines indicate the range of estimated temperatures. The warmer-than-usual summers continue a long-term trend of warming, driven primarily by human-caused greenhouse gas emissions. NASA/Peter Jacobs The agency also shared new state-of-the-art datasets that allow scientists to track Earth’s temperature for any month and region going back to 1880 with greater certainty.

      August 2024 set a new monthly temperature record, capping Earth’s hottest summer since global records began in 1880, according to scientists at NASA’s Goddard Institute for Space Studies (GISS) in New York. The announcement comes as a new analysis upholds confidence in the agency’s nearly 145-year-old temperature record.
      June, July, and August 2024 combined were about 0.2 degrees Fahrenheit (about 0.1 degrees Celsius) warmer globally than any other summer in NASA’s record — narrowly topping the record just set in 2023. Summer of 2024 was 2.25 F (1.25 C) warmer than the average summer between 1951 and 1980, and August alone was 2.34 F (1.3 C) warmer than average. June through August is considered meteorological summer in the Northern Hemisphere.
      “Data from multiple record-keepers show that the warming of the past two years may be neck and neck, but it is well above anything seen in years prior, including strong El Niño years,” said Gavin Schmidt, director of GISS. “This is a clear indication of the ongoing human-driven warming of the climate.”
      NASA assembles its temperature record, known as the GISS Surface Temperature Analysis (GISTEMP), from surface air temperature data acquired by tens of thousands of meteorological stations, as well as sea surface temperatures from ship- and buoy-based instruments. It also includes measurements from Antarctica. Analytical methods consider the varied spacing of temperature stations around the globe and urban heating effects that could skew the calculations.
      The GISTEMP analysis calculates temperature anomalies rather than absolute temperature. A temperature anomaly shows how far the temperature has departed from the 1951 to 1980 base average.
      New assessment of temperature record
      The summer record comes as new research from scientists at the Colorado School of Mines, National Science Foundation, the National Atmospheric and Oceanic Administration (NOAA), and NASA further increases confidence in the agency’s global and regional temperature data.
      “Our goal was to actually quantify how good of a temperature estimate we’re making for any given time or place,” said lead author Nathan Lenssen, a professor at the Colorado School of Mines and project scientist at the National Center for Atmospheric Research (NCAR).
      This visualization of GISTEMP monthly temperatures with the seasonal cycle derived from the Global Modeling and Assimilation Office’s MERRA-2 model compares 2023 (in red) and 2024 (in purple), with a transparent ribbon around each indicating the confidence intervals from the new GISTEMP uncertainty calculation. The white lines show monthly temperatures from the years 1961 to 2022. June, July, and August 2024 combined were about 0.2 degrees Fahrenheit (about 0.1 degrees Celsius) warmer globally than any other summer in NASA’s record — narrowly topping the record set in 2023.NASA/Peter Jacobs/Katy Mersmann The researchers affirmed that GISTEMP is correctly capturing rising surface temperatures on our planet and that Earth’s global temperature increase since the late 19th century — summer 2024 was about 2.7 F (1.51 C) warmer than the late 1800s — cannot be explained by any uncertainty or error in the data.
      The authors built on previous work showing that NASA’s estimate of global mean temperature rise is likely accurate to within a tenth of a degree Fahrenheit in recent decades. For their latest analysis, Lenssen and colleagues examined the data for individual regions and for every month going back to 1880.  
      Estimating the unknown
      Lenssen and colleagues provided a rigorous accounting of statistical uncertainty within the GISTEMP record. Uncertainty in science is important to understand because we cannot take measurements everywhere. Knowing the strengths and limitations of observations helps scientists assess if they’re really seeing a shift or change in the world.
      The study confirmed that one of the most significant sources of uncertainty in the GISTEMP record is localized changes around meteorological stations. For example, a previously rural station may report higher temperatures as asphalt and other heat-trapping urban surfaces develop around it. Spatial gaps between stations also contribute some uncertainty in the record. GISTEMP accounts for these gaps using estimates from the closest stations.
      Previously, scientists using GISTEMP estimated historical temperatures using what’s known in statistics as a confidence interval — a range of values around a measurement, often read as a specific temperature plus or minus a few fractions of degrees. The new approach uses a method known as a statistical ensemble: a spread of the 200 most probable values. While a confidence interval represents a level of certainty around a single data point, an ensemble tries to capture the whole range of possibilities.
      The distinction between the two methods is meaningful to scientists tracking how temperatures have changed, especially where there are spatial gaps. For example: Say GISTEMP contains thermometer readings from Denver in July 1900, and a researcher needs to estimate what conditions were 100 miles away. Instead of reporting the Denver temperature plus or minus a few degrees, the researcher can analyze scores of equally probable values for southern Colorado and communicate the uncertainty in their results.
      What does this mean for recent heat rankings?
      Every year, NASA scientists use GISTEMP to provide an annual global temperature update, with 2023 ranking as the hottest year to date.
      Other researchers affirmed this finding, including NOAA and the European Union’s Copernicus Climate Change Service. These institutions employ different, independent methods to assess Earth’s temperature. Copernicus, for instance, uses an advanced computer-generated approach known as reanalysis. 
      The records remain in broad agreement but can differ in some specific findings. Copernicus determined that July 2023 was Earth’s hottest month on record, for example, while NASA found July 2024 had a narrow edge. The new ensemble analysis has now shown that the difference between the two months is smaller than the uncertainties in the data. In other words, they are effectively tied for hottest. Within the larger historical record the new ensemble estimates for summer 2024 were likely 2.52-2.86 degrees F (1.40-1.59 degrees C) warmer than the late 19th century, while 2023 was likely 2.34-2.68 degrees F (1.30-1.49 degrees C) warmer.

      Read More Share
      Details
      Last Updated Sep 11, 2024 LocationGISS Related Terms
      Earth Climate Change Goddard Institute for Space Studies Goddard Space Flight Center Explore More
      6 min read Childhood Snow Days Transformed Linette Boisvert into a Sea Ice Scientist
      Article 1 day ago 7 min read Kyle Helson Finds EXCITE-ment in Exoplanet Exploration
      Article 1 day ago 5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo
      Like two Sumo wrestlers squaring off, the closest confirmed pair of supermassive black holes have…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Almost a decade ago, then-grad student Kyle Helson contributed to early paperwork for NASA’s EXCITE mission. As a scientist at Goddard, Helson helped make this balloon-based telescope a reality: EXCITE launched successfully on Aug. 31.
      Name: Kyle Helson
      Title: Assistant Research Scientist
      Organization: Observational Cosmology Lab (Code 665), via UMBC and the GESTAR II cooperative agreement with NASA Goddard
      Dr. Kyle Helson is an assistant research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo credit: Dr. Amy Bender How did you know you wanted to work at NASA Goddard?
      When I was finishing my physics Ph.D. at Brown University in 2016, I was talking to Ed Wollack and Dave Chuss at Goddard about the NASA postdoc program, and they suggested I apply. Luckily, I got the postdoc fellowship to come here to Goddard to work on cosmic microwave background detector testing and other related research.
      I don’t think I would have realized or been interested in coming here had I not had that NASA Space Technology Research Fellowship when I was in grad school and gotten the opportunity to spend some time here and work with Ed and Dave.
      What is the name of your team that you’re working with right now?
      One of the projects I work on is the Exoplanet Climate Infrared TELescope (EXCITE). EXCITE is a scientific balloon-borne telescope that is designed to measure the spectra of hot, Jupiter-like exoplanet atmospheres in near-infrared light.
      Related: NASA’s EXCITE Mission Prepared for Scientific Balloon Flight What is your role for that?
      I do a little bit of everything. During grad school, I worked on the first few iterations of the proposal for EXCITE back in 2015 and 2016.
      Over the past few years here at Goddard, I’ve been responsible for parts of a lot of the different subsystems like the cryogenic receiver, the gondola, the electronics, and integration and testing of the whole payload.
      Last year, we went to Fort Sumner, New Mexico, for an engineering flight. Unfortunately, we were not able to fly for weather reasons. We went back last month, and I was again part of the field deployment team. We take the whole instrument, break it down, carefully ship it all out to New Mexico, put it back together, test it, and get it ready for a flight.
      Kyle Helson (far right) and part of the EXCITE team stand in front of EXCITE Fort Sumner, New Mexico in Oct. 2023. EXCITE successfully launched on Aug. 31, 2024. Photo credit: Annalies Kleyheeg What is most interesting to you about your role here at Goddard?
      What I like about working on a project like EXCITE is that we get to kind of do a little bit of everything.
      We’ve been able to see the experiment from concept and design to actually getting built, tested and hopefully flown and then subsequent data analysis after the flight. What I think is really fun is being able be with an experiment for the entire life cycle.
      How do you help support Goddard’s mission?
      We’re studying exoplanets, which definitely fits within the scientific mission of Goddard. We’re also a collaboration between Goddard other academic institutions, like Arizona State, like Brown University, Cornell, and several other places, and so we’re also members of the larger scientific research community beyond NASA.
      We also have a number of graduate students working on EXCITE. Ballooning is a good platform for training students and young researchers to learn how to build and design instruments, do data analysis, etc. One of the missions of NASA and Goddard is to train early career scientists like graduate students and post docs, and balloons provide a good platform for that as well.
      Balloon missions like EXCITE also provide a good platform for technology advancement and demonstration in preparation for future satellite missions.
      How did you know cosmology was what you wanted to pursue?
      When I was a kid, I loved space. I wanted to be an astronaut when I was a kid. I even went to space camp.
      The first time I ever got to see physics was a middle-school science class. That was the first time we ever learned physics or astronomy that was deeper than just identifying planets or constellations. We started to learn how we could use math to measure or predict experiments.
      When I was in college, I remember talking to my undergraduate academic adviser, Glenn Starkman, and talking about what research I might like to do over the summer between sophomore and junior year of college. I wasn’t really sure what I wanted to do or what I was interested in, and he suggested I talk to some of the professors doing astrophysics and cosmology research and see if they had space for me in their lab.
      I ended up finding a great opportunity working in a research lab in college — so it was working in the physics department in Case Western.
      That’s where I first started learning about computer-aided design (CAD), and designing things in CAD, and that’s where I first learned how things get made in a machine shop, like on a mill, or a lathe. These skills have come in handy ever since, because I do a lot of design work in the lab. And I was lucky growing up that my dad was really hands-on and liked to fix things and build things and he taught me a lot of those skills as well.
      “When I was a kid, I loved space,” said Kyle Helson. “I wanted to be an astronaut when I was a kid. I even went to space camp.”Photo courtesy of Kyle Helson Who has influenced you in your life?
      My dad had a big influence. I think all the different people I’ve had the opportunity to learn from and work with who have been mentors along the way. My research advisers, professor John Ruhl in college, professor Greg Tucker in grad school, and Dr. Ed Wollack as a postdoc have all been very influential. Additionally, I have had the opportunity to work with a lot of very good post docs and research scientists during my career, Dr. Asad Aboobaker, Dr. Britt Reichborn-Kjennerud, Dr. Michele Limon, among others.
      Throughout a career, there are tons of other people on the way from whom you pick up little things here and there that stick with you. You look back and you realize five years later you still do this one thing a certain way because someone helped you and taught you this skill or technique.
      Where is a place you’d like to travel to?
      Since I was lucky enough to go to Antarctica in graduate school, I figured that is the hardest continent to travel to, so now I have a mission to go to every continent. I’ve been to North America, I’ve been to South America, I’ve been to Asia, Europe, and Australia and New Zealand, but I’ve never been to Africa.
      Kyle Helson (second from left) races the keirin at the Valley Preferred Cycling Center in Breinigsville, PA. Photo Credit Dr. Vishrut Garg What are your hobbies, or what do you enjoy doing?
      I’m a competitive track cyclist. I started racing bikes in collegiate racing as a grad student at Brown. Many summers I’ve spent many weekends driving and flying all over the U.S. to race in the biggest track cycling events in the country.
      What would be your three-word-memoir?
      Curious, compassionate, cat-dad.
      By Tayler Gilmore
      NASA’s Goddard Space Flight Center in Greenbelt, Md
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Sep 10, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Goddard Space Flight Center Scientific Balloons Wallops Flight Facility Explore More
      5 min read Zachary Morse Hikes Hilltops, Caves Lava Tubes to Ready Moon Missions
      Article 7 days ago 5 min read Aaron Vigil Helps Give SASS to Roman Space Telescope
      Article 2 weeks ago 7 min read Tyler Parsotan Takes a Long Look at the Transient Universe with NASA’s Swift
      Article 3 weeks ago View the full article
    • By NASA
      On the left, the Canopee transport carrier containing the European Service Module for NASA’s Artemis III mission arrives at Port Canaveral in Florida, on Tuesday, Sept. 3, 2024, before completing the last leg of its journey to the agency’s Kennedy Space Center’s Neil A. Armstrong Operations and Checkout via truck. On the right, NASA’s Pegasus barge, carrying several pieces of hardware for Artemis II, III, and IV arrives at NASA Kennedy’s Launch Complex 39 turn basin wharf on Thursday, Sept. 5, 2024. Credit: NASA From across the Atlantic Ocean and through the Gulf of Mexico, two ships converged, delivering key spacecraft and rocket components of NASA’s Artemis campaign to the agency’s Kennedy Space Center in Florida.
      On Sept. 3, ESA (European Space Agency) marked a milestone in the Artemis III mission as its European-built service module for NASA’s Orion spacecraft completed a transatlantic journey from Bremen, Germany, to Port Canaveral, Florida, where technicians moved it to nearby NASA Kennedy. Transported aboard the Canopée cargo ship, the European Service Module—assembled by Airbus with components from 10 European countries and the U.S.—provides propulsion, thermal control, electrical power, and water and oxygen for its crews.
      “Seeing multi-mission hardware arrive at the same time demonstrates the progress we are making on our Artemis missions,” said Amit Kshatriya, deputy associate administrator, Moon to Mars Program, at NASA Headquarters in Washington. “We are going to the Moon together with our industry and international partners and we are manufacturing, assembling, building, and integrating elements for Artemis flights.”
      NASA’s Pegasus barge, the agency’s waterway workhorse for transporting large hardware by sea, ferried multi-mission hardware for the agency’s SLS (Space Launch System) rocket, the Artemis II launch vehicle stage adapter, the “boat-tail” of the core stage for Artemis III, the core stage engine section for Artemis IV, along with ground support equipment needed to move and assemble the large components. The barge pulled into NASA Kennedy’s Launch Complex 39B Turn Basin Thursday.
      The spacecraft factory inside NASA Kennedy’s Neil Armstrong Operations and Checkout Building is set to buzz with additional activity in the coming months. With the Artemis II Orion crew and service modules stacked together and undergoing testing, and engineers outfitting the Artemis III and IV crew modules, engineers soon will connect the newly arrived European Service Module to the crew module adapter, which houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the crew and service modules.
      The SLS rocket’s cone-shaped launch vehicle stage adapter connects the core stage to the upper stage and protects the rocket’s flight computers, avionics, and electrical devices in the upper stage system during launch and ascent. The adapter will be taken to Kennedy’s Vehicle Assembly Building in preparation for Artemis II rocket stacking operations.
      The boat-tail, which will be used during the assembly of the SLS core stage for Artemis III, is a fairing-like structure that protects the bottom end of the core stage and RS-25 engines. This hardware, picked up at NASA’s Michoud Assembly Facility in New Orleans, will join the Artemis III core stage engine section housed in the spaceport’s Space Systems Processing Facility.
      The Artemis IV SLS core stage engine section arrived from NASA Michoud and also will transfer to the center’s processing facility ahead of final assembly.
      Under the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the lunar surface, establishing long-term exploration for scientific discovery and preparing for human missions to Mars. The agency’s SLS rocket and Orion spacecraft, and supporting ground systems, along with the human landing system, next-generation spacesuits and rovers, and Gateway, serve as NASA’s foundation for deep space exploration.
      For more information on NASA’s Artemis missions, visit:
      https://www.nasa.gov/artemis
      -end-
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      Rachel.h.kraft@nasa.gov
      Allison Tankersley, Antonia Jaramillo Botero
      Kennedy Space Center, Florida
      321-867-2468
      Allison.p.tankersley@nasa.gov/ antonia.jaramillobotero@nasa.gov
      View the full article
    • By European Space Agency
      The ESA/JAXA BepiColombo mission has successfully completed its fourth of six gravity assist flybys at Mercury, capturing images of two special impact craters as it uses the little planet’s gravity to steer itself on course to enter orbit around Mercury in November 2026.
      The closest approach took place at 23:48 CEST (21:48 UTC) on 4 September 2024, with BepiColombo coming down to around 165 km above the planet’s surface. For the first time, the spacecraft had a clear view of Mercury’s south pole.
      View the full article
  • Check out these Videos

×
×
  • Create New...