Jump to content

55 Years Ago: One Year Before the Moon Landing


NASA

Recommended Posts

  • Publishers

In July 1968, much work still remained to meet the goal President John F. Kennedy set in May 1961, to land a man on the Moon and return him safely to the Earth before the end of the decade. No American astronaut had flown in space since the November 1966 flight of Gemini XII, the delay largely a result of the tragic Apollo 1 fire. Although the Apollo spacecraft had successfully completed several uncrewed test flights, the first crewed mission still lay three months in the future. The delays in getting the Lunar Module (LM) ready for its first flight caused schedule concerns, but also presented an opportunity for a bold step to send the second crewed Apollo mission, the first crewed flight of the Saturn V, on a trip to orbit the Moon. Using an incremental approach, three flights later NASA accomplished President Kennedy’s goal.

view of fire damage to cm at pad 34apollo 4 launchmating of lm1 to sla nov 22 1967apollo 6 recoveryLeft: The charred remains of the Apollo 1 spacecraft following the tragic fire that claimed the lives of astronauts Virgil I. “Gus” Grissom, Edward H. White, and Roger B. Chaffee. Middle left: The first launch of the Saturn V rocket on the Apollo 4 mission. Middle right: The first Lunar Module in preparation for the Apollo 5 mission. Right: Splashdown of Apollo 6, the final uncrewed Apollo mission.

The American human spaceflight program suffered a jarring setback on Jan. 27, 1967, with the deaths of astronauts Virgil I. Grissom, Edward H. White, and Roger B. Chaffee in the Apollo 1 fire. The fire and subsequent Investigation led to wholesale changes to the spacecraft, such as the use of fireproof materials and redesign of the hatch to make it easy to open. The early Block I spacecraft, such as Apollo 1, would now only be used for uncrewed missions, with crews flying only aboard the more advanced Block II spacecraft. The fire and its aftermath also led to management changes. For example, George M. Low replaced Joseph F. Shea as Apollo Spacecraft Program Manager. The first Apollo mission after the fire, the uncrewed Apollo 4 in November 1967, included the first launch of the Saturn V Moon rocket as well as a 9-hour flight of a Block I Command and Service Module (CSM). Apollo 5 in January 1968 conducted the first uncrewed test of the LM, and despite a few anomalies, managers considered it successful enough that they canceled a second uncrewed flight. The April 1968 flight of Apollo 6, planned as a near-repeat of Apollo 4, encountered several significant anomalies such as first stage POGO, or severe vibrations, and the failure of the third stage to restart, leading to an alternate mission scenario. Engineers devised a solution to the POGO problem and managers decided that the third flight of the Saturn V would carry a crew.

apollo 7 water egress training aug 5 1968apollo 7 stackingapollo 7 crew outside simulator kscLeft: Apollo 7 astronauts R. Walter Cunningham, left, Donn F. Eisele, and Walter M. Schirra participate in water egress training. Middle: Workers stack the Apollo 7 spacecraft on its Saturn IB rocket at Launch Pad 34. Right: Schirra, left, Cunningham, and Eisele stand outside the spacecraft simulator.

As of July 1968, NASA’s plan called for two crewed Apollo flights in 1968 and up to five in 1969 to achieve the first lunar landing to meet President Kennedy’s deadline, with each mission incrementally building on the success of the previous ones. The first mission, Apollo 7, would return American astronauts to space following a 23-month hiatus. Planned for October 1968, the crew of Walter M. Schirra, Donn F. Eisele, and R. Walter Cunningham would launch atop a Saturn IB rocket and conduct a shakedown flight of the Block II CSM in Earth orbit, including testing the Service Propulsion System engine, critical on later lunar missions for getting into and out of lunar orbit. The flight plan remained open-ended, but managers expected to complete a full-duration 11-day mission, ending with a splashdown in the Atlantic Ocean. Preparations for Apollo 7 proceeded well during the summer of 1968. Workers had stacked the two-stage Saturn IB rocket on Launch Pad 34 back in April. In KSC’s Manned Spacecraft Operations Building (MSOB), Schirra, Eisele, and Cunningham completed altitude chamber tests of their spacecraft, CSM-101, on July 26 followed by their backups three days later. Workers trucked the spacecraft to the launch pad on Aug. 9 for mating with the rocket. Among major milestones, Schirra, Eisele, and Cunningham completed water egress training in the Gulf of Mexico on Aug. 5, in addition to spending time in the spacecraft simulators at KSC and at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston.

apollo 9 crew during training jun 19 1968lm 3 arrives ksc super guppys ii stacking jul 24 1968Left: The original Apollo 8 crew of Russell L. Schweickart, left, David R. Scott, and James A. McDivitt during training in June 1968. Middle: Lunar Module-3 arrives at NASA’s Kennedy Space Center (KSC) in Florida in June 1968. Right: In July 1968, workers in KSC’s Vehicle Assembly Building stack the Saturn V rocket for the Apollo 8 mission.

The second flight, targeting a December 1968 launch, would feature the first crewed launch of the Saturn V rocket. The Apollo 8 crew of James A. McDivitt, David R. Scott, and Russell L. Schweickart would conduct the first crewed test of the LM in the relative safety of low Earth orbit. McDivitt and Schweickart would fly the LM on its independent mission, including separating the ascent stage from the descent stage to simulate a takeoff from the Moon, while Scott remained in the CSM. After redocking, Schweickart would conduct a spacewalk to practice an external transfer between the two vehicles. Workers completed stacking the three-stage Saturn V rocket (SA-503) in KSC’s Vehicle Assembly Building (VAB) on Aug. 14. The first component of the spacecraft, LM-3, arrived at KSC on June 9, while CSM-103, arrived on Aug. 12. Workers in the MSOB began to prepare both spacecraft for flight.

borman collins anders crew mar 1968lm 3 in msob aug 27 1968apollo 8 rollout oct 9 1968Left: The original Apollo 9 crew of William A. Anders, left, Michael Collins, and Frank Borman during training in March 1968. Middle: Lunar Module-3 during preflight processing at NASA’s Kennedy Space Center (KSC) in Florida in August 1968. Right: Following the revision of the mission plans for Apollo 8 and 9 and crew changes, the Apollo 8 crew of James A. Lovell, Anders, and Borman stand before their Saturn V rocket as it rolls out of KSC’s Vehicle Assembly Building in October 1968.

The third flight, planned for early 1969, and flown by Frank Borman, Michael Collins, and William A. Anders, would essentially repeat the Apollo 8 mission, but at the end would fire the SPS engine to raise the high point of their orbit to 4,600 miles and then simulate a reentry at lunar return velocity to test the spacecraft’s heat shield. On July 23, Collins underwent surgery for a bone spur in his neck, and on August 8, NASA announced that James A. Lovell from the backup crew would take his place. Later missions in 1969 would progress to sending the CSM and LM combination to lunar orbit, leading to the first landing before the end of the year. Construction of the rocket and spacecraft components for these future missions continued at various contractor facilities around the country.

kraft gilruth low in mcc during apollo 6slayton portraitdebus portraitvon braun portraitLeft: In Mission Control during the Apollo 6 mission, Director of Flight Crew Operations Christopher C. Kraft, left, Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston Robert R. Gilruth, and Apollo Spacecraft Program Manager George M. Low. Middle left: Chief of Flight Crew Operations Donald K. “Deke” Slayton. Middle right: Director of NASA’s Kennedy Space Center in Florida Kurt H. Debus. Right: Director of NASA’s Marshall Space Flight Center in Huntsville, Alabama.

Challenges to this plan began to arise in June 1968. Managers’ biggest concern centered around the readiness of LM-3. After its delivery to KSC on June 9, managers realized the vehicle needed much more work than anticipated and it would not meet the planned December Apollo 8 launch date. Best estimates put its flight readiness no earlier than February 1969. That kind of delay would jeopardize meeting President Kennedy’s fast-approaching deadline. To complicate matters, intelligence reports indicated that the Soviets were close to sending cosmonauts on a trip around the Moon, possibly before the end of the year, and also preparing to test a Saturn V-class rocket for a Moon landing mission.

Apollo Spacecraft Program Manager Low formulated a plan both audacious and risky. Without a LM, an Earth orbital Apollo 8 mission would simply repeat Apollo 7’s and not advance the program very much. By sending the CSM on a mission around the Moon, or even to orbit the Moon, NASA would gain valuable experience in navigation and communications at lunar distances. To seek management support for his plan, on Aug. 9 Low met with MSC Director Robert R. Gilruth, who supported the proposal. They called in Christopher C. Kraft, director of flight operations, for his opinion. Two days earlier, Low had asked Kraft to assess the feasibility of a lunar orbit mission for Apollo 8, and Kraft deemed it achievable from a ground control and spacecraft computer standpoint. Chief of Flight Crew Operations Donald K. “Deke” Slayton joined the discussion, and all agreed to seek support for the plan from the directors of KSC and of NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Alabama, as well as NASA Headquarters (HQ) in Washington, D.C. That afternoon, the four flew to Huntsville and met with MSFC Director Wernher von Braun, KSC Director Kurt H. Debus, and HQ Apollo Program Director Samuel C. Phillips. By the end of the meeting, the group identified no insurmountable technical obstacles to the lunar mission plan, with the qualification that the Apollo 7 mission in October concluded successfully. Von Braun had confidence that the Saturn V would perform safely, and Debus believed KSC could support a December launch.

Slayton called Borman, who was with Lovell and Anders conducting tests with their spacecraft in Downey, California. He ordered Borman to immediately fly to Houston, where he offered him command of the new circumlunar Apollo 8 mission, which Borman accepted. His crew would swap missions with McDivitt’s, who agreed to fly an Earth orbital test of the LM in February 1969, putting that crew’s greater experience with the LM to good use. The training challenge fell on Borman’s crew, who now had just four months to train for a flight around the Moon.

samuel phillips portraitgeorge mueller portraitpaine portrait w lmjames webb portraitLeft: Apollo Program Director Samuel C. Phillips. Middle left: Associate Administrator for Manned Space Flight George E. Mueller. Middle right: Deputy Administrator Thomas O. Paine. Right: Administrator James E. Webb.

On Aug. 14, representatives from MSC, MSFC, and KSC attended a meeting in Washington with NASA Deputy Administrator Thomas O. Paine and Apollo Program Director Phillips, the senior Headquarters officials present as NASA Administrator James E. Webb and Associate Administrator for Manned Space Flight George E. Mueller attended a conference in Vienna. The group discussed Low’s proposal and agreed on the technical feasibility of accomplishing a circumlunar flight with Apollo 8 in December. During the discussion, Mueller happened to call from Vienna and when they presented him with the proposal, he was at first reticent, especially since NASA had yet to fly Apollo 7. He requested more information and more time to consider the proposal so he could properly brief Webb. Paine then polled each center director for his overall assessment. Von Braun, who designed the Saturn V rocket, stated that whether it went to the Moon or stayed in Earth orbit didn’t matter too much. Debus stated that KSC could support a Saturn V launch in December – as noted above, his team was already processing both the rocket and the spacecraft. Gilruth agreed that the proposal represented a key step in achieving President Kennedy’s goal, and emphasized that the mission should not just loop around the Moon but actually enter orbit. Following additional discussions after Webb’s return from Vienna, he agreed to the plan, but would not make a formal decision until after a successful Apollo 7 flight in October. NASA kept the lunar orbit plan quiet even as the crews began training for their respective new missions. An announcement on Aug. 19 merely stated that Apollo 8 would not carry a LM, as the agency continued to assess various mission objectives. Ultimately, the plan required President Lyndon B. Johnson’s approval.

llrv 1 accident may 6 1968 armstrong ejectinglta8 test irwin bull mar 2 1968apollo 2tv-1 testingapollo parachute testing at el centro jun 16 1968Left: Astronaut Neil A. Armstrong ejects just moments before his Lunar Landing Research Vehicle crashed. Middle left: Pilot Gerald P. Gibbons, left, and astronaut James B. Irwin prepare to enter an altitude chamber for one of the Lunar Module Test Article-8 (LTA-8) vacuum tests. Middle right: Astronauts Joe H. Engle, left, Vance D. Brand, and Joseph P. Kerwin preparing for the 2TV-1 altitude test. Right: One of the final Apollo parachute tests.

As those discussions took place, work around the country continued to prepare for the first lunar landing, not without some setbacks. On May 8, astronaut Neil A. Armstrongejected just in the nick of time as the Lunar Landing Research Vehicle (LLRV) he was piloting went out of control and crashed. Managers suspended flights of the LLRV and its successor, the Lunar Landing Training Vehicle (LLTV), until Oct. 3. Astronauts used the LLRV and LLTV to train for the final few hundred feet of the descent to the Moon’s surface. On May 27, astronaut James B. Irwin and pilot Gerald P. Gibbons began a series of altitude tests in Chamber B of the Space Environment Simulation Laboratory (SESL) at MSC. The tests, using the LM Test Article-8 (LTA-8), evaluated the pressure integrity of the LM as well as the new spacesuits designed for the Apollo program. The first series of LTA-8 tests supported the Earth-orbital flight of LM-3 on Apollo 9 while a second series in October and November supported the LM-5 flight of Apollo 11, the first lunar landing mission. In June, using SESL’s Chamber A, astronauts Joseph P. Kerwin, Vance D. Brand, and Joe H. Engle completed an eight-day thermal vacuum test using the Apollo 2TV-1 spacecraft to certify the vehicle for Apollo 7. A second test in September certified the vehicle for lunar missions. July 3 marked the final qualification drop test of the Apollo parachute system, a series begun five years earlier. The tests qualified the parachutes for Apollo 7.

History records that Apollo 11 accomplished the first human landing on the Moon in July 1969. It is remarkable to think that just one year earlier, with the agency still recovering from the Apollo 1 fire, NASA had not yet flown any astronauts aboard an Apollo spacecraft. And further, the agency took the bold step to plan for a lunar orbital mission on just the second crewed mission. With a cadence of a crewed Apollo flight every two months between October 1968 and July 1969, NASA accomplished President Kennedy’s goal of landing a man on the Moon and returning him safely to the Earth.

John Uri
NASA Johnson Space Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 14 min read
      Aura at 20 Years
      Introduction
      In the 1990s and early 2000s, an international team of engineers and scientists designed an integrated observatory for atmospheric composition – a bold endeavor to provide unprecedented detail that was essential to understanding how Earth’s ozone (O3) layer and air quality respond to changes in atmospheric composition caused by human activities and natural phenomena. This work addressed a key NASA Earth science objective. Originally referred to as Earth Observing System (EOS)–CHEM (later renamed Aura,) the mission would become the third EOS Flagship mission, joining EOS-AM 1 (Terra) launched in 1999 and EOS-PM 1 (Aqua), launched in 2002. The Aura spacecraft – see Figure 1 – is similar in design to Terra and identical to Aqua. Aura and its four instruments were launched on July 15, 2004 from Vandenberg Air Force Base (now Space Force Base) in California – see Photo.
      Figure 1. An artist’s representation of the Aura satellite in orbit around the Earth. Image credit: NASA Photo.  A photo of the nighttime launch of Aura on July 15, 2004. Image credit: NASA In 2014 The Earth Observer published an article called  “Aura Celebrates Ten Years in Orbit,” [Nov–Dec 2014, 26:6, pp. 4–18] which details the history of Aura and the first decade of science resulting from its data. Therefore, the current article will focus on the science and applications enabled by Aura data in the last decade. It also examines Aura’s future and the legacies of the spacecraft’s instruments. Readers interested in more information on Aura and the scientific research and applications enabled by its data can visit the Aura website.
      Recent Science Achievements from Aura’s Instrument (in alphabetical order)
      High Resolution Dynamics Limb Sounder
      The capabilities of the High Resolution Dynamics Limb Sounder (HIRDLS) were compromised at launch and operations ceased in March 2008 due to an image chopper stall. Nevertheless, the HIRDLS team was able to produce a three-year dataset notable for high vertical resolution profiles of greater than 1 km (0.62 mi) for temperature and O3 in the upper troposphere to the mesosphere. Though limited, the HIRDLS dataset demonstrated the incredible potential of the instrument for atmospheric research. So much so, that scientists are now in the study phase for a new instrument, part of the proposed Stratosphere Troposphere Response using Infrared Vertically-Resolved Light Explorer (STRIVE) mission, which would have similar capabilities as HIRDLS with advancements in spectral and spatial imaging. (STRIVE is one of four missions currently undergoing one-year concept studies, as part of NASA’s Earth System Explorer Program, which was established in the 2017 Earth Science Decadal Survey. Two winning proposals will be chosen in 2025 for full development and launch in 2030 or 2032.)
      Microwave Limb Sounder
      The Microwave Limb Sounder (MLS) was developed to study: 1) the evolution and recovery of the stratospheric O3 layer; 2) the role of the stratosphere, notably stratospheric humidity, in climate feedback processes; and 3) the behavior of air pollutants in the upper troposphere. MLS measures vertical profiles from the upper troposphere at ~10 km altitude (6.2 mi) to the mesosphere at ~90 km (56 mi) of 16 trace gases, temperature, geopotential height, and cloud ice. Its unique measurement suite has made it the “go-to” instrument for most data-driven studies of middle atmosphere composition over the last two decades.
      Data collection during the past decade has highlighted the ability of the stratosphere to exhibit surprising and/or envelope-redefining behavior, (Envelope-redefining is a term that is used to refer to an event that greatly exceeded previous observed ranges of this event.) MLS observations have been crucial for the discovery and diagnoses of these extreme events. For example, in 2019, a stratospheric sudden warming over the southern polar cap in September – rare in the Antarctic – curtailed chemical processing, leading to an anomalously weak O3 hole. As another example, prolonged hot and dry conditions in Australia during the subsequent 2019–2020 southern summer promoted the catastrophic “Australian New Year” (ANY) fires. MLS observations showed that fire-driven pyrocumulonimbus convection lofted plumes of polluted air into the stratosphere to a degree never seen during the Aura mission.
      Apart from those individual plumes, smoke pervaded the southern lower stratosphere, leading to unprecedented perturbations in southern midlatitude lower stratospheric composition, with chlorine (Cl) shifting from its main reservoir species, hydrochloric acid (HCl), into the O3-destroying form, hypochlorite (ClO). Peak anomalies in chlorine species occurred in mid-2020 – months after the fires. State-of-the-art atmospheric chemistry models in which wildfire smoke has properties similar to those of sulfate (SO4) aerosols were unable to reproduce the observed chemical redistribution. New model simulations assuming that HCl dissolves more readily in smoke than in SO4 particles under typical midlatitude stratospheric conditions better match the MLS observations.
      As extraordinary as these events were, their impacts on the stratosphere were spectacularly eclipsed by the impact of the January 2022 eruption of the Hunga Tonga-Hunga Ha’apai  (Hunga) volcano in the Pacific Ocean. The Hunga eruption lofted about 150 Tg of water vapor into the stratosphere – with initial injections reaching into the mesosphere. The eruption almost instantaneously increased total stratospheric water vapor by about 10%. MLS was the only sensor able to track the plume in the first weeks following the eruption. The Hunga humidity enhancement resulted in an envelope-redefining, low-temperature anomaly in the stratosphere, in turn inducing changes in stratospheric circulation. Repartitioning of southern midlatitude Cl also occurred, though to a lesser degree than following the ANY fires and in a manner broadly consistent with known chemical mechanisms. The Hunga water vapor enhancement has not substantially declined in the 2.5 years since the eruption, and studies indicate that it will likely endure for several more years.
      Impacts of the Hunga humidity on polar O3 loss have also been investigated. The timing and location of the eruption were such that the plume reached high southern latitudes only after the 2022 Antarctic winter vortex had developed. Since the strong winds at the vortex edge present a transport barrier, polar stratospheric cloud (PSC) formation and O3 hole evolution were largely unaffected. When the vortex broke down at the end of the 2022 Antarctic winter, moist air flooded the southern polar region, increasing humidity in the region. Cold, moist conditions led to unusually early and vertically extensive PSC formation and Cl activation, but chemical processing ran to completion by mid-July, as typically occurs in southern winter. The cumulative chemical O3 losses ended up being unremarkable throughout the lower stratosphere. The Hunga plume was also largely excluded from the 2022–2023 Arctic vortex. The 2023–2024 Arctic O3 loss season was characterized by conditions that were dynamically disturbed and not persistently cold, and springtime O3 was near or above average. The extraordinary stratospheric hydration from Hunga has so far had minimal impact on chemical processing and O3 loss in the polar vortices in either hemisphere – see Figure 2.
      Figure 2. The evolution of MLS water vapor anomalies (deviations from the baseline 2005–2021 climatology) from January 2019 through December 2023 as a function of equivalent latitude at 700 K potential temperature in the middle stratosphere at ~27 km altitude (17 mi). Black contours mark the approximate edge of the polar vortex. The green triangle marks the time of the main Hunga eruption at latitude 20.54°S on January 15, 2022. Figure credit: Updated and adapted from a 2023 paper in Geophysical Research Letters With the end of Aura and MLS, the future for stratospheric limb sounding observations is unclear. While stratospheric O3 and aerosol will continue to be measured on a daily, near-global basis by the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (OMPS-LP) instruments on the Suomi National Polar-orbiting Partnership (Suomi NPP) and Joint Polar Satellite System (JPSS-2, -3, and -4) satellites, there are no confirmed plans for daily, near-global observations of either long-lived trace gases or halogenated species – both of which are needed to diagnose observed changes in O3. The only other sensor making such measurements, the Canadian Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE–FTS), is itself older than MLS and, as a solar occultation instrument, measures only 30 profiles-per-day, taking around a month to cover all latitudes. Similarly, no other sensor is set to provide daily, near-global measurements of stratospheric water vapor until the launch of the Canadian High-altitude Aerosols, Water vapour and Clouds (HAWC) mission in the early 2030s. Some potential new mission concepts are under consideration by both NASA and ESA, but they are subject to competition. Even if both instruments are ultimately selected, gaps in the records of many species measured by MLS are inevitable. The MLS PI is leading an effort to develop new technologies that would allow an instrument that could restart MLS measurements to be built in a far smaller mass/power footprint (e.g., 60 kg, 90 W vs. 500 kg, 500 W for Aura MLS), and technologies exist for yet-smaller MLS-like instruments that could assume the legacy of the highly impactful MLS record at low cost in future decades.
      Ozone Monitoring Instrument
      The Ozone Monitoring Instrument (OMI) continues the Total Ozone Mapping Spectrometer (TOMS) record for total O3 and other atmospheric parameters related to O3 chemistry and climate. It employs hyperspectral imaging in a push-broom mode to observe solar backscatter radiation in the visible and ultraviolet.
      OMI is a Dutch–Finnish contribution to the Aura mission, and its remarkable stability and revolutionary two-dimensional (2D) detector (spatial in one dimension and spectral in the other) has produced a two-decade record of science- and trend-quality datasets of atmospheric column observations. OMI continues the long-term record of total column O3 measurements begun in 1979, and its observations of nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (CH2O), and absorbing aerosols provided exceptional spatial resolution for study of anthropogenic and natural trends and variations of these pollutants around the world. Its radiometric and spectral stability has made it a valuable contributor for solar spectral irradiance measurements to complement dedicated solar instruments on other satellites. The many achievements made possible with OMI are documented in a review article.
      OMI’s multidecade data records have revolutionized the ability to monitor air quality changes around the world, even at the sub-urban level. In particular, OMI NO2 data have been transformative. Recently, these data were used to track changes in air pollution associated with efforts to control the spread of SARS-CoV-2. OMI’s long, stable data record allowed for changes in pollution levels in 2020 – at the height of global lockdowns – to be put into historical perspective, especially within the envelope of typical year-to-year variations associated with meteorological variability. Many research studies assessed the impact of the pandemic lockdowns on air pollution, supporting novel uses of OMI data for socioeconomic-related research. For example, OMI NO2 data were shown to serve as an environmental indicator to evaluate the effectiveness of lockdown measures and as a significant predictor for the deceleration of COVID-19 spread. OMI NO2 data were also used as a proxy for the economic impact of the pandemic as NO2 is emitted during fossil fuel combustion, which is another proxy for economic activity since most global economies are driven by fossil fuels – see Animation.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Animation. OMI data show changes in average levels of NO2 from March 20 to May 20 for each year from 2015 to 2023 over the northeast U.S. Levels in 2020 were ~30%  lower relative to previous years because of efforts to slow the spread of COVID-19. OMI data indicate similar reductions in NO2 in cities across the globe in early 2020 and a gradual recovery in pollutant emissions in late 2020 into 2023. Additional images for other world cities and regions are available through the NASA Science Visualization Studio website and the Air Quality Observations from Space website. Animation credit: NASA Science Visualization Studio OMI’s datasets are being continued by successor 2D detector array instruments, such as the previously mentioned Copernicus Sentinel-5P TROPOMI mission, the Republic of Korea’s Geostationary Environment Monitoring Spectrometer (GEMS), and NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO). All of these missions have enhanced spatial resolution relative to OMI, but have benefited from the innovative retrieval algorithms pioneered by OMI’s retrieval teams.
      Tropospheric Emission Spectrometer
      The Tropospheric Emission Spectrometer (TES) provided vertically-resolved distributions of a number of tropospheric constituents, e.g., O3, methane (CH4), and various volatile organic compounds. The instrument was decommissioned in 2018 due to signs of aging associated with a failing Interferometer Control System motor encoder bearing. Nevertheless, TES measurements led to a number of key results regarding changes in atmospheric composition that were published over the past 10 years.
      Measurements from TES, OMI, and MLS showed that transport of O3 and its precursors from East Asia offset about 43% of the decline expected in O3 over the western U.S., based on emission reductions observed there over the period 2005–2010. TES megacity measurements revealed that the frequency of high-O3 days is particularly pronounced in South Asian megacities, which typically lack ground-based pollution monitoring networks. TES water vapor and semi-heavy water measurements indicated that water transpired from Amazonian vegetation becomes a significant moisture source for the atmosphere, during the transition from dry to wet season. The increasing water vapor provides the fuel needed to start the next rainy season. Measurements of CH4 from TES and carbon monoxide (CO) from Measurements of Pollution in the Troposphere (MOPITT) on Terra showed that CH4 emissions from fires declined at twice the rate expected from changes in burned area from 2004–2014. This finding helped to balance the CH4 budget for this period, because it offset some of the large increases in fossil fuel and wetland emissions. Through direct measurement of the O3 greenhouse gas effect, TES instantaneous radiative kernels revealed the impact of hydrological controls on the O3 radiative forcing and were used to show substantial radiative bias in Intergovernmental Panel on Climate Change (IPCC) chemistry–climate models. The TES team pioneered the retrieval of a number of species, such as peroxyacetyl nitrate, carbonyl sulfide, and ethylene.
      The spirit of TES lives on through the NASA TRopospheric Ozone and its Precursors from Earth System Sounding (TROPESS) project, which generates data products of O3 and other atmospheric constituents by processing data from multiple satellites through a common retrieval algorithm and ground data system. TROPESS builds upon the success of TES and is considered a bridge to allow the development of a continuous record of O3 and other trace gas species as a follow-on to TES.
      Future of Aura
      In April 2023, Aura’s mission operations team performed the last series of maneuvers to maintain its position in the A-Train constellation of satellites. Since then, Aura has begun drifting. As of July 2024, Aura has descended ~5 km (3 mi) in altitude from ~700 km (435 mi) and its equator crossing time has increased by ~9 min from ~1:44 PM local time. This amount of drift is small, and the Aura MLS and OMI retrieval teams are ensuring the science- and trend-quality of the datasets.
      As Aura continues to drift, the amount of sunlight reaching its solar panels will slowly decrease and will no longer be able to generate sufficient power to operate the spacecraft and instruments by mid-2026. At this point, the amount of local time drift will still be relatively small – less than one hour – so the retrieval teams will be able to ensure quality for most data products until this time.
      In the remaining years, Aura’s aging but remarkably stable instruments will continue to add to the unprecedented two decades of science- and trend-quality data of numerous key tropospheric and stratospheric constituents. Aura data will be key for monitoring the evolution of the Hunga volcanic plume and understanding its continued impact on the chemistry and dynamics of the stratosphere. Observations from MLS and OMI will also be used to evaluate data from new and upcoming instruments (e.g., ESA’s Atmospheric Limb Tracker for Investigation of Upcoming Stratosphere (Altius); NASA’s TEMPO, Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), and Total and Spectral Solar Irradiance Sensor-2 (TSIS-2) missions, or at least used to help minimize the gaps between data collections.
      Aura’s Scientific Legacy
      The Aura mission has been nothing short of transformative for atmospheric research and applied sciences. The multidecade, stable datasets have furthered process-based understanding of the chemistry and dynamics of atmospheric trace gases, especially those critical for understanding the causes of trends and variations in Earth’s protective ozone layer.  
      The two decades that Aura has flown have been marked by profound atmospheric changes and numerous serendipitous events, both natural and man-made. The data from Aura’s instruments have given scientists and applied scientists an unparalleled view – including at the sub-urban scale – of air pollution around the world, clearly showing the influence of rapid industrialization, environmental regulations designed to improve air quality, seasonal agricultural burning, catastrophic wildfires, and even a global pandemic, on the air we breathe. The Aura observational record spans the period that includes the decline of O3-destroying substances, and Aura data illustrate the beginnings of the recovery of the Antarctic O3 hole, a result of unparalleled international cooperation to reduce these substances.
      Aura’s datasets have given a generation of scientists the most comprehensive global view to date of critical gases in Earth’s atmosphere and the chemical and dynamic processes that shape their concentrations. Many, but not all, of these datasets are being/will be continued by successor instruments that have benefited from the novel technologies incorporated into the design of Aura’s instruments as well as the innovative retrieval algorithms pioneered by Aura’s retrieval teams.
      Acknowledgements
      The author wishes to acknowledge the decades of hard work of the many hundreds of people who have contributed to the success of the international Aura mission. There are too many to acknowledge here and I’m sure that many names from the early days are lost to time. I would like to offer special thanks to those scientists who, back in the 1980s, first dreamed of the mission that would become Aura.
      Bryan Duncan
      NASA’s Goddard Space Flight Center (GSFC)
      bryan.n.duncan@nasa.gov
      Share








      Details
      Last Updated Sep 16, 2024 Related Terms
      Earth Science View the full article
    • By NASA
      The Apollo 11 mission in July 1969 completed the goal set by President John F. Kennedy in 1961 to land a man on the Moon and return him safely to the Earth before the end of the decade. At the time, NASA planned nine more Apollo Moon landing missions of increasing complexity and an Earth orbiting experimental space station. No firm human space flight plans existed once these missions ended in the mid-1970s. After taking office in 1969, President Richard M. Nixon chartered a Space Task Group (STG) to formulate plans for the nation’s space program for the coming decades. The STG’s proposals proved overly ambitious and costly to the fiscally conservative President who chose to take no action on them.

      Left: President John F. Kennedy addresses a Joint Session of Congress in May 1961. Middle: President Kennedy addresses a crowd at Rice University in Houston in September 1962. Right: President Lyndon B. Johnson addresses a crowd during a March 1968 visit to the Manned Spacecraft Center, now NASA’s Johnson Space Center, in Houston.
      On May 25, 1961, before a Joint Session of Congress, President John F. Kennedy committed the United States to the goal, before the decade was out, of landing a man on the Moon and returning him safely to the Earth. President Kennedy reaffirmed the commitment during an address at Rice University in Houston in September 1962. Vice President Lyndon B. Johnson, who played a leading role in establishing NASA in 1958, under Kennedy served as the Chair of the National Aeronautics and Space Council. Johnson worked with his colleagues in Congress to ensure adequate funding for the next several years to provide NASA with the needed resources to meet that goal.
      Following Kennedy’s assassination in November 1963, now President Johnson continued his strong support to ensure that his predecessor’s goal of a Moon landing could be achieved by the stipulated deadline. But with increasing competition for scarce federal resources from the conflict in southeast Asia and from domestic programs, Johnson showed less interest in any space endeavors to follow the Apollo Moon landings. NASA’s annual budget peaked in 1966 and began a steady decline three years before the agency met Kennedy’s goal. From a budgetary standpoint, the prospects of a vibrant, post-Apollo space program didn’t look all that rosy, the triumphs of the Apollo missions of 1968 and 1969 notwithstanding.

      Left: On March 5, 1969, President Richard M. Nixon, left, introduces Thomas O. Paine as the NASA Administrator nominee, as Vice President Spiro T. Agnew looks on. Middle: Proposed lunar landing sites through Apollo 20, per August 1969 NASA planning. Right: An illustration of the Apollo Applications Program experimental space station that later evolved into Skylab.
      Less than a month after assuming the Presidency in January 1969, Richard M. Nixon appointed a Space Task Group (STG), led by Vice President Spiro T. Agnew as the Chair of the National Aeronautics and Space Council, to report back to him on options for the American space program in the post-Apollo years. Members of the STG included NASA Acting Administrator Thomas O. Paine (confirmed by the Senate as administrator on March 20), the Secretary of Defense, and the Director of the Office of Science and Technology. At the time, the only approved human space flight programs included lunar landing missions through Apollo 20 and three long-duration missions to an experimental space station based on Apollo technology that evolved into Skylab.
      Beyond a general vague consensus that the United States human space flight program should continue, no approved projects existed once these missions ended by about 1975. With NASA’s intense focus on achieving the Moon landing within President Kennedy’s time frame, long-term planning for what might follow the Apollo Program garnered little attention. During a Jan. 27, 1969, meeting at NASA chaired by Acting Administrator Paine, a general consensus emerged that the next step after the Moon landing should involve the development of a 12-person earth-orbiting space station by 1975, followed by an even larger outpost capable of housing up to 100 people “with a multiplicity of capabilities.” In June, with the goal of the Moon landing almost at hand, NASA’s internal planning added the development of a space shuttle by 1977 to support the space station, the development of a lunar base by 1976, and the highly ambitious idea that the U.S. should prepare for a human mission to Mars as early as the 1980s. NASA presented these proposals to the STG for consideration in early July in a report titled “America’s Next Decades in Space.”

      Left: President Richard M. Nixon, right, greets the Apollo 11 astronauts aboard the U.S.S. Hornet after their return from the Moon. Middle: The cover page of the Space Task Group (STG) Report to President Nixon. Right: Meeting in the White House to present the STG Report to President Nixon. Image credit: courtesy Richard Nixon Presidential Library and Museum.
      Still bathing in the afterglow of the successful Moon landing, the STG presented its 29-page report “The Post-Apollo Space Program:  Directions for the Future” to President Nixon on Sep. 15, 1969, during a meeting at the White House. In its Conclusions and Recommendations section, the report noted that the United States should pursue a balanced robotic and human space program but emphasized the importance of the latter, with a long-term goal of a human mission to Mars before the end of the 20th century. The report proposed that NASA develop new systems and technologies that emphasized commonality, reusability, and economy in its future programs. To accomplish these overall objectives, the report presented three options:

      Option I – this option required more than a doubling of NASA’s budget by 1980 to enable a human Mars mission in the 1980s, establishment of a lunar orbiting space station, a 50-person Earth orbiting space station, and a lunar base. The option required a decision by 1971 on development of an Earth-to-orbit transportation system to support the space station. The option maintained a strong robotic scientific and exploration program.

      Option II – this option maintained NASA’s budget at then current levels for a few years, then anticipated a gradual increase to support the parallel development of both an earth orbiting space station and an Earth-to-orbit transportation system, but deferred a Mars mission to about 1986. The option maintained a strong robotic scientific and exploration program, but smaller than in Option I.

      Option III – essentially the same as Option II but deferred indefinitely the human Mars mission.
      In separate letters, both Agnew and Paine recommended to President Nixon to choose Option II. 

      Left: Illustration of a possible space shuttle, circa 1969. Middle: Illustration of a possible 12-person space station, circa 1969. Right: An August 1969 proposed mission scenario for a human mission to Mars.
      The White House released the report to the public at a press conference on Sep. 17 with Vice President Agnew and Administrator Paine in attendance. Although he publicly supported a strong human spaceflight program, enjoyed the positive press he received when photographed with Apollo astronauts, and initially sounded positive about the STG options, President Nixon ultimately chose not to act on the report’s recommendations.  Nixon considered these plans too grandiose and far too expensive and relegated NASA to one America’s domestic programs without the special status it enjoyed during the 1960s. Even some of the already planned remaining Moon landing missions fell victim to the budgetary axe.
      On Jan. 4, 1970, NASA had to cancel Apollo 20 since the Skylab program needed its Saturn V rocket to launch the orbital workshop. In 1968, then NASA Administrator James E. Webb had turned off the Saturn V assembly line and none remained beyond the original 15 built under contract. In September 1970, reductions in NASA’s budget forced the cancellation of two more Apollo missions, and  in 1971 President Nixon considered cancelling two more. He reversed himself and they flew as Apollo 16 and Apollo 17 in 1972, the final Apollo Moon landing missions.

      Left: NASA Administrator James C. Fletcher, left, and President Richard M. Nixon announce the approval to proceed with space shuttle development in 1972. Middle: First launch of the space shuttle in 1981. Right: In 1984, President Ronald W. Reagan directs NASA to build a space station.
      More than two years after the STG submitted its report, in January 1972 President Nixon directed NASA Administrator James C. Fletcher to develop the Space Transportation System, the formal name for the space shuttle, the only element of the recommendations to survive the budgetary challenges.  NASA anticipated the first orbital flight of the program in 1979, with the actual first flight occurring two years later. Twelve years elapsed after Nixon’s shuttle decision when President Ronald W. Reagan approved the development of a space station, the second major component of the STG recommendation.  14 years later, the first element of that program reached orbit. In those intervening years, NASA had redesigned the original American space station, leading to the development of a multinational orbiting laboratory called the International Space Station. Humans have inhabited the space station continuously for the past quarter century, conducting world class and cutting edge scientific and engineering research. Work on the space station helps enable future programs, returning humans to the Moon and later sending them on to Mars and other destinations.

      The International Space Station as it appeared in 2021.
      Explore More
      7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 6 days ago 9 min read 30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid
      Article 6 days ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 2 weeks ago View the full article
    • By USH
      In the remote wilderness of the Shoria Mountains in southern Siberia, a long-hidden secret has remained untouched for millennia. Far from the reach of modern civilization, a discovery was made that would challenge our understanding of ancient human history. 

      In 2013, a team of 19 researchers, led by Georgy Sidorov, embarked on an expedition to explore this mysterious region. Their destination was Gora Shoria, a mountain towering 3,600 feet above sea level in a remote part of Russia. Intrigued by reports of strange megalithic structures, the team ventured into this secluded terrain. 
      What they found was extraordinary: an immense super-megalith dating back roughly 100,000 years that defied conventional history. These massive stone blocks, later known as the Gornaya Shoria Megaliths, appeared to be made of granite, featuring flat surfaces and precise right angles. The most astounding detail was the weight of the stones, exceeding 3,000 tons—making them the largest megaliths ever discovered. 
      The arrangement of these granite blocks suggested a deliberate design, far beyond what could be explained by natural formations. The blocks were carefully stacked, reaching a height of approximately 140 feet. This raised profound questions: how were such massive stones carved, transported, and assembled in this remote and rugged landscape? 
      Some researchers have speculated about the existence of a pre-flood civilization, a sophisticated society wiped out by a cataclysmic event. 
      Also a deep, narrow vertical shaft was uncovered. The shaft, lined with parallel stone slabs, appeared to be human-made. 
      The walls of the shaft were straight and polished, descending 40 meters (around 130 feet) before opening into a vast underground hall, 36 meters (around 118 feet) high. These walls were constructed from large megalithic blocks, perfectly fitted with minimal gaps. Some of the stones resembled columns, reinforcing the idea of deliberate design. The full explored length of the shaft spanned over 100 meters (approximately 350 feet). 
      The precision and scale of this structure left no doubt that it was an artificial creation of immense proportions. The polished walls and massive blocks bore a striking resemblance to the shafts within the Great Pyramid of Khufu in Egypt, suggesting a level of architectural sophistication that defies conventional explanations.  
      Speculation abounds regarding the shaft’s original purpose. Some believe it served an advanced technological function or was part of a larger, undiscovered structure. The exploration team took over an hour to reach the bottom of the shaft, which required significant climbing expertise and endurance. It is believed that additional chambers and channels, still unexplored, may lie even deeper underground. 
      How could these gigantic 200-ton stone blocks have been assembled with such accuracy, deep underground? What kind of technology was used to construct the shaft and underground chamber?  
      Some researchers have speculated that it may have been part of an ancient factory, a seismological research device, or even an energy generator. Others believe it was the underground portion of a long-lost pyramid that once stood on the surface of the mountain. 
      Despite differing theories, we may wonder what ancient forces or lost civilizations left their mark on this remote corner of the world?
        View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 5 min read
      Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!
      In celebration of ChemCam’s milestone, here is a stunning image from its remote micro imager, showing details in the landscape far away. This image was taken by Chemistry & Camera (ChemCam) onboard NASA’s Mars rover Curiosity on Sol 4302 — Martian day 4,302 of the Mars Science Laboratory mission — on Sept. 12, 2024, at 09:20:51 UTC. NASA/JPL-Caltech Earth planning date: Friday, Sept. 13, 2024
      Today, I need to talk about ChemCam, our laser and imaging instrument on the top of Curiosity’s mast. It one of the instruments in the “head” that gives Curiosity that cute look as if it were looking around tilting its head down to the rocks at the rover’s wheels. On Monday, 19th August the ChemCam team at CNES in France planned the 1 millionth shot and Curiosity executed it on the target Royce Lake on sol 4281 on Mars. Even as an Earth scientist used to really big numbers, this is a huge number that took me a while to fully comprehend. 1 000 000 shots! Congratulations, ChemCam, our champion for getting chemistry from a distance – and high-resolution images, too. If you are now curious how Curiosity’s ChemCam instrument works, here is the NASA fact sheet. And, of course, the team is celebrating, which is expressed by those two press releases, one from CNES in France and one from Los Alamos National Laboratory, the two institutions who collaborated to develop and build ChemCam and are now running the instrument for over 12 years! And the PI, Dr Nina Lanza from Los Alamos informs me that the first milestone – 10000 shots was reached as early as Sol 42, which was the sol the DAN instrument used its active mode for the first time. But before I am getting melancholic, let’s talk about today’s plan!
      The drive ended fairly high up in the terrain, and that means we see a lot of the interesting features in the channel and generally around us. So, we are on a spot a human hiker would probably put the backpack down, take the water bottle out and sit down with a snack to enjoy the view from a nice high point in the landscape. Well, no such pleasures for Curiosity – and I am pretty sure sugar, which we humans love so much, wouldn’t be appreciated by rover gears anyway. So, let’s just take in the views! And that keeps Mastcam busy taking full advantage of our current vantage point. We have a terrain with lots of variety in front of us, blocks, boulders, flatter areas and the walls are layered, beautiful geology. Overall there are 11 Mastcam observations in the plan adding up to just about 100 individual frames, not counting those taken in the context of atmospheric observations, which are of course also in the plan. The biggest mosaics are on the targets “Western Deposit,” “Balloon Dome,” and “Coral Meadow.” Some smaller documentation images are on the targets “Wales Lake,” “Gnat Meadow,” and “Pig Chute.”
      ChemCam didn’t have long to dwell on its milestone, as it’s busy again today. Of course, it will join Mastcam in taking advantage of our vantage point, taking three remote micro imager images on the landscape around us. LIBS chemistry investigations are targeting “Wales Lake,” “Gnat Meadow,” and “Pig Chute.” APXS is investigating two targets, “College Rock” and “Wales Lake,” which will also come with MAHLI documentation. With all those investigations together, we’ll be able to document the chemistry of many targets around us. There is such a rich variety of dark and light toned rocks, and with so much variety everywhere, it’s hard to choose and the team is excited about the three targeted sols … and planning over 4 hours of science over the weekend!
      The next drive is planned to go to an area where there is a step in the landscape. Geologists love those steps as they give insights into the layers below the immediate surface. If you have read the word ‘outcrop’ here, then that’s what that means: access to below the surface. But there are also other interesting features in the area, hence we will certainly have an interesting workspace to look at! But getting there will not be easy as the terrain is very complex, so we cannot do it in just one drive. I think there is a rule of thumb here: the more excited the geo-team gets, the more skills our drivers need. Geologists just love rocks, but of course, no one likes driving offroad in a really rocky terrain – no roads on Mars. And right now, our excellent engineers have an extra complication to think about: they need to take extra care where and how to park so Curiosity can actually communicate with Earth. Why? Well, we are in a canyon, and those of you liking to hike, know what canyons mean for cell phone signals… yes, there isn’t much coverage, and that’s the same for Curiosity’s antenna. This new NASA video has more information and insights into the planning room, too! So, we’ll drive halfway to where we want to be but I am sure there will be interesting targets in the new workspace, the area is just so, so complex, fascinating and rich!
      And that’s after Mars for you, after 12 years, 42 drill holes, and now 1 Million ChemCam shots. Go Curiosity go!!!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Sep 13, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint


      Article


      4 hours ago
      2 min read Margin’ up the Crater Rim!


      Article


      3 days ago
      3 min read Sols 4300-4301: Rippled Pages


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA, ESA/Matthias Maurer An astronaut aboard the International Space Station snapped this picture of the Moon as the station orbited 265 miles above the U.S. state of Minnesota on Dec. 17, 2021.
      Astronauts aboard the orbital lab take images using handheld digital cameras, usually through windows in the station’s cupola, for Crew Earth Observations. Crew members have produced hundreds of thousands of images of the Moon and Earth’s land, oceans, and atmosphere.
      On Saturday, Sept. 14, 2024, International Observe the Moon Night, everyone on Earth is invited to learn about lunar science, participate in celestial observations, and honor cultural and personal connection to the Moon. Find an event to join in the celebration.
      Image credit: NASA, ESA/Matthias Maurer
      View the full article
  • Check out these Videos

×
×
  • Create New...